mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-16 01:24:08 +08:00
b537900f15
This change gives userfaultfd file descriptors a real security context, allowing policy to act on them. Signed-off-by: Daniel Colascione <dancol@google.com> [LG: Remove owner inode from userfaultfd_ctx] [LG: Use anon_inode_getfd_secure() in userfaultfd syscall] [LG: Use inode of file in userfaultfd_read() in resolve_userfault_fork()] Signed-off-by: Lokesh Gidra <lokeshgidra@google.com> Reviewed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Paul Moore <paul@paul-moore.com>
2022 lines
52 KiB
C
2022 lines
52 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* fs/userfaultfd.c
|
|
*
|
|
* Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
|
|
* Copyright (C) 2008-2009 Red Hat, Inc.
|
|
* Copyright (C) 2015 Red Hat, Inc.
|
|
*
|
|
* Some part derived from fs/eventfd.c (anon inode setup) and
|
|
* mm/ksm.c (mm hashing).
|
|
*/
|
|
|
|
#include <linux/list.h>
|
|
#include <linux/hashtable.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/file.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/anon_inodes.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/userfaultfd_k.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/ioctl.h>
|
|
#include <linux/security.h>
|
|
#include <linux/hugetlb.h>
|
|
|
|
int sysctl_unprivileged_userfaultfd __read_mostly;
|
|
|
|
static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
|
|
|
|
enum userfaultfd_state {
|
|
UFFD_STATE_WAIT_API,
|
|
UFFD_STATE_RUNNING,
|
|
};
|
|
|
|
/*
|
|
* Start with fault_pending_wqh and fault_wqh so they're more likely
|
|
* to be in the same cacheline.
|
|
*
|
|
* Locking order:
|
|
* fd_wqh.lock
|
|
* fault_pending_wqh.lock
|
|
* fault_wqh.lock
|
|
* event_wqh.lock
|
|
*
|
|
* To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
|
|
* since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
|
|
* also taken in IRQ context.
|
|
*/
|
|
struct userfaultfd_ctx {
|
|
/* waitqueue head for the pending (i.e. not read) userfaults */
|
|
wait_queue_head_t fault_pending_wqh;
|
|
/* waitqueue head for the userfaults */
|
|
wait_queue_head_t fault_wqh;
|
|
/* waitqueue head for the pseudo fd to wakeup poll/read */
|
|
wait_queue_head_t fd_wqh;
|
|
/* waitqueue head for events */
|
|
wait_queue_head_t event_wqh;
|
|
/* a refile sequence protected by fault_pending_wqh lock */
|
|
seqcount_spinlock_t refile_seq;
|
|
/* pseudo fd refcounting */
|
|
refcount_t refcount;
|
|
/* userfaultfd syscall flags */
|
|
unsigned int flags;
|
|
/* features requested from the userspace */
|
|
unsigned int features;
|
|
/* state machine */
|
|
enum userfaultfd_state state;
|
|
/* released */
|
|
bool released;
|
|
/* memory mappings are changing because of non-cooperative event */
|
|
bool mmap_changing;
|
|
/* mm with one ore more vmas attached to this userfaultfd_ctx */
|
|
struct mm_struct *mm;
|
|
};
|
|
|
|
struct userfaultfd_fork_ctx {
|
|
struct userfaultfd_ctx *orig;
|
|
struct userfaultfd_ctx *new;
|
|
struct list_head list;
|
|
};
|
|
|
|
struct userfaultfd_unmap_ctx {
|
|
struct userfaultfd_ctx *ctx;
|
|
unsigned long start;
|
|
unsigned long end;
|
|
struct list_head list;
|
|
};
|
|
|
|
struct userfaultfd_wait_queue {
|
|
struct uffd_msg msg;
|
|
wait_queue_entry_t wq;
|
|
struct userfaultfd_ctx *ctx;
|
|
bool waken;
|
|
};
|
|
|
|
struct userfaultfd_wake_range {
|
|
unsigned long start;
|
|
unsigned long len;
|
|
};
|
|
|
|
static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
|
|
int wake_flags, void *key)
|
|
{
|
|
struct userfaultfd_wake_range *range = key;
|
|
int ret;
|
|
struct userfaultfd_wait_queue *uwq;
|
|
unsigned long start, len;
|
|
|
|
uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
|
|
ret = 0;
|
|
/* len == 0 means wake all */
|
|
start = range->start;
|
|
len = range->len;
|
|
if (len && (start > uwq->msg.arg.pagefault.address ||
|
|
start + len <= uwq->msg.arg.pagefault.address))
|
|
goto out;
|
|
WRITE_ONCE(uwq->waken, true);
|
|
/*
|
|
* The Program-Order guarantees provided by the scheduler
|
|
* ensure uwq->waken is visible before the task is woken.
|
|
*/
|
|
ret = wake_up_state(wq->private, mode);
|
|
if (ret) {
|
|
/*
|
|
* Wake only once, autoremove behavior.
|
|
*
|
|
* After the effect of list_del_init is visible to the other
|
|
* CPUs, the waitqueue may disappear from under us, see the
|
|
* !list_empty_careful() in handle_userfault().
|
|
*
|
|
* try_to_wake_up() has an implicit smp_mb(), and the
|
|
* wq->private is read before calling the extern function
|
|
* "wake_up_state" (which in turns calls try_to_wake_up).
|
|
*/
|
|
list_del_init(&wq->entry);
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
|
|
* context.
|
|
* @ctx: [in] Pointer to the userfaultfd context.
|
|
*/
|
|
static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
|
|
{
|
|
refcount_inc(&ctx->refcount);
|
|
}
|
|
|
|
/**
|
|
* userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
|
|
* context.
|
|
* @ctx: [in] Pointer to userfaultfd context.
|
|
*
|
|
* The userfaultfd context reference must have been previously acquired either
|
|
* with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
|
|
*/
|
|
static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
|
|
{
|
|
if (refcount_dec_and_test(&ctx->refcount)) {
|
|
VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
|
|
VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
|
|
VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
|
|
VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
|
|
VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
|
|
VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
|
|
VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
|
|
VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
|
|
mmdrop(ctx->mm);
|
|
kmem_cache_free(userfaultfd_ctx_cachep, ctx);
|
|
}
|
|
}
|
|
|
|
static inline void msg_init(struct uffd_msg *msg)
|
|
{
|
|
BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
|
|
/*
|
|
* Must use memset to zero out the paddings or kernel data is
|
|
* leaked to userland.
|
|
*/
|
|
memset(msg, 0, sizeof(struct uffd_msg));
|
|
}
|
|
|
|
static inline struct uffd_msg userfault_msg(unsigned long address,
|
|
unsigned int flags,
|
|
unsigned long reason,
|
|
unsigned int features)
|
|
{
|
|
struct uffd_msg msg;
|
|
msg_init(&msg);
|
|
msg.event = UFFD_EVENT_PAGEFAULT;
|
|
msg.arg.pagefault.address = address;
|
|
if (flags & FAULT_FLAG_WRITE)
|
|
/*
|
|
* If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
|
|
* uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
|
|
* was not set in a UFFD_EVENT_PAGEFAULT, it means it
|
|
* was a read fault, otherwise if set it means it's
|
|
* a write fault.
|
|
*/
|
|
msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
|
|
if (reason & VM_UFFD_WP)
|
|
/*
|
|
* If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
|
|
* uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
|
|
* not set in a UFFD_EVENT_PAGEFAULT, it means it was
|
|
* a missing fault, otherwise if set it means it's a
|
|
* write protect fault.
|
|
*/
|
|
msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
|
|
if (features & UFFD_FEATURE_THREAD_ID)
|
|
msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
|
|
return msg;
|
|
}
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
/*
|
|
* Same functionality as userfaultfd_must_wait below with modifications for
|
|
* hugepmd ranges.
|
|
*/
|
|
static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
|
|
struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
unsigned long flags,
|
|
unsigned long reason)
|
|
{
|
|
struct mm_struct *mm = ctx->mm;
|
|
pte_t *ptep, pte;
|
|
bool ret = true;
|
|
|
|
mmap_assert_locked(mm);
|
|
|
|
ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
|
|
|
|
if (!ptep)
|
|
goto out;
|
|
|
|
ret = false;
|
|
pte = huge_ptep_get(ptep);
|
|
|
|
/*
|
|
* Lockless access: we're in a wait_event so it's ok if it
|
|
* changes under us.
