2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-18 10:34:24 +08:00
linux-next/drivers/usb/gadget/pch_udc.c
Robert Baldyga e117e742d3 usb: gadget: add "maxpacket_limit" field to struct usb_ep
This patch adds "maxpacket_limit" to struct usb_ep. This field contains
maximum value of maxpacket supported by driver, and is set in driver probe.
This value should be used by autoconfig() function, because value of field
"maxpacket" is set to value from endpoint descriptor when endpoint becomes
enabled. So when autoconfig() function will be called again for this endpoint,
"maxpacket" value will contain wMaxPacketSize from descriptior instead of
maximum packet size for this endpoint.

For this reason this patch adds new field "maxpacket_limit" which contains
value of maximum packet size (which defines maximum endpoint capabilities).
This value is used in ep_matches() function used by autoconfig().

Value of "maxpacket_limit" should be set in UDC driver probe function, using
usb_ep_set_maxpacket_limit() function, defined in gadget.h. This function
set choosen value to both "maxpacket_limit" and "maxpacket" fields.

This patch modifies UDC drivers by adding support for maxpacket_limit.

Signed-off-by: Robert Baldyga <r.baldyga@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Felipe Balbi <balbi@ti.com>
2013-12-17 13:17:41 -06:00

3249 lines
88 KiB
C

/*
* Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/gpio.h>
#include <linux/irq.h>
/* GPIO port for VBUS detecting */
static int vbus_gpio_port = -1; /* GPIO port number (-1:Not used) */
#define PCH_VBUS_PERIOD 3000 /* VBUS polling period (msec) */
#define PCH_VBUS_INTERVAL 10 /* VBUS polling interval (msec) */
/* Address offset of Registers */
#define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */
#define UDC_EPCTL_ADDR 0x00 /* Endpoint control */
#define UDC_EPSTS_ADDR 0x04 /* Endpoint status */
#define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */
#define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */
#define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */
#define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */
#define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */
#define UDC_DEVCFG_ADDR 0x400 /* Device configuration */
#define UDC_DEVCTL_ADDR 0x404 /* Device control */
#define UDC_DEVSTS_ADDR 0x408 /* Device status */
#define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */
#define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */
#define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */
#define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */
#define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */
#define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */
#define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */
#define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */
/* Endpoint control register */
/* Bit position */
#define UDC_EPCTL_MRXFLUSH (1 << 12)
#define UDC_EPCTL_RRDY (1 << 9)
#define UDC_EPCTL_CNAK (1 << 8)
#define UDC_EPCTL_SNAK (1 << 7)
#define UDC_EPCTL_NAK (1 << 6)
#define UDC_EPCTL_P (1 << 3)
#define UDC_EPCTL_F (1 << 1)
#define UDC_EPCTL_S (1 << 0)
#define UDC_EPCTL_ET_SHIFT 4
/* Mask patern */
#define UDC_EPCTL_ET_MASK 0x00000030
/* Value for ET field */
#define UDC_EPCTL_ET_CONTROL 0
#define UDC_EPCTL_ET_ISO 1
#define UDC_EPCTL_ET_BULK 2
#define UDC_EPCTL_ET_INTERRUPT 3
/* Endpoint status register */
/* Bit position */
#define UDC_EPSTS_XFERDONE (1 << 27)
#define UDC_EPSTS_RSS (1 << 26)
#define UDC_EPSTS_RCS (1 << 25)
#define UDC_EPSTS_TXEMPTY (1 << 24)
#define UDC_EPSTS_TDC (1 << 10)
#define UDC_EPSTS_HE (1 << 9)
#define UDC_EPSTS_MRXFIFO_EMP (1 << 8)
#define UDC_EPSTS_BNA (1 << 7)
#define UDC_EPSTS_IN (1 << 6)
#define UDC_EPSTS_OUT_SHIFT 4
/* Mask patern */
#define UDC_EPSTS_OUT_MASK 0x00000030
#define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0
/* Value for OUT field */
#define UDC_EPSTS_OUT_SETUP 2
#define UDC_EPSTS_OUT_DATA 1
/* Device configuration register */
/* Bit position */
#define UDC_DEVCFG_CSR_PRG (1 << 17)
#define UDC_DEVCFG_SP (1 << 3)
/* SPD Valee */
#define UDC_DEVCFG_SPD_HS 0x0
#define UDC_DEVCFG_SPD_FS 0x1
#define UDC_DEVCFG_SPD_LS 0x2
/* Device control register */
/* Bit position */
#define UDC_DEVCTL_THLEN_SHIFT 24
#define UDC_DEVCTL_BRLEN_SHIFT 16
#define UDC_DEVCTL_CSR_DONE (1 << 13)
#define UDC_DEVCTL_SD (1 << 10)
#define UDC_DEVCTL_MODE (1 << 9)
#define UDC_DEVCTL_BREN (1 << 8)
#define UDC_DEVCTL_THE (1 << 7)
#define UDC_DEVCTL_DU (1 << 4)
#define UDC_DEVCTL_TDE (1 << 3)
#define UDC_DEVCTL_RDE (1 << 2)
#define UDC_DEVCTL_RES (1 << 0)
/* Device status register */
/* Bit position */
#define UDC_DEVSTS_TS_SHIFT 18
#define UDC_DEVSTS_ENUM_SPEED_SHIFT 13
#define UDC_DEVSTS_ALT_SHIFT 8
#define UDC_DEVSTS_INTF_SHIFT 4
#define UDC_DEVSTS_CFG_SHIFT 0
/* Mask patern */
#define UDC_DEVSTS_TS_MASK 0xfffc0000
#define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
#define UDC_DEVSTS_ALT_MASK 0x00000f00
#define UDC_DEVSTS_INTF_MASK 0x000000f0
#define UDC_DEVSTS_CFG_MASK 0x0000000f
/* value for maximum speed for SPEED field */
#define UDC_DEVSTS_ENUM_SPEED_FULL 1
#define UDC_DEVSTS_ENUM_SPEED_HIGH 0
#define UDC_DEVSTS_ENUM_SPEED_LOW 2
#define UDC_DEVSTS_ENUM_SPEED_FULLX 3
/* Device irq register */
/* Bit position */
#define UDC_DEVINT_RWKP (1 << 7)
#define UDC_DEVINT_ENUM (1 << 6)
#define UDC_DEVINT_SOF (1 << 5)
#define UDC_DEVINT_US (1 << 4)
#define UDC_DEVINT_UR (1 << 3)
#define UDC_DEVINT_ES (1 << 2)
#define UDC_DEVINT_SI (1 << 1)
#define UDC_DEVINT_SC (1 << 0)
/* Mask patern */
#define UDC_DEVINT_MSK 0x7f
/* Endpoint irq register */
/* Bit position */
#define UDC_EPINT_IN_SHIFT 0
#define UDC_EPINT_OUT_SHIFT 16
#define UDC_EPINT_IN_EP0 (1 << 0)
#define UDC_EPINT_OUT_EP0 (1 << 16)
/* Mask patern */
#define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
/* UDC_CSR_BUSY Status register */
/* Bit position */
#define UDC_CSR_BUSY (1 << 0)
/* SOFT RESET register */
/* Bit position */
#define UDC_PSRST (1 << 1)
#define UDC_SRST (1 << 0)
/* USB_DEVICE endpoint register */
/* Bit position */
#define UDC_CSR_NE_NUM_SHIFT 0
#define UDC_CSR_NE_DIR_SHIFT 4
#define UDC_CSR_NE_TYPE_SHIFT 5
#define UDC_CSR_NE_CFG_SHIFT 7
#define UDC_CSR_NE_INTF_SHIFT 11
#define UDC_CSR_NE_ALT_SHIFT 15
#define UDC_CSR_NE_MAX_PKT_SHIFT 19
/* Mask patern */
#define UDC_CSR_NE_NUM_MASK 0x0000000f
#define UDC_CSR_NE_DIR_MASK 0x00000010
#define UDC_CSR_NE_TYPE_MASK 0x00000060
#define UDC_CSR_NE_CFG_MASK 0x00000780
#define UDC_CSR_NE_INTF_MASK 0x00007800
#define UDC_CSR_NE_ALT_MASK 0x00078000
#define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
#define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
#define PCH_UDC_EPINT(in, num)\
(1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
/* Index of endpoint */
#define UDC_EP0IN_IDX 0
#define UDC_EP0OUT_IDX 1
#define UDC_EPIN_IDX(ep) (ep * 2)
#define UDC_EPOUT_IDX(ep) (ep * 2 + 1)
#define PCH_UDC_EP0 0
#define PCH_UDC_EP1 1
#define PCH_UDC_EP2 2
#define PCH_UDC_EP3 3
/* Number of endpoint */
#define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */
#define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */
/* Length Value */
#define PCH_UDC_BRLEN 0x0F /* Burst length */
#define PCH_UDC_THLEN 0x1F /* Threshold length */
/* Value of EP Buffer Size */
#define UDC_EP0IN_BUFF_SIZE 16
#define UDC_EPIN_BUFF_SIZE 256
#define UDC_EP0OUT_BUFF_SIZE 16
#define UDC_EPOUT_BUFF_SIZE 256
/* Value of EP maximum packet size */
#define UDC_EP0IN_MAX_PKT_SIZE 64
#define UDC_EP0OUT_MAX_PKT_SIZE 64
#define UDC_BULK_MAX_PKT_SIZE 512
/* DMA */
#define DMA_DIR_RX 1 /* DMA for data receive */
#define DMA_DIR_TX 2 /* DMA for data transmit */
#define DMA_ADDR_INVALID (~(dma_addr_t)0)
#define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */
/**
* struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
* for data
* @status: Status quadlet
* @reserved: Reserved
* @dataptr: Buffer descriptor
* @next: Next descriptor
*/
struct pch_udc_data_dma_desc {
u32 status;
u32 reserved;
u32 dataptr;
u32 next;
};
/**
* struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
* for control data
* @status: Status
* @reserved: Reserved
* @data12: First setup word
* @data34: Second setup word
*/
struct pch_udc_stp_dma_desc {
u32 status;
u32 reserved;
struct usb_ctrlrequest request;
} __attribute((packed));
/* DMA status definitions */
/* Buffer status */
#define PCH_UDC_BUFF_STS 0xC0000000
#define PCH_UDC_BS_HST_RDY 0x00000000
#define PCH_UDC_BS_DMA_BSY 0x40000000
#define PCH_UDC_BS_DMA_DONE 0x80000000
#define PCH_UDC_BS_HST_BSY 0xC0000000
/* Rx/Tx Status */
#define PCH_UDC_RXTX_STS 0x30000000
#define PCH_UDC_RTS_SUCC 0x00000000
#define PCH_UDC_RTS_DESERR 0x10000000
#define PCH_UDC_RTS_BUFERR 0x30000000
/* Last Descriptor Indication */
#define PCH_UDC_DMA_LAST 0x08000000
/* Number of Rx/Tx Bytes Mask */
#define PCH_UDC_RXTX_BYTES 0x0000ffff
/**
* struct pch_udc_cfg_data - Structure to hold current configuration
* and interface information
* @cur_cfg: current configuration in use
* @cur_intf: current interface in use
* @cur_alt: current alt interface in use
*/
struct pch_udc_cfg_data {
u16 cur_cfg;
u16 cur_intf;
u16 cur_alt;
};
/**
* struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
* @ep: embedded ep request
* @td_stp_phys: for setup request
* @td_data_phys: for data request
* @td_stp: for setup request
* @td_data: for data request
* @dev: reference to device struct
* @offset_addr: offset address of ep register
* @desc: for this ep
* @queue: queue for requests
* @num: endpoint number
* @in: endpoint is IN
* @halted: endpoint halted?
* @epsts: Endpoint status
*/
struct pch_udc_ep {
struct usb_ep ep;
dma_addr_t td_stp_phys;
dma_addr_t td_data_phys;
struct pch_udc_stp_dma_desc *td_stp;
struct pch_udc_data_dma_desc *td_data;
struct pch_udc_dev *dev;
unsigned long offset_addr;
struct list_head queue;
unsigned num:5,
in:1,
halted:1;
unsigned long epsts;
};
/**
* struct pch_vbus_gpio_data - Structure holding GPIO informaton
* for detecting VBUS
* @port: gpio port number
* @intr: gpio interrupt number
* @irq_work_fall Structure for WorkQueue
* @irq_work_rise Structure for WorkQueue
*/
struct pch_vbus_gpio_data {
int port;
int intr;
struct work_struct irq_work_fall;
struct work_struct irq_work_rise;
};
/**
* struct pch_udc_dev - Structure holding complete information
* of the PCH USB device
* @gadget: gadget driver data
* @driver: reference to gadget driver bound
* @pdev: reference to the PCI device
* @ep: array of endpoints
* @lock: protects all state
* @active: enabled the PCI device
* @stall: stall requested
* @prot_stall: protcol stall requested
* @irq_registered: irq registered with system
* @mem_region: device memory mapped
* @registered: driver regsitered with system
* @suspended: driver in suspended state
* @connected: gadget driver associated
* @vbus_session: required vbus_session state
* @set_cfg_not_acked: pending acknowledgement 4 setup
* @waiting_zlp_ack: pending acknowledgement 4 ZLP
* @data_requests: DMA pool for data requests
* @stp_requests: DMA pool for setup requests
* @dma_addr: DMA pool for received
* @ep0out_buf: Buffer for DMA
* @setup_data: Received setup data
* @phys_addr: of device memory
* @base_addr: for mapped device memory
* @irq: IRQ line for the device
* @cfg_data: current cfg, intf, and alt in use
* @vbus_gpio: GPIO informaton for detecting VBUS
*/
struct pch_udc_dev {
struct usb_gadget gadget;
struct usb_gadget_driver *driver;
struct pci_dev *pdev;
struct pch_udc_ep ep[PCH_UDC_EP_NUM];
spinlock_t lock; /* protects all state */
unsigned active:1,
stall:1,
prot_stall:1,
irq_registered:1,
mem_region:1,
suspended:1,
connected:1,
vbus_session:1,
set_cfg_not_acked:1,
waiting_zlp_ack:1;
struct pci_pool *data_requests;
struct pci_pool *stp_requests;
dma_addr_t dma_addr;
void *ep0out_buf;
struct usb_ctrlrequest setup_data;
unsigned long phys_addr;
void __iomem *base_addr;
unsigned irq;
struct pch_udc_cfg_data cfg_data;
struct pch_vbus_gpio_data vbus_gpio;
};
#define to_pch_udc(g) (container_of((g), struct pch_udc_dev, gadget))
#define PCH_UDC_PCI_BAR 1
#define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808
#define PCI_VENDOR_ID_ROHM 0x10DB
#define PCI_DEVICE_ID_ML7213_IOH_UDC 0x801D
#define PCI_DEVICE_ID_ML7831_IOH_UDC 0x8808
static const char ep0_string[] = "ep0in";
static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */
static bool speed_fs;
module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
/**
* struct pch_udc_request - Structure holding a PCH USB device request packet
* @req: embedded ep request
* @td_data_phys: phys. address
* @td_data: first dma desc. of chain
* @td_data_last: last dma desc. of chain
* @queue: associated queue
* @dma_going: DMA in progress for request
* @dma_mapped: DMA memory mapped for request
* @dma_done: DMA completed for request
* @chain_len: chain length
* @buf: Buffer memory for align adjustment
* @dma: DMA memory for align adjustment
*/
struct pch_udc_request {
struct usb_request req;
dma_addr_t td_data_phys;
struct pch_udc_data_dma_desc *td_data;
struct pch_udc_data_dma_desc *td_data_last;
struct list_head queue;
unsigned dma_going:1,
dma_mapped:1,
dma_done:1;
unsigned chain_len;
void *buf;
dma_addr_t dma;
};
static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
{
return ioread32(dev->base_addr + reg);
}
static inline void pch_udc_writel(struct pch_udc_dev *dev,
unsigned long val, unsigned long reg)
{
iowrite32(val, dev->base_addr + reg);
}
static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
unsigned long reg,
unsigned long bitmask)
{
pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
}
static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
unsigned long reg,
unsigned long bitmask)
{
pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
}
static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
{
return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
}
static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
unsigned long val, unsigned long reg)
{
iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
}
static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
unsigned long reg,
unsigned long bitmask)
{
pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
}
static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
unsigned long reg,
unsigned long bitmask)
{
pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
}
/**
* pch_udc_csr_busy() - Wait till idle.
* @dev: Reference to pch_udc_dev structure
*/
static void pch_udc_csr_busy(struct pch_udc_dev *dev)
{
unsigned int count = 200;
/* Wait till idle */
while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
&& --count)
cpu_relax();
if (!count)
dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
}
/**
* pch_udc_write_csr() - Write the command and status registers.
* @dev: Reference to pch_udc_dev structure
* @val: value to be written to CSR register
* @addr: address of CSR register
*/
static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
unsigned int ep)
{
unsigned long reg = PCH_UDC_CSR(ep);
pch_udc_csr_busy(dev); /* Wait till idle */
pch_udc_writel(dev, val, reg);
pch_udc_csr_busy(dev); /* Wait till idle */
}
/**
* pch_udc_read_csr() - Read the command and status registers.
* @dev: Reference to pch_udc_dev structure
* @addr: address of CSR register
*
* Return codes: content of CSR register
*/
static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
{
unsigned long reg = PCH_UDC_CSR(ep);
pch_udc_csr_busy(dev); /* Wait till idle */
pch_udc_readl(dev, reg); /* Dummy read */
pch_udc_csr_busy(dev); /* Wait till idle */
return pch_udc_readl(dev, reg);
}
/**
* pch_udc_rmt_wakeup() - Initiate for remote wakeