2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 04:34:11 +08:00
linux-next/drivers/dma-buf/fence.c
Christian König a519435a96 dma-buf/fence: add fence_wait_any_timeout function v2
Waiting for the first fence in an array of fences to signal.

This is useful for device driver specific resource managers
and also Vulkan needs something similar.

v2: more parameter checks, handling for timeout==0,
    remove NULL entry support, better callback removal.

Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
2015-10-30 01:16:16 -04:00

533 lines
14 KiB
C

/*
* Fence mechanism for dma-buf and to allow for asynchronous dma access
*
* Copyright (C) 2012 Canonical Ltd
* Copyright (C) 2012 Texas Instruments
*
* Authors:
* Rob Clark <robdclark@gmail.com>
* Maarten Lankhorst <maarten.lankhorst@canonical.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/atomic.h>
#include <linux/fence.h>
#define CREATE_TRACE_POINTS
#include <trace/events/fence.h>
EXPORT_TRACEPOINT_SYMBOL(fence_annotate_wait_on);
EXPORT_TRACEPOINT_SYMBOL(fence_emit);
/*
* fence context counter: each execution context should have its own
* fence context, this allows checking if fences belong to the same
* context or not. One device can have multiple separate contexts,
* and they're used if some engine can run independently of another.
*/
static atomic_t fence_context_counter = ATOMIC_INIT(0);
/**
* fence_context_alloc - allocate an array of fence contexts
* @num: [in] amount of contexts to allocate
*
* This function will return the first index of the number of fences allocated.
* The fence context is used for setting fence->context to a unique number.
*/
unsigned fence_context_alloc(unsigned num)
{
BUG_ON(!num);
return atomic_add_return(num, &fence_context_counter) - num;
}
EXPORT_SYMBOL(fence_context_alloc);
/**
* fence_signal_locked - signal completion of a fence
* @fence: the fence to signal
*
* Signal completion for software callbacks on a fence, this will unblock
* fence_wait() calls and run all the callbacks added with
* fence_add_callback(). Can be called multiple times, but since a fence
* can only go from unsignaled to signaled state, it will only be effective
* the first time.
*
* Unlike fence_signal, this function must be called with fence->lock held.
*/
int fence_signal_locked(struct fence *fence)
{
struct fence_cb *cur, *tmp;
int ret = 0;
if (WARN_ON(!fence))
return -EINVAL;
if (!ktime_to_ns(fence->timestamp)) {
fence->timestamp = ktime_get();
smp_mb__before_atomic();
}
if (test_and_set_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
ret = -EINVAL;
/*
* we might have raced with the unlocked fence_signal,
* still run through all callbacks
*/
} else
trace_fence_signaled(fence);
list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
list_del_init(&cur->node);
cur->func(fence, cur);
}
return ret;
}
EXPORT_SYMBOL(fence_signal_locked);
/**
* fence_signal - signal completion of a fence
* @fence: the fence to signal
*
* Signal completion for software callbacks on a fence, this will unblock
* fence_wait() calls and run all the callbacks added with
* fence_add_callback(). Can be called multiple times, but since a fence
* can only go from unsignaled to signaled state, it will only be effective
* the first time.
*/
int fence_signal(struct fence *fence)
{
unsigned long flags;
if (!fence)
return -EINVAL;
if (!ktime_to_ns(fence->timestamp)) {
fence->timestamp = ktime_get();
smp_mb__before_atomic();
}
if (test_and_set_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
return -EINVAL;
trace_fence_signaled(fence);
if (test_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags)) {
struct fence_cb *cur, *tmp;
spin_lock_irqsave(fence->lock, flags);
list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
list_del_init(&cur->node);
cur->func(fence, cur);
}
spin_unlock_irqrestore(fence->lock, flags);
}
return 0;
}
EXPORT_SYMBOL(fence_signal);
/**
* fence_wait_timeout - sleep until the fence gets signaled
* or until timeout elapses
* @fence: [in] the fence to wait on
* @intr: [in] if true, do an interruptible wait
* @timeout: [in] timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
*
* Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
* remaining timeout in jiffies on success. Other error values may be
* returned on custom implementations.
*
* Performs a synchronous wait on this fence. It is assumed the caller
* directly or indirectly (buf-mgr between reservation and committing)
* holds a reference to the fence, otherwise the fence might be
* freed before return, resulting in undefined behavior.
*/
signed long