|
|
*/
|
|
if (huge_pte_none(pte))
|
|
ret = true;
|
|
if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
|
|
ret = true;
|
|
out:
|
|
return ret;
|
|
}
|
|
#else
|
|
static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
|
|
struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
unsigned long flags,
|
|
unsigned long reason)
|
|
{
|
|
return false; /* should never get here */
|
|
}
|
|
#endif /* CONFIG_HUGETLB_PAGE */
|
|
|
|
/*
|
|
* Verify the pagetables are still not ok after having reigstered into
|
|
* the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
|
|
* userfault that has already been resolved, if userfaultfd_read and
|
|
* UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
|
|
* threads.
|
|
*/
|
|
static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
|
|
unsigned long address,
|
|
unsigned long flags,
|
|
unsigned long reason)
|
|
{
|
|
struct mm_struct *mm = ctx->mm;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd, _pmd;
|
|
pte_t *pte;
|
|
bool ret = true;
|
|
|
|
mmap_assert_locked(mm);
|
|
|
|
pgd = pgd_offset(mm, address);
|
|
if (!pgd_present(*pgd))
|
|
goto out;
|
|
p4d = p4d_offset(pgd, address);
|
|
if (!p4d_present(*p4d))
|
|
goto out;
|
|
pud = pud_offset(p4d, address);
|
|
if (!pud_present(*pud))
|
|
goto out;
|
|
pmd = pmd_offset(pud, address);
|
|
/*
|
|
* READ_ONCE must function as a barrier with narrower scope
|
|
* and it must be equivalent to:
|
|
* _pmd = *pmd; barrier();
|
|
*
|
|
* This is to deal with the instability (as in
|
|
* pmd_trans_unstable) of the pmd.
|
|
*/
|
|
_pmd = READ_ONCE(*pmd);
|
|
if (pmd_none(_pmd))
|
|
goto out;
|
|
|
|
ret = false;
|
|
if (!pmd_present(_pmd))
|
|
goto out;
|
|
|
|
if (pmd_trans_huge(_pmd)) {
|
|
if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
|
|
ret = true;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
|
|
* and use the standard pte_offset_map() instead of parsing _pmd.
|
|
*/
|
|
pte = pte_offset_map(pmd, address);
|
|
/*
|
|
* Lockless access: we're in a wait_event so it's ok if it
|
|
* changes under us.
|
|
*/
|
|
if (pte_none(*pte))
|
|
ret = true;
|
|
if (!pte_write(*pte) && (reason & VM_UFFD_WP))
|
|
ret = true;
|
|
pte_unmap(pte);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static inline long userfaultfd_get_blocking_state(unsigned int flags)
|
|
{
|
|
if (flags & FAULT_FLAG_INTERRUPTIBLE)
|
|
return TASK_INTERRUPTIBLE;
|
|
|
|
if (flags & FAULT_FLAG_KILLABLE)
|
|
return TASK_KILLABLE;
|
|
|
|
return TASK_UNINTERRUPTIBLE;
|
|
}
|
|
|
|
/*
|
|
* The locking rules involved in returning VM_FAULT_RETRY depending on
|
|
* FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
|
|
* FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
|
|
* recommendation in __lock_page_or_retry is not an understatement.
|
|
*
|
|
* If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
|
|
* before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
|
|
* not set.
|
|
*
|
|
* If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
|
|
* set, VM_FAULT_RETRY can still be returned if and only if there are
|
|
* fatal_signal_pending()s, and the mmap_lock must be released before
|
|
* returning it.
|
|
*/
|
|
vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
|
|
{
|
|
struct mm_struct *mm = vmf->vma->vm_mm;
|
|
struct userfaultfd_ctx *ctx;
|
|
struct userfaultfd_wait_queue uwq;
|
|
vm_fault_t ret = VM_FAULT_SIGBUS;
|
|
bool must_wait;
|
|
long blocking_state;
|
|
|
|
/*
|
|
* We don't do userfault handling for the final child pid update.
|
|
*
|
|
* We also don't do userfault handling during
|
|
* coredumping. hugetlbfs has the special
|
|
* follow_hugetlb_page() to skip missing pages in the
|
|
* FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
|
|
* the no_page_table() helper in follow_page_mask(), but the
|
|
* shmem_vm_ops->fault method is invoked even during
|
|
* coredumping without mmap_lock and it ends up here.
|
|
*/
|
|
if (current->flags & (PF_EXITING|PF_DUMPCORE))
|
|
goto out;
|
|
|
|
/*
|
|
* Coredumping runs without mmap_lock so we can only check that
|
|
* the mmap_lock is held, if PF_DUMPCORE was not set.
|
|
*/
|
|
mmap_assert_locked(mm);
|
|
|
|
ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
|
|
if (!ctx)
|
|
goto out;
|
|
|
|
BUG_ON(ctx->mm != mm);
|
|
|
|
VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
|
|
VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
|
|
|
|
if (ctx->features & UFFD_FEATURE_SIGBUS)
|
|
goto out;
|
|
if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
|
|
ctx->flags & UFFD_USER_MODE_ONLY) {
|
|
printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
|
|
"sysctl knob to 1 if kernel faults must be handled "
|
|
"without obtaining CAP_SYS_PTRACE capability\n");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If it's already released don't get it. This avoids to loop
|
|
* in __get_user_pages if userfaultfd_release waits on the
|
|
* caller of handle_userfault to release the mmap_lock.
|
|
*/
|
|
if (unlikely(READ_ONCE(ctx->released))) {
|
|
/*
|
|
* Don't return VM_FAULT_SIGBUS in this case, so a non
|
|
* cooperative manager can close the uffd after the
|
|
* last UFFDIO_COPY, without risking to trigger an
|
|
* involuntary SIGBUS if the process was starting the
|
|
* userfaultfd while the userfaultfd was still armed
|
|
* (but after the last UFFDIO_COPY). If the uffd
|
|
* wasn't already closed when the userfault reached
|
|
* this point, that would normally be solved by
|
|
* userfaultfd_must_wait returning 'false'.
|
|
*
|
|
* If we were to return VM_FAULT_SIGBUS here, the non
|
|
* cooperative manager would be instead forced to
|
|
* always call UFFDIO_UNREGISTER before it can safely
|
|
* close the uffd.
|
|
*/
|
|
ret = VM_FAULT_NOPAGE;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Check that we can return VM_FAULT_RETRY.
|
|
*
|
|
* NOTE: it should become possible to return VM_FAULT_RETRY
|
|
* even if FAULT_FLAG_TRIED is set without leading to gup()
|
|
* -EBUSY failures, if the userfaultfd is to be extended for
|
|
* VM_UFFD_WP tracking and we intend to arm the userfault
|
|
* without first stopping userland access to the memory. For
|
|
* VM_UFFD_MISSING userfaults this is enough for now.
|
|
*/
|
|
if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
|
|
/*
|
|
* Validate the invariant that nowait must allow retry
|
|
* to be sure not to return SIGBUS erroneously on
|
|
* nowait invocations.
|
|
*/
|
|
BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
|
|
#ifdef CONFIG_DEBUG_VM
|
|
if (printk_ratelimit()) {
|
|
printk(KERN_WARNING
|
|
"FAULT_FLAG_ALLOW_RETRY missing %x\n",
|
|
vmf->flags);
|
|
dump_stack();
|
|
}
|
|
#endif
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Handle nowait, not much to do other than tell it to retry
|
|
* and wait.
|
|
*/
|
|
ret = VM_FAULT_RETRY;
|
|
if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
|
|
goto out;
|
|
|
|
/* take the reference before dropping the mmap_lock */
|
|
userfaultfd_ctx_get(ctx);
|
|
|
|
init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
|
|
uwq.wq.private = current;
|
|
uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
|
|
ctx->features);
|
|
uwq.ctx = ctx;
|
|
uwq.waken = false;
|
|
|
|
blocking_state = userfaultfd_get_blocking_state(vmf->flags);
|
|
|
|
spin_lock_irq(&ctx->fault_pending_wqh.lock);
|
|
/*
|
|
* After the __add_wait_queue the uwq is visible to userland
|
|
* through poll/read().
|
|
*/
|
|
__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
|
|
/*
|
|
* The smp_mb() after __set_current_state prevents the reads
|
|
* following the spin_unlock to happen before the list_add in
|
|
* __add_wait_queue.
|
|
*/
|
|
set_current_state(blocking_state);
|
|
spin_unlock_irq(&ctx->fault_pending_wqh.lock);
|
|
|
|
if (!is_vm_hugetlb_page(vmf->vma))
|
|
must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
|
|
reason);
|
|
else
|
|
must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
|
|
vmf->address,
|
|
vmf->flags, reason);
|
|
mmap_read_unlock(mm);
|
|
|
|
if (likely(must_wait && !READ_ONCE(ctx->released))) {
|
|
wake_up_poll(&ctx->fd_wqh, EPOLLIN);
|
|
schedule();
|
|
}
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
/*
|
|
* Here we race with the list_del; list_add in
|
|
* userfaultfd_ctx_read(), however because we don't ever run
|
|
* list_del_init() to refile across the two lists, the prev
|
|
* and next pointers will never point to self. list_add also
|
|
* would never let any of the two pointers to point to
|
|
* self. So list_empty_careful won't risk to see both pointers
|
|
* pointing to self at any time during the list refile. The
|
|
* only case where list_del_init() is called is the full
|
|
* removal in the wake function and there we don't re-list_add
|
|
* and it's fine not to block on the spinlock. The uwq on this
|
|
* kernel stack can be released after the list_del_init.
|
|
*/
|
|
if (!list_empty_careful(&uwq.wq.entry)) {
|
|
spin_lock_irq(&ctx->fault_pending_wqh.lock);
|
|
/*
|
|
* No need of list_del_init(), the uwq on the stack
|
|
* will be freed shortly anyway.
|
|
*/
|
|
list_del(&uwq.wq.entry);
|
|
spin_unlock_irq(&ctx->fault_pending_wqh.lock);
|
|
}
|
|
|
|
/*
|
|
* ctx may go away after this if the userfault pseudo fd is
|
|
* already released.
|
|
*/
|
|
userfaultfd_ctx_put(ctx);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
|
|
struct userfaultfd_wait_queue *ewq)
|
|
{
|
|
struct userfaultfd_ctx *release_new_ctx;
|
|
|
|
if (WARN_ON_ONCE(current->flags & PF_EXITING))
|
|
goto out;
|
|
|
|
ewq->ctx = ctx;
|
|
init_waitqueue_entry(&ewq->wq, current);
|
|
release_new_ctx = NULL;
|
|
|
|
spin_lock_irq(&ctx->event_wqh.lock);
|
|
/*
|
|
* After the __add_wait_queue the uwq is visible to userland
|
|
* through poll/read().
|
|
*/
|
|
__add_wait_queue(&ctx->event_wqh, &ewq->wq);
|
|
for (;;) {
|
|
set_current_state(TASK_KILLABLE);
|
|
if (ewq->msg.event == 0)
|
|
break;
|
|
if (READ_ONCE(ctx->released) ||
|
|
fatal_signal_pending(current)) {
|
|
/*
|
|
* &ewq->wq may be queued in fork_event, but
|
|
* __remove_wait_queue ignores the head
|
|
* parameter. It would be a problem if it
|
|
* didn't.
|
|
*/
|
|
__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
|
|
if (ewq->msg.event == UFFD_EVENT_FORK) {
|
|
struct userfaultfd_ctx *new;
|
|
|
|
new = (struct userfaultfd_ctx *)
|
|
(unsigned long)
|
|
ewq->msg.arg.reserved.reserved1;
|
|
release_new_ctx = new;
|
|
}
|
|
break;
|
|
}
|
|
|
|
spin_unlock_irq(&ctx->event_wqh.lock);
|
|
|
|
wake_up_poll(&ctx->fd_wqh, EPOLLIN);
|
|
schedule();
|
|
|
|
spin_lock_irq(&ctx->event_wqh.lock);
|
|
}
|
|
__set_current_state(TASK_RUNNING);
|
|
spin_unlock_irq(&ctx->event_wqh.lock);
|
|
|
|
if (release_new_ctx) {
|
|
struct vm_area_struct *vma;
|
|
struct mm_struct *mm = release_new_ctx->mm;
|
|
|
|
/* the various vma->vm_userfaultfd_ctx still points to it */
|
|
mmap_write_lock(mm);
|
|
for (vma = mm->mmap; vma; vma = vma->vm_next)
|
|
if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
|
|
vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
|
|
vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
|
|
}
|
|
mmap_write_unlock(mm);
|
|
|
|
userfaultfd_ctx_put(release_new_ctx);
|
|
}
|
|
|
|
/*
|
|
* ctx may go away after this if the userfault pseudo fd is
|
|
* already released.
|
|
*/
|
|
out:
|
|
WRITE_ONCE(ctx->mmap_changing, false);
|
|
userfaultfd_ctx_put(ctx);
|
|
}
|
|
|
|
static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
|
|
struct userfaultfd_wait_queue *ewq)
|
|
{
|
|
ewq->msg.event = 0;
|
|
wake_up_locked(&ctx->event_wqh);
|
|
__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
|
|
}
|
|
|
|
int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
|
|
{
|
|
struct userfaultfd_ctx *ctx = NULL, *octx;
|
|
struct userfaultfd_fork_ctx *fctx;
|
|
|
|
octx = vma->vm_userfaultfd_ctx.ctx;
|
|
if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
|
|
vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
|
|
vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
|
|
return 0;
|
|
}
|
|
|
|
list_for_each_entry(fctx, fcs, list)
|
|
if (fctx->orig == octx) {
|
|
ctx = fctx->new;
|
|
break;
|
|
}
|
|
|
|
if (!ctx) {
|
|
fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
|
|
if (!fctx)
|
|
return -ENOMEM;
|
|
|
|
ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
|
|
if (!ctx) {
|
|
kfree(fctx);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
refcount_set(&ctx->refcount, 1);
|
|
ctx->flags = octx->flags;
|
|
ctx->state = UFFD_STATE_RUNNING;
|
|
ctx->features = octx->features;
|
|
ctx->released = false;
|
|
ctx->mmap_changing = false;
|
|
ctx->mm = vma->vm_mm;
|
|
mmgrab(ctx->mm);
|
|
|
|
userfaultfd_ctx_get(octx);
|
|
WRITE_ONCE(octx->mmap_changing, true);
|
|
fctx->orig = octx;
|
|
fctx->new = ctx;
|
|
list_add_tail(&fctx->list, fcs);
|
|
}
|
|
|
|
vma->vm_userfaultfd_ctx.ctx = ctx;
|
|
return 0;
|
|
}
|
|
|
|
static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
|
|
{
|
|
struct userfaultfd_ctx *ctx = fctx->orig;
|
|
struct userfaultfd_wait_queue ewq;
|
|
|
|
msg_init(&ewq.msg);
|
|
|
|
ewq.msg.event = UFFD_EVENT_FORK;
|
|
ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
|
|
|
|
userfaultfd_event_wait_completion(ctx, &ewq);
|
|
}
|
|
|
|
void dup_userfaultfd_complete(struct list_head *fcs)
|
|
{
|
|
struct userfaultfd_fork_ctx *fctx, *n;
|
|
|
|
list_for_each_entry_safe(fctx, n, fcs, list) {
|
|
dup_fctx(fctx);
|
|
list_del(&fctx->list);
|
|
kfree(fctx);
|
|
}
|
|
}
|
|
|
|
void mremap_userfaultfd_prep(struct vm_area_struct *vma,
|
|
struct vm_userfaultfd_ctx *vm_ctx)
|
|
{
|
|
struct userfaultfd_ctx *ctx;
|
|
|
|
ctx = vma->vm_userfaultfd_ctx.ctx;
|
|
|
|
if (!ctx)
|
|
return;
|
|
|
|
if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
|
|
vm_ctx->ctx = ctx;
|
|
userfaultfd_ctx_get(ctx);
|
|
WRITE_ONCE(ctx->mmap_changing, true);
|
|
} else {
|
|
/* Drop uffd context if remap feature not enabled */
|
|
vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
|
|
vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
|
|
}
|
|
}
|
|
|
|
void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
|
|
unsigned long from, unsigned long to,
|
|
unsigned long len)
|
|
{
|
|
struct userfaultfd_ctx *ctx = vm_ctx->ctx;
|
|
struct userfaultfd_wait_queue ewq;
|
|
|
|
if (!ctx)
|
|
return;
|
|
|
|
if (to & ~PAGE_MASK) {
|
|
userfaultfd_ctx_put(ctx);
|
|
return;
|
|
}
|
|
|
|
msg_init(&ewq.msg);
|
|
|
|
ewq.msg.event = UFFD_EVENT_REMAP;
|
|
ewq.msg.arg.remap.from = from;
|
|
ewq.msg.arg.remap.to = to;
|
|
ewq.msg.arg.remap.len = len;
|
|
|
|
userfaultfd_event_wait_completion(ctx, &ewq);
|
|
}
|
|
|
|
bool userfaultfd_remove(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct userfaultfd_ctx *ctx;
|
|
struct userfaultfd_wait_queue ewq;
|
|
|
|
ctx = vma->vm_userfaultfd_ctx.ctx;
|
|
if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
|
|
return true;
|
|
|
|
userfaultfd_ctx_get(ctx);
|
|
WRITE_ONCE(ctx->mmap_changing, true);
|
|
mmap_read_unlock(mm);
|
|
|
|
msg_init(&ewq.msg);
|
|
|
|
ewq.msg.event = UFFD_EVENT_REMOVE;
|
|
ewq.msg.arg.remove.start = start;
|
|
ewq.msg.arg.remove.end = end;
|
|
|
|
userfaultfd_event_wait_completion(ctx, &ewq);
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
struct userfaultfd_unmap_ctx *unmap_ctx;
|
|
|
|
list_for_each_entry(unmap_ctx, unmaps, list)
|
|
if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
|
|
unmap_ctx->end == end)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
int userfaultfd_unmap_prep(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end,
|
|
struct list_head *unmaps)
|
|
{
|
|
for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
|
|
struct userfaultfd_unmap_ctx *unmap_ctx;
|
|
struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
|
|
|
|
if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
|
|
has_unmap_ctx(ctx, unmaps, start, end))
|
|
continue;
|
|
|
|
unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
|
|
if (!unmap_ctx)
|
|
return -ENOMEM;
|
|
|
|
userfaultfd_ctx_get(ctx);
|
|
WRITE_ONCE(ctx->mmap_changing, true);
|
|
unmap_ctx->ctx = ctx;
|
|
unmap_ctx->start = start;
|
|
unmap_ctx->end = end;
|
|
list_add_tail(&unmap_ctx->list, unmaps);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
|
|
{
|
|
struct userfaultfd_unmap_ctx *ctx, *n;
|
|
struct userfaultfd_wait_queue ewq;
|
|
|
|
list_for_each_entry_safe(ctx, n, uf, list) {
|
|
msg_init(&ewq.msg);
|
|
|
|
ewq.msg.event = UFFD_EVENT_UNMAP;
|
|
ewq.msg.arg.remove.start = ctx->start;
|
|
ewq.msg.arg.remove.end = ctx->end;
|
|
|
|
userfaultfd_event_wait_completion(ctx->ctx, &ewq);
|
|
|
|
list_del(&ctx->list);
|
|
kfree(ctx);
|
|
}
|
|
}
|
|
|
|
static int userfaultfd_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct userfaultfd_ctx *ctx = file->private_data;
|
|
struct mm_struct *mm = ctx->mm;
|
|
struct vm_area_struct *vma, *prev;
|
|
/* len == 0 means wake all */
|
|
struct userfaultfd_wake_range range = { .len = 0, };
|
|
unsigned long new_flags;
|
|
|
|
WRITE_ONCE(ctx->released, true);
|
|
|
|
if (!mmget_not_zero(mm))
|
|
goto wakeup;
|
|
|
|
/*
|
|
* Flush page faults out of all CPUs. NOTE: all page faults
|
|
* must be retried without returning VM_FAULT_SIGBUS if
|
|
* userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
|
|
* changes while handle_userfault released the mmap_lock. So
|
|
* it's critical that released is set to true (above), before
|
|
* taking the mmap_lock for writing.
|
|
*/
|
|
mmap_write_lock(mm);
|
|
prev = NULL;
|
|
for (vma = mm->mmap; vma; vma = vma->vm_next) {
|
|
cond_resched();
|
|
BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
|
|
!!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
|
|
if (vma->vm_userfaultfd_ctx.ctx != ctx) {
|
|
prev = vma;
|
|
continue;
|
|
}
|
|
new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
|
|
prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
|
|
new_flags, vma->anon_vma,
|
|
vma->vm_file, vma->vm_pgoff,
|
|
vma_policy(vma),
|
|
NULL_VM_UFFD_CTX);
|
|
if (prev)
|
|
vma = prev;
|
|
else
|
|
prev = vma;
|
|
vma->vm_flags = new_flags;
|
|
vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
|
|
}
|
|
mmap_write_unlock(mm);
|
|
mmput(mm);
|
|
wakeup:
|
|
/*
|
|
* After no new page faults can wait on this fault_*wqh, flush
|
|
* the last page faults that may have been already waiting on
|
|
* the fault_*wqh.
|
|
*/
|
|
spin_lock_irq(&ctx->fault_pending_wqh.lock);
|
|
__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
|
|
__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
|
|
spin_unlock_irq(&ctx->fault_pending_wqh.lock);
|
|
|
|
/* Flush pending events that may still wait on event_wqh */
|
|
wake_up_all(&ctx->event_wqh);
|
|
|
|
wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
|
|
userfaultfd_ctx_put(ctx);
|
|
return 0;
|
|
}
|
|
|
|
/* fault_pending_wqh.lock must be hold by the caller */
|
|
static inline struct userfaultfd_wait_queue *find_userfault_in(
|
|
wait_queue_head_t *wqh)
|
|
{
|
|
wait_queue_entry_t *wq;
|
|
struct userfaultfd_wait_queue *uwq;
|
|
|
|
lockdep_assert_held(&wqh->lock);
|
|
|
|
uwq = NULL;
|
|
if (!waitqueue_active(wqh))
|
|
goto out;
|
|
/* walk in reverse to provide FIFO behavior to read userfaults */
|
|
wq = list_last_entry(&wqh->head, typeof(*wq), entry);
|
|
uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
|
|
out:
|
|
return uwq;
|
|
}
|
|
|
|
static inline struct userfaultfd_wait_queue *find_userfault(
|
|
struct userfaultfd_ctx *ctx)
|
|
{
|
|
return find_userfault_in(&ctx->fault_pending_wqh);
|
|
}
|
|
|
|
static inline struct userfaultfd_wait_queue *find_userfault_evt(
|
|
struct userfaultfd_ctx *ctx)
|
|
{
|
|
return find_userfault_in(&ctx->event_wqh);
|
|
}
|
|
|
|
static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
|
|
{
|
|
struct userfaultfd_ctx *ctx = file->private_data;
|
|
__poll_t ret;
|
|
|
|
poll_wait(file, &ctx->fd_wqh, wait);
|
|
|
|
switch (ctx->state) {
|
|
case UFFD_STATE_WAIT_API:
|
|
return EPOLLERR;
|
|
case UFFD_STATE_RUNNING:
|
|
/*
|
|
* poll() never guarantees that read won't block.
|
|
* userfaults can be waken before they're read().
|
|
*/
|
|
if (unlikely(!(file->f_flags & O_NONBLOCK)))
|
|
return EPOLLERR;
|
|
/*
|
|
* lockless access to see if there are pending faults
|
|
* __pollwait last action is the add_wait_queue but
|
|
* the spin_unlock would allow the waitqueue_active to
|
|
* pass above the actual list_add inside
|
|
* add_wait_queue critical section. So use a full
|
|
* memory barrier to serialize the list_add write of
|
|
* add_wait_queue() with the waitqueue_active read
|
|
* below.
|
|
*/
|
|
ret = 0;
|
|
smp_mb();
|
|
if (waitqueue_active(&ctx->fault_pending_wqh))
|
|
ret = EPOLLIN;
|
|
else if (waitqueue_active(&ctx->event_wqh))
|
|
ret = EPOLLIN;
|
|
|
|
return ret;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
return EPOLLERR;
|
|
}
|
|
}
|
|
|
|
static const struct file_operations userfaultfd_fops;
|
|
|
|
static int resolve_userfault_fork(struct userfaultfd_ctx *new,
|
|
struct inode *inode,
|
|
struct uffd_msg *msg)
|
|
{
|
|
int fd;
|
|
|
|
fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
|
|
O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
|
|
if (fd < 0)
|
|
return fd;
|
|
|
|
msg->arg.reserved.reserved1 = 0;
|
|
msg->arg.fork.ufd = fd;
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
|
|
struct uffd_msg *msg, struct inode *inode)
|
|
{
|
|
ssize_t ret;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
struct userfaultfd_wait_queue *uwq;
|
|
/*
|
|
* Handling fork event requires sleeping operations, so
|
|
* we drop the event_wqh lock, then do these ops, then
|
|
* lock it back and wake up the waiter. While the lock is
|
|
* dropped the ewq may go away so we keep track of it
|
|
* carefully.
|
|
*/
|
|
LIST_HEAD(fork_event);
|
|
struct userfaultfd_ctx *fork_nctx = NULL;
|
|
|
|
/* always take the fd_wqh lock before the fault_pending_wqh lock */
|
|
spin_lock_irq(&ctx->fd_wqh.lock);
|
|
__add_wait_queue(&ctx->fd_wqh, &wait);
|
|
for (;;) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
spin_lock(&ctx->fault_pending_wqh.lock);
|
|
uwq = find_userfault(ctx);
|
|
if (uwq) {
|
|
/*
|
|
* Use a seqcount to repeat the lockless check
|
|
* in wake_userfault() to avoid missing
|
|
* wakeups because during the refile both
|
|
* waitqueue could become empty if this is the
|
|
* only userfault.
|
|
*/
|
|
write_seqcount_begin(&ctx->refile_seq);
|
|
|
|
/*
|
|
* The fault_pending_wqh.lock prevents the uwq
|
|
* to disappear from under us.
|
|
*
|
|
* Refile this userfault from
|
|
* fault_pending_wqh to fault_wqh, it's not
|
|
* pending anymore after we read it.
|
|
*
|
|
* Use list_del() by hand (as
|
|
* userfaultfd_wake_function also uses
|
|
* list_del_init() by hand) to be sure nobody
|
|
* changes __remove_wait_queue() to use
|
|
* list_del_init() in turn breaking the
|
|
* !list_empty_careful() check in
|
|
* handle_userfault(). The uwq->wq.head list
|
|
* must never be empty at any time during the
|
|
* refile, or the waitqueue could disappear
|
|
* from under us. The "wait_queue_head_t"
|
|
* parameter of __remove_wait_queue() is unused
|
|
* anyway.
|
|
*/
|
|
list_del(&uwq->wq.entry);
|
|
add_wait_queue(&ctx->fault_wqh, &uwq->wq);
|
|
|
|
write_seqcount_end(&ctx->refile_seq);
|
|
|
|
/* careful to always initialize msg if ret == 0 */
|
|
*msg = uwq->msg;
|
|
spin_unlock(&ctx->fault_pending_wqh.lock);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
spin_unlock(&ctx->fault_pending_wqh.lock);
|
|
|
|
spin_lock(&ctx->event_wqh.lock);
|
|
uwq = find_userfault_evt(ctx);
|
|
if (uwq) {
|
|
*msg = uwq->msg;
|
|
|
|
if (uwq->msg.event == UFFD_EVENT_FORK) {
|
|
fork_nctx = (struct userfaultfd_ctx *)
|
|
(unsigned long)
|
|
uwq->msg.arg.reserved.reserved1;
|
|
list_move(&uwq->wq.entry, &fork_event);
|
|
/*
|
|
* fork_nctx can be freed as soon as
|
|
* we drop the lock, unless we take a
|
|
* reference on it.
|
|
*/
|
|
userfaultfd_ctx_get(fork_nctx);
|
|
spin_unlock(&ctx->event_wqh.lock);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
userfaultfd_event_complete(ctx, uwq);
|
|
spin_unlock(&ctx->event_wqh.lock);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
spin_unlock(&ctx->event_wqh.lock);
|
|
|
|
if (signal_pending(current)) {
|
|
ret = -ERESTARTSYS;
|
|
break;
|
|
}
|
|
if (no_wait) {
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
spin_unlock_irq(&ctx->fd_wqh.lock);
|
|
schedule();
|
|
spin_lock_irq(&ctx->fd_wqh.lock);
|
|
}
|
|
__remove_wait_queue(&ctx->fd_wqh, &wait);
|
|
__set_current_state(TASK_RUNNING);
|
|
spin_unlock_irq(&ctx->fd_wqh.lock);
|
|
|
|
if (!ret && msg->event == UFFD_EVENT_FORK) {
|
|
ret = resolve_userfault_fork(fork_nctx, inode, msg);
|
|
spin_lock_irq(&ctx->event_wqh.lock);
|
|
if (!list_empty(&fork_event)) {
|
|
/*
|
|
* The fork thread didn't abort, so we can
|
|
* drop the temporary refcount.
|
|
*/
|
|
userfaultfd_ctx_put(fork_nctx);
|
|
|
|
uwq = list_first_entry(&fork_event,
|
|
typeof(*uwq),
|
|
wq.entry);
|
|
/*
|
|
* If fork_event list wasn't empty and in turn
|
|
* the event wasn't already released by fork
|
|
* (the event is allocated on fork kernel
|
|
* stack), put the event back to its place in
|
|
* the event_wq. fork_event head will be freed
|
|
* as soon as we return so the event cannot
|
|
* stay queued there no matter the current
|
|
* "ret" value.
|
|
*/
|
|
list_del(&uwq->wq.entry);
|
|
__add_wait_queue(&ctx->event_wqh, &uwq->wq);
|
|
|
|
/*
|
|
* Leave the event in the waitqueue and report
|
|
* error to userland if we failed to resolve
|
|
* the userfault fork.
|
|
*/
|
|
if (likely(!ret))
|
|
userfaultfd_event_complete(ctx, uwq);
|
|
} else {
|
|
/*
|
|
* Here the fork thread aborted and the
|
|
* refcount from the fork thread on fork_nctx
|
|
* has already been released. We still hold
|
|
* the reference we took before releasing the
|
|
* lock above. If resolve_userfault_fork
|
|
* failed we've to drop it because the
|
|
* fork_nctx has to be freed in such case. If
|
|
* it succeeded we'll hold it because the new
|
|
* uffd references it.
|
|
*/
|
|
if (ret)
|
|
userfaultfd_ctx_put(fork_nctx);
|
|
}
|
|
spin_unlock_irq(&ctx->event_wqh.lock);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t userfaultfd_read(struct file *file, char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct userfaultfd_ctx *ctx = file->private_data;
|
|
ssize_t _ret, ret = 0;
|
|
struct uffd_msg msg;
|
|
int no_wait = file->f_flags & O_NONBLOCK;
|
|
struct inode *inode = file_inode(file);
|
|
|
|
if (ctx->state == UFFD_STATE_WAIT_API)
|
|
return -EINVAL;
|
|
|
|
for (;;) {
|
|
if (count < sizeof(msg))
|
|
return ret ? ret : -EINVAL;
|
|
_ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
|
|
if (_ret < 0)
|
|
return ret ? ret : _ret;
|
|
if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
|
|
return ret ? ret : -EFAULT;
|
|
ret += sizeof(msg);
|
|
buf += sizeof(msg);
|
|
count -= sizeof(msg);
|
|
/*
|
|
* Allow to read more than one fault at time but only
|
|
* block if waiting for the very first one.
|
|
*/
|
|
no_wait = O_NONBLOCK;
|
|
}
|
|
}
|
|
|
|
static void __wake_userfault(struct userfaultfd_ctx *ctx,
|
|
struct userfaultfd_wake_range *range)
|
|
{
|
|
spin_lock_irq(&ctx->fault_pending_wqh.lock);
|
|
/* wake all in the range and autoremove */
|
|
if (waitqueue_active(&ctx->fault_pending_wqh))
|
|
__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
|
|
range);
|
|
if (waitqueue_active(&ctx->fault_wqh))
|
|
__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
|
|
spin_unlock_irq(&ctx->fault_pending_wqh.lock);
|
|
}
|
|
|
|
static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
|
|
struct userfaultfd_wake_range *range)
|
|
{
|
|
unsigned seq;
|
|
bool need_wakeup;
|
|
|
|
/*
|
|
* To be sure waitqueue_active() is not reordered by the CPU
|
|
* before the pagetable update, use an explicit SMP memory
|
|
* barrier here. PT lock release or mmap_read_unlock(mm) still
|
|
* have release semantics that can allow the
|
|
* waitqueue_active() to be reordered before the pte update.
|
|
*/
|
|
smp_mb();
|
|
|
|
/*
|
|
* Use waitqueue_active because it's very frequent to
|
|
* change the address space atomically even if there are no
|
|
* userfaults yet. So we take the spinlock only when we're
|
|
* sure we've userfaults to wake.
|
|
*/
|
|
do {
|
|
seq = read_seqcount_begin(&ctx->refile_seq);
|
|
need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
|
|
waitqueue_active(&ctx->fault_wqh);
|
|
cond_resched();
|
|
} while (read_seqcount_retry(&ctx->refile_seq, seq));
|
|
if (need_wakeup)
|
|
__wake_userfault(ctx, range);
|
|
}
|
|
|
|
static __always_inline int validate_range(struct mm_struct *mm,
|
|
__u64 *start, __u64 len)
|
|
{
|
|
__u64 task_size = mm->task_size;
|
|
|
|
*start = untagged_addr(*start);
|
|
|
|
if (*start & ~PAGE_MASK)
|
|
return -EINVAL;
|
|
if (len & ~PAGE_MASK)
|
|
return -EINVAL;
|
|
if (!len)
|
|
return -EINVAL;
|
|
if (*start < mmap_min_addr)
|
|
return -EINVAL;
|
|
if (*start >= task_size)
|
|
return -EINVAL;
|
|
if (len > task_size - *start)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static inline bool vma_can_userfault(struct vm_area_struct *vma,
|
|
unsigned long vm_flags)
|
|
{
|
|
/* FIXME: add WP support to hugetlbfs and shmem */
|
|
return vma_is_anonymous(vma) ||
|
|
((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) &&
|
|
!(vm_flags & VM_UFFD_WP));
|
|
}
|
|
|
|
static int userfaultfd_register(struct userfaultfd_ctx *ctx,
|
|
unsigned long arg)
|
|
{
|
|
struct mm_struct *mm = ctx->mm;
|
|
struct vm_area_struct *vma, *prev, *cur;
|
|
int ret;
|
|
struct uffdio_register uffdio_register;
|
|
struct uffdio_register __user *user_uffdio_register;
|
|
unsigned long vm_flags, new_flags;
|
|
bool found;
|
|
bool basic_ioctls;
|
|
unsigned long start, end, vma_end;
|
|
|
|
user_uffdio_register = (struct uffdio_register __user *) arg;
|
|
|
|
ret = -EFAULT;
|
|
if (copy_from_user(&uffdio_register, user_uffdio_register,
|
|
sizeof(uffdio_register)-sizeof(__u64)))
|
|
goto out;
|
|
|
|
ret = -EINVAL;
|
|
if (!uffdio_register.mode)
|
|
goto out;
|
|
if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
|
|
UFFDIO_REGISTER_MODE_WP))
|
|
goto out;
|
|
vm_flags = 0;
|
|
if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
|
|
vm_flags |= VM_UFFD_MISSING;
|
|
if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)
|
|
vm_flags |= VM_UFFD_WP;
|
|
|
|
ret = validate_range(mm, &uffdio_register.range.start,
|
|
uffdio_register.range.len);
|
|
if (ret)
|
|
goto out;
|
|
|
|
start = uffdio_register.range.start;
|
|
end = start + uffdio_register.range.len;
|
|
|
|
ret = -ENOMEM;
|
|
if (!mmget_not_zero(mm))
|
|
goto out;
|
|
|
|
mmap_write_lock(mm);
|
|
vma = find_vma_prev(mm, start, &prev);
|
|
if (!vma)
|
|
goto out_unlock;
|
|
|
|
/* check that there's at least one vma in the range */
|
|
ret = -EINVAL;
|
|
if (vma->vm_start >= end)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* If the first vma contains huge pages, make sure start address
|
|
* is aligned to huge page size.
|
|
*/
|
|
if (is_vm_hugetlb_page(vma)) {
|
|
unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
|
|
|
|
if (start & (vma_hpagesize - 1))
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Search for not compatible vmas.
|
|
*/
|
|
found = false;
|
|
basic_ioctls = false;
|
|
for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
|
|
cond_resched();
|
|
|
|
BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
|
|
!!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
|
|
|
|
/* check not compatible vmas */
|
|
ret = -EINVAL;
|
|
if (!vma_can_userfault(cur, vm_flags))
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* UFFDIO_COPY will fill file holes even without
|
|
* PROT_WRITE. This check enforces that if this is a
|
|
* MAP_SHARED, the process has write permission to the backing
|
|
* file. If VM_MAYWRITE is set it also enforces that on a
|
|
* MAP_SHARED vma: there is no F_WRITE_SEAL and no further
|
|
* F_WRITE_SEAL can be taken until the vma is destroyed.
|
|
*/
|
|
ret = -EPERM;
|
|
if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* If this vma contains ending address, and huge pages
|
|
* check alignment.
|
|
*/
|
|
if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
|
|
end > cur->vm_start) {
|
|
unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
|
|
|
|
ret = -EINVAL;
|
|
|
|
if (end & (vma_hpagesize - 1))
|
|
goto out_unlock;
|
|
}
|
|
if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* Check that this vma isn't already owned by a
|
|
* different userfaultfd. We can't allow more than one
|
|
* userfaultfd to own a single vma simultaneously or we
|
|
* wouldn't know which one to deliver the userfaults to.
|
|
*/
|
|
ret = -EBUSY;
|
|
if (cur->vm_userfaultfd_ctx.ctx &&
|
|
cur->vm_userfaultfd_ctx.ctx != ctx)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* Note vmas containing huge pages
|
|
*/
|
|
if (is_vm_hugetlb_page(cur))
|
|
basic_ioctls = true;
|
|
|
|
found = true;
|
|
}
|
|
BUG_ON(!found);
|
|
|
|
if (vma->vm_start < start)
|
|
prev = vma;
|
|
|
|
ret = 0;
|
|
do {
|
|
cond_resched();
|
|
|
|
BUG_ON(!vma_can_userfault(vma, vm_flags));
|
|
BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
|
|
vma->vm_userfaultfd_ctx.ctx != ctx);
|
|
WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
|
|
|
|
/*
|
|
* Nothing to do: this vma is already registered into this
|
|
* userfaultfd and with the right tracking mode too.
|
|
*/
|
|
if (vma->vm_userfaultfd_ctx.ctx == ctx &&
|
|
(vma->vm_flags & vm_flags) == vm_flags)
|
|
goto skip;
|
|
|
|
if (vma->vm_start > start)
|
|
start = vma->vm_start;
|
|
vma_end = min(end, vma->vm_end);
|
|
|
|
new_flags = (vma->vm_flags &
|
|
~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags;
|
|
prev = vma_merge(mm, prev, start, vma_end, new_flags,
|
|
vma->anon_vma, vma->vm_file, vma->vm_pgoff,
|
|
vma_policy(vma),
|
|
((struct vm_userfaultfd_ctx){ ctx }));
|
|
if (prev) {
|
|
vma = prev;
|
|
goto next;
|
|
}
|
|
if (vma->vm_start < start) {
|
|
ret = split_vma(mm, vma, start, 1);
|
|
if (ret)
|
|
break;
|
|
}
|
|
if (vma->vm_end > end) {
|
|
ret = split_vma(mm, vma, end, 0);
|
|
if (ret)
|
|
break;
|
|
}
|
|
next:
|
|
/*
|
|
* In the vma_merge() successful mprotect-like case 8:
|
|
* the next vma was merged into the current one and
|
|
* the current one has not been updated yet.
|
|
*/
|
|
vma->vm_flags = new_flags;
|
|
vma->vm_userfaultfd_ctx.ctx = ctx;
|
|
|
|
skip:
|
|
prev = vma;
|
|
start = vma->vm_end;
|
|
vma = vma->vm_next;
|
|
} while (vma && vma->vm_start < end);
|
|
out_unlock:
|
|
mmap_write_unlock(mm);
|
|
mmput(mm);
|
|
if (!ret) {
|
|
__u64 ioctls_out;
|
|
|
|
ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
|
|
UFFD_API_RANGE_IOCTLS;
|
|
|
|
/*
|
|
* Declare the WP ioctl only if the WP mode is
|
|
* specified and all checks passed with the range
|
|
*/
|
|
if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
|
|
ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
|
|
|
|
/*
|
|
* Now that we scanned all vmas we can already tell
|
|
* userland which ioctls methods are guaranteed to
|
|
* succeed on this range.
|
|
*/
|
|
if (put_user(ioctls_out, &user_uffdio_register->ioctls))
|
|
ret = -EFAULT;
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
|
|
unsigned long arg)
|
|
{
|
|
struct mm_struct *mm = ctx->mm;
|
|
struct vm_area_struct *vma, *prev, *cur;
|
|
int ret;
|
|
struct uffdio_range uffdio_unregister;
|
|
unsigned long new_flags;
|
|
bool found;
|
|
unsigned long start, end, vma_end;
|
|
const void __user *buf = (void __user *)arg;
|
|
|
|
ret = -EFAULT;
|
|
if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
|
|
goto out;
|
|
|
|
ret = validate_range(mm, &uffdio_unregister.start,
|
|
uffdio_unregister.len);
|
|
if (ret)
|
|
goto out;
|
|
|
|
start = uffdio_unregister.start;
|
|
end = start + uffdio_unregister.len;
|
|
|
|
ret = -ENOMEM;
|
|
if (!mmget_not_zero(mm))
|
|
goto out;
|
|
|
|
mmap_write_lock(mm);
|
|
vma = find_vma_prev(mm, start, &prev);
|
|
if (!vma)
|
|
goto out_unlock;
|
|
|
|
/* check that there's at least one vma in the range */
|
|
ret = -EINVAL;
|
|
if (vma->vm_start >= end)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* If the first vma contains huge pages, make sure start address
|
|
* is aligned to huge page size.
|
|
*/
|
|
if (is_vm_hugetlb_page(vma)) {
|
|
unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
|
|
|
|
if (start & (vma_hpagesize - 1))
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Search for not compatible vmas.
|
|
*/
|
|
found = false;
|
|
ret = -EINVAL;
|
|
for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
|
|
cond_resched();
|
|
|
|
BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
|
|
!!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
|
|
|
|
/*
|
|
* Check not compatible vmas, not strictly required
|
|
* here as not compatible vmas cannot have an
|
|
* userfaultfd_ctx registered on them, but this
|
|
* provides for more strict behavior to notice
|
|
* unregistration errors.
|
|
*/
|
|
if (!vma_can_userfault(cur, cur->vm_flags))
|
|
goto out_unlock;
|
|
|
|
found = true;
|
|
}
|
|
BUG_ON(!found);
|
|
|
|
if (vma->vm_start < start)
|
|
prev = vma;
|
|
|
|
ret = 0;
|
|
do {
|
|
cond_resched();
|
|
|
|
BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
|
|
|
|
/*
|
|
* Nothing to do: this vma is already registered into this
|
|
* userfaultfd and with the right tracking mode too.
|
|
*/
|
|
if (!vma->vm_userfaultfd_ctx.ctx)
|
|
goto skip;
|
|
|
|
WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
|
|
|
|
if (vma->vm_start > start)
|
|
start = vma->vm_start;
|
|
vma_end = min(end, vma->vm_end);
|
|
|
|
if (userfaultfd_missing(vma)) {
|
|
/*
|
|
* Wake any concurrent pending userfault while
|
|
* we unregister, so they will not hang
|
|
* permanently and it avoids userland to call
|
|
* UFFDIO_WAKE explicitly.
|
|
*/
|
|
struct userfaultfd_wake_range range;
|
|
range.start = start;
|
|
range.len = vma_end - start;
|
|
wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
|
|
}
|
|
|
|
new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
|
|
prev = vma_merge(mm, prev, start, vma_end, new_flags,
|
|
vma->anon_vma, vma->vm_file, vma->vm_pgoff,
|
|
vma_policy(vma),
|
|
NULL_VM_UFFD_CTX);
|
|
if (prev) {
|
|
vma = prev;
|
|
goto next;
|
|
}
|
|
if (vma->vm_start < start) {
|
|
ret = split_vma(mm, vma, start, 1);
|
|
if (ret)
|
|
break;
|
|
}
|
|
if (vma->vm_end > end) {
|
|
ret = split_vma(mm, vma, end, 0);
|
|
if (ret)
|
|
break;
|
|
}
|
|
next:
|
|
/*
|
|
* In the vma_merge() successful mprotect-like case 8:
|
|
* the next vma was merged into the current one and
|
|
* the current one has not been updated yet.
|
|
*/
|
|
vma->vm_flags = new_flags;
|
|
vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
|
|
|
|
skip:
|
|
prev = vma;
|
|
start = vma->vm_end;
|
|
vma = vma->vm_next;
|
|
} while (vma && vma->vm_start < end);
|
|
out_unlock:
|
|
mmap_write_unlock(mm);
|
|
mmput(mm);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* userfaultfd_wake may be used in combination with the
|
|
* UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
|
|
*/
|
|
static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
|
|
unsigned long arg)
|
|
{
|
|
int ret;
|
|
struct uffdio_range uffdio_wake;
|
|
struct userfaultfd_wake_range range;
|
|
const void __user *buf = (void __user *)arg;
|
|
|
|
ret = -EFAULT;
|
|
if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
|
|
goto out;
|
|
|
|
ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len);
|
|
if (ret)
|
|
goto out;
|
|
|
|
range.start = uffdio_wake.start;
|
|
range.len = uffdio_wake.len;
|
|
|
|
/*
|
|
* len == 0 means wake all and we don't want to wake all here,
|
|
* so check it again to be sure.
|
|
*/
|
|
VM_BUG_ON(!range.len);
|
|
|
|
wake_userfault(ctx, &range);
|
|
ret = 0;
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
|
|
unsigned long arg)
|
|
{
|
|
__s64 ret;
|
|
struct uffdio_copy uffdio_copy;
|
|
struct uffdio_copy __user *user_uffdio_copy;
|
|
struct userfaultfd_wake_range range;
|
|
|
|
user_uffdio_copy = (struct uffdio_copy __user *) arg;
|
|
|
|
ret = -EAGAIN;
|
|
if (READ_ONCE(ctx->mmap_changing))
|
|
goto out;
|
|
|
|
ret = -EFAULT;
|
|
if (copy_from_user(&uffdio_copy, user_uffdio_copy,
|
|
/* don't copy "copy" last field */
|
|
sizeof(uffdio_copy)-sizeof(__s64)))
|
|
goto out;
|
|
|
|
ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len);
|
|
if (ret)
|
|
goto out;
|
|
/*
|
|
* double check for wraparound just in case. copy_from_user()
|
|
* will later check uffdio_copy.src + uffdio_copy.len to fit
|
|
* in the userland range.
|
|
*/
|
|
ret = -EINVAL;
|
|
if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
|
|
goto out;
|
|
if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
|
|
goto out;
|
|
if (mmget_not_zero(ctx->mm)) {
|
|
ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
|
|
uffdio_copy.len, &ctx->mmap_changing,
|
|
uffdio_copy.mode);
|
|
mmput(ctx->mm);
|
|
} else {
|
|
return -ESRCH;
|
|
}
|
|
if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
|
|
return -EFAULT;
|
|
if (ret < 0)
|
|
goto out;
|
|
BUG_ON(!ret);
|
|
/* len == 0 would wake all */
|
|
range.len = ret;
|
|
if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
|
|
range.start = uffdio_copy.dst;
|
|
wake_userfault(ctx, &range);
|
|
}
|
|
ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
|
|
unsigned long arg)
|
|
{
|
|
__s64 ret;
|
|
struct uffdio_zeropage uffdio_zeropage;
|
|
struct uffdio_zeropage __user *user_uffdio_zeropage;
|
|
struct userfaultfd_wake_range range;
|
|
|
|
user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
|
|
|
|
ret = -EAGAIN;
|
|
if (READ_ONCE(ctx->mmap_changing))
|
|
goto out;
|
|
|
|
ret = -EFAULT;
|
|
if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
|
|
/* don't copy "zeropage" last field */
|
|
sizeof(uffdio_zeropage)-sizeof(__s64)))
|
|
goto out;
|
|
|
|
ret = validate_range(ctx->mm, &uffdio_zeropage.range.start,
|
|
uffdio_zeropage.range.len);
|
|
if (ret)
|
|
goto out;
|
|
ret = -EINVAL;
|
|
if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
|
|
goto out;
|
|
|
|
if (mmget_not_zero(ctx->mm)) {
|
|
ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
|
|
uffdio_zeropage.range.len,
|
|
&ctx->mmap_changing);
|
|
mmput(ctx->mm);
|
|
} else {
|
|
return -ESRCH;
|
|
}
|
|
if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
|
|
return -EFAULT;
|
|
if (ret < 0)
|
|
goto out;
|
|
/* len == 0 would wake all */
|
|
BUG_ON(!ret);
|
|
range.len = ret;
|
|
if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
|
|
range.start = uffdio_zeropage.range.start;
|
|
wake_userfault(ctx, &range);
|
|
}
|
|
ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
|
|
unsigned long arg)
|
|
{
|
|
int ret;
|
|
struct uffdio_writeprotect uffdio_wp;
|
|
struct uffdio_writeprotect __user *user_uffdio_wp;
|
|
struct userfaultfd_wake_range range;
|
|
bool mode_wp, mode_dontwake;
|
|
|
|
if (READ_ONCE(ctx->mmap_changing))
|
|
return -EAGAIN;
|
|
|
|
user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
|
|
|
|
if (copy_from_user(&uffdio_wp, user_uffdio_wp,
|
|
sizeof(struct uffdio_writeprotect)))
|
|
return -EFAULT;
|
|
|
|
ret = validate_range(ctx->mm, &uffdio_wp.range.start,
|
|
uffdio_wp.range.len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
|
|
UFFDIO_WRITEPROTECT_MODE_WP))
|
|
return -EINVAL;
|
|
|
|
mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
|
|
mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
|
|
|
|
if (mode_wp && mode_dontwake)
|
|
return -EINVAL;
|
|
|
|
ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
|
|
uffdio_wp.range.len, mode_wp,
|
|
&ctx->mmap_changing);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!mode_wp && !mode_dontwake) {
|
|
range.start = uffdio_wp.range.start;
|
|
range.len = uffdio_wp.range.len;
|
|
wake_userfault(ctx, &range);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline unsigned int uffd_ctx_features(__u64 user_features)
|
|
{
|
|
/*
|
|
* For the current set of features the bits just coincide
|
|
*/
|
|
return (unsigned int)user_features;
|
|
}
|
|
|
|
/*
|
|
* userland asks for a certain API version and we return which bits
|
|
* and ioctl commands are implemented in this kernel for such API
|
|
* version or -EINVAL if unknown.
|
|
*/
|
|
static int userfaultfd_api(struct userfaultfd_ctx *ctx,
|
|
unsigned long arg)
|
|
{
|
|
struct uffdio_api uffdio_api;
|
|
void __user *buf = (void __user *)arg;
|
|
int ret;
|
|
__u64 features;
|
|
|
|
ret = -EINVAL;
|
|
if (ctx->state != UFFD_STATE_WAIT_API)
|
|
goto out;
|
|
ret = -EFAULT;
|
|
if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
|
|
goto out;
|
|
features = uffdio_api.features;
|
|
ret = -EINVAL;
|
|
if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
|
|
goto err_out;
|
|
ret = -EPERM;
|
|
if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
|
|
goto err_out;
|
|
/* report all available features and ioctls to userland */
|
|
uffdio_api.features = UFFD_API_FEATURES;
|
|
uffdio_api.ioctls = UFFD_API_IOCTLS;
|
|
ret = -EFAULT;
|
|
if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
|
|
goto out;
|
|
ctx->state = UFFD_STATE_RUNNING;
|
|
/* only enable the requested features for this uffd context */
|
|
ctx->features = uffd_ctx_features(features);
|
|
ret = 0;
|
|
out:
|
|
return ret;
|
|
err_out:
|
|
memset(&uffdio_api, 0, sizeof(uffdio_api));
|
|
if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
static long userfaultfd_ioctl(struct file *file, unsigned cmd,
|
|
unsigned long arg)
|
|
{
|
|
int ret = -EINVAL;
|
|
struct userfaultfd_ctx *ctx = file->private_data;
|
|
|
|
if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
|
|
return -EINVAL;
|
|
|
|
switch(cmd) {
|
|
case UFFDIO_API:
|
|
ret = userfaultfd_api(ctx, arg);
|
|
break;
|
|
case UFFDIO_REGISTER:
|
|
ret = userfaultfd_register(ctx, arg);
|
|
break;
|
|
case UFFDIO_UNREGISTER:
|
|
ret = userfaultfd_unregister(ctx, arg);
|
|
break;
|
|
case UFFDIO_WAKE:
|
|
ret = userfaultfd_wake(ctx, arg);
|
|
break;
|
|
case UFFDIO_COPY:
|
|
ret = userfaultfd_copy(ctx, arg);
|
|
break;
|
|
case UFFDIO_ZEROPAGE:
|
|
ret = userfaultfd_zeropage(ctx, arg);
|
|
break;
|
|
case UFFDIO_WRITEPROTECT:
|
|
ret = userfaultfd_writeprotect(ctx, arg);
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
|
|
{
|
|
struct userfaultfd_ctx *ctx = f->private_data;
|
|
wait_queue_entry_t *wq;
|
|
unsigned long pending = 0, total = 0;
|
|
|
|
spin_lock_irq(&ctx->fault_pending_wqh.lock);
|
|
list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
|
|
pending++;
|
|
total++;
|
|
}
|
|
list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
|
|
total++;
|
|
}
|
|
spin_unlock_irq(&ctx->fault_pending_wqh.lock);
|
|
|
|
/*
|
|
* If more protocols will be added, there will be all shown
|
|
* separated by a space. Like this:
|
|
* protocols: aa:... bb:...
|
|
*/
|
|
seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
|
|
pending, total, UFFD_API, ctx->features,
|
|
UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
|
|
}
|
|
#endif
|
|
|
|
static const struct file_operations userfaultfd_fops = {
|
|
#ifdef CONFIG_PROC_FS
|
|
.show_fdinfo = userfaultfd_show_fdinfo,
|
|
#endif
|
|
.release = userfaultfd_release,
|
|
.poll = userfaultfd_poll,
|
|
.read = userfaultfd_read,
|
|
.unlocked_ioctl = userfaultfd_ioctl,
|
|
.compat_ioctl = compat_ptr_ioctl,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
static void init_once_userfaultfd_ctx(void *mem)
|
|
{
|
|
struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
|
|
|
|
init_waitqueue_head(&ctx->fault_pending_wqh);
|
|
init_waitqueue_head(&ctx->fault_wqh);
|
|
init_waitqueue_head(&ctx->event_wqh);
|
|
init_waitqueue_head(&ctx->fd_wqh);
|
|
seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
|
|
}
|
|
|
|
SYSCALL_DEFINE1(userfaultfd, int, flags)
|
|
{
|
|
struct userfaultfd_ctx *ctx;
|
|
int fd;
|
|
|
|
if (!sysctl_unprivileged_userfaultfd &&
|
|
(flags & UFFD_USER_MODE_ONLY) == 0 &&
|
|
!capable(CAP_SYS_PTRACE)) {
|
|
printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
|
|
"sysctl knob to 1 if kernel faults must be handled "
|
|
"without obtaining CAP_SYS_PTRACE capability\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
BUG_ON(!current->mm);
|
|
|
|
/* Check the UFFD_* constants for consistency. */
|
|
BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
|
|
BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
|
|
BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
|
|
|
|
if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
|
|
return -EINVAL;
|
|
|
|
ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
|
|
if (!ctx)
|
|
return -ENOMEM;
|
|
|
|
refcount_set(&ctx->refcount, 1);
|
|
ctx->flags = flags;
|
|
ctx->features = 0;
|
|
ctx->state = UFFD_STATE_WAIT_API;
|
|
ctx->released = false;
|
|
ctx->mmap_changing = false;
|
|
ctx->mm = current->mm;
|
|
/* prevent the mm struct to be freed */
|
|
mmgrab(ctx->mm);
|
|
|
|
fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
|
|
O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
|
|
if (fd < 0) {
|
|
mmdrop(ctx->mm);
|
|
kmem_cache_free(userfaultfd_ctx_cachep, ctx);
|
|
}
|
|
return fd;
|
|
}
|
|
|
|
static int __init userfaultfd_init(void)
|
|
{
|
|
userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
|
|
sizeof(struct userfaultfd_ctx),
|
|
0,
|
|
SLAB_HWCACHE_ALIGN|SLAB_PANIC,
|
|
init_once_userfaultfd_ctx);
|
|
return 0;
|
|
}
|
|
__initcall(userfaultfd_init);
|