fence_wait_timeout(struct fence *fence, bool intr, signed long timeout)
{
signed long ret;
if (WARN_ON(timeout < 0))
return -EINVAL;
if (timeout == 0)
return fence_is_signaled(fence);
trace_fence_wait_start(fence);
ret = fence->ops->wait(fence, intr, timeout);
trace_fence_wait_end(fence);
return ret;
}
EXPORT_SYMBOL(fence_wait_timeout);
void fence_release(struct kref *kref)
{
struct fence *fence =
container_of(kref, struct fence, refcount);
trace_fence_destroy(fence);
BUG_ON(!list_empty(&fence->cb_list));
if (fence->ops->release)
fence->ops->release(fence);
else
fence_free(fence);
}
EXPORT_SYMBOL(fence_release);
void fence_free(struct fence *fence)
{
kfree_rcu(fence, rcu);
}
EXPORT_SYMBOL(fence_free);
/**
* fence_enable_sw_signaling - enable signaling on fence
* @fence: [in] the fence to enable
*
* this will request for sw signaling to be enabled, to make the fence
* complete as soon as possible
*/
void fence_enable_sw_signaling(struct fence *fence)
{
unsigned long flags;
if (!test_and_set_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags) &&
!test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
trace_fence_enable_signal(fence);
spin_lock_irqsave(fence->lock, flags);
if (!fence->ops->enable_signaling(fence))
fence_signal_locked(fence);
spin_unlock_irqrestore(fence->lock, flags);
}
}
EXPORT_SYMBOL(fence_enable_sw_signaling);
/**
* fence_add_callback - add a callback to be called when the fence
* is signaled
* @fence: [in] the fence to wait on
* @cb: [in] the callback to register
* @func: [in] the function to call
*
* cb will be initialized by fence_add_callback, no initialization
* by the caller is required. Any number of callbacks can be registered
* to a fence, but a callback can only be registered to one fence at a time.
*
* Note that the callback can be called from an atomic context. If
* fence is already signaled, this function will return -ENOENT (and
* *not* call the callback)
*
* Add a software callback to the fence. Same restrictions apply to
* refcount as it does to fence_wait, however the caller doesn't need to
* keep a refcount to fence afterwards: when software access is enabled,
* the creator of the fence is required to keep the fence alive until
* after it signals with fence_signal. The callback itself can be called
* from irq context.
*
*/
int fence_add_callback(struct fence *fence, struct fence_cb *cb,
fence_func_t func)
{
unsigned long flags;
int ret = 0;
bool was_set;
if (WARN_ON(!fence || !func))
return -EINVAL;
if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
INIT_LIST_HEAD(&cb->node);
return -ENOENT;
}
spin_lock_irqsave(fence->lock, flags);
was_set = test_and_set_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags);
if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
ret = -ENOENT;
else if (!was_set) {
trace_fence_enable_signal(fence);
if (!fence->ops->enable_signaling(fence)) {
fence_signal_locked(fence);
ret = -ENOENT;
}
}
if (!ret) {
cb->func = func;
list_add_tail(&cb->node, &fence->cb_list);
} else
INIT_LIST_HEAD(&cb->node);
spin_unlock_irqrestore(fence->lock, flags);
return ret;
}
EXPORT_SYMBOL(fence_add_callback);
/**
* fence_remove_callback - remove a callback from the signaling list
* @fence: [in] the fence to wait on
* @cb: [in] the callback to remove
*
* Remove a previously queued callback from the fence. This function returns
* true if the callback is successfully removed, or false if the fence has
* already been signaled.
*
* *WARNING*:
* Cancelling a callback should only be done if you really know what you're
* doing, since deadlocks and race conditions could occur all too easily. For
* this reason, it should only ever be done on hardware lockup recovery,
* with a reference held to the fence.
*/
bool
fence_remove_callback(struct fence *fence, struct fence_cb *cb)
{
unsigned long flags;
bool ret;
spin_lock_irqsave(fence->lock, flags);
ret = !list_empty(&cb->node);
if (ret)
list_del_init(&cb->node);
spin_unlock_irqrestore(fence->lock, flags);
return ret;
}
EXPORT_SYMBOL(fence_remove_callback);
struct default_wait_cb {
struct fence_cb base;
struct task_struct *task;
};
static void
fence_default_wait_cb(struct fence *fence, struct fence_cb *cb)
{
struct default_wait_cb *wait =
container_of(cb, struct default_wait_cb, base);
wake_up_state(wait->task, TASK_NORMAL);
}
/**
* fence_default_wait - default sleep until the fence gets signaled
* or until timeout elapses
* @fence: [in] the fence to wait on
* @intr: [in] if true, do an interruptible wait
* @timeout: [in] timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
*
* Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
* remaining timeout in jiffies on success.
*/
signed long
fence_default_wait(struct fence *fence, bool intr, signed long timeout)
{
struct default_wait_cb cb;
unsigned long flags;
signed long ret = timeout;
bool was_set;
if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
return timeout;
spin_lock_irqsave(fence->lock, flags);
if (intr && signal_pending(current)) {
ret = -ERESTARTSYS;
goto out;
}
was_set = test_and_set_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags);
if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
goto out;
if (!was_set) {
trace_fence_enable_signal(fence);
if (!fence->ops->enable_signaling(fence)) {
fence_signal_locked(fence);
goto out;
}
}
cb.base.func = fence_default_wait_cb;
cb.task = current;
list_add(&cb.base.node, &fence->cb_list);
while (!test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
if (intr)
__set_current_state(TASK_INTERRUPTIBLE);
else
__set_current_state(TASK_UNINTERRUPTIBLE);
spin_unlock_irqrestore(fence->lock, flags);
ret = schedule_timeout(ret);
spin_lock_irqsave(fence->lock, flags);
if (ret > 0 && intr && signal_pending(current))
ret = -ERESTARTSYS;
}
if (!list_empty(&cb.base.node))
list_del(&cb.base.node);
__set_current_state(TASK_RUNNING);
out:
spin_unlock_irqrestore(fence->lock, flags);
return ret;
}
EXPORT_SYMBOL(fence_default_wait);
static bool
fence_test_signaled_any(struct fence **fences, uint32_t count)
{
int i;
for (i = 0; i < count; ++i) {
struct fence *fence = fences[i];
if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
return true;
}
return false;
}
/**
* fence_wait_any_timeout - sleep until any fence gets signaled
* or until timeout elapses
* @fences: [in] array of fences to wait on
* @count: [in] number of fences to wait on
* @intr: [in] if true, do an interruptible wait
* @timeout: [in] timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
*
* Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
* interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
* on success.
*
* Synchronous waits for the first fence in the array to be signaled. The
* caller needs to hold a reference to all fences in the array, otherwise a
* fence might be freed before return, resulting in undefined behavior.
*/
signed long
fence_wait_any_timeout(struct fence **fences, uint32_t count,
bool intr, signed long timeout)
{
struct default_wait_cb *cb;
signed long ret = timeout;
unsigned i;
if (WARN_ON(!fences || !count || timeout < 0))
return -EINVAL;
if (timeout == 0) {
for (i = 0; i < count; ++i)
if (fence_is_signaled(fences[i]))
return 1;
return 0;
}
cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
if (cb == NULL) {
ret = -ENOMEM;
goto err_free_cb;
}
for (i = 0; i < count; ++i) {
struct fence *fence = fences[i];
if (fence->ops->wait != fence_default_wait) {
ret = -EINVAL;
goto fence_rm_cb;
}
cb[i].task = current;
if (fence_add_callback(fence, &cb[i].base,
fence_default_wait_cb)) {
/* This fence is already signaled */
goto fence_rm_cb;
}
}
while (ret > 0) {
if (intr)
set_current_state(TASK_INTERRUPTIBLE);
else
set_current_state(TASK_UNINTERRUPTIBLE);
if (fence_test_signaled_any(fences, count))
break;
ret = schedule_timeout(ret);
if (ret > 0 && intr && signal_pending(current))
ret = -ERESTARTSYS;
}
__set_current_state(TASK_RUNNING);
fence_rm_cb:
while (i-- > 0)
fence_remove_callback(fences[i], &cb[i].base);
err_free_cb:
kfree(cb);
return ret;
}
EXPORT_SYMBOL(fence_wait_any_timeout);
/**
* fence_init - Initialize a custom fence.
* @fence: [in] the fence to initialize
* @ops: [in] the fence_ops for operations on this fence
* @lock: [in] the irqsafe spinlock to use for locking this fence
* @context: [in] the execution context this fence is run on
* @seqno: [in] a linear increasing sequence number for this context
*
* Initializes an allocated fence, the caller doesn't have to keep its
* refcount after committing with this fence, but it will need to hold a
* refcount again if fence_ops.enable_signaling gets called. This can
* be used for other implementing other types of fence.
*
* context and seqno are used for easy comparison between fences, allowing
* to check which fence is later by simply using fence_later.
*/
void
fence_init(struct fence *fence, const struct fence_ops *ops,
spinlock_t *lock, unsigned context, unsigned seqno)
{
BUG_ON(!lock);
BUG_ON(!ops || !ops->wait || !ops->enable_signaling ||
!ops->get_driver_name || !ops->get_timeline_name);
kref_init(&fence->refcount);
fence->ops = ops;
INIT_LIST_HEAD(&fence->cb_list);
fence->lock = lock;
fence->context = context;
fence->seqno = seqno;
fence->flags = 0UL;
trace_fence_init(fence);
}
EXPORT_SYMBOL(fence_init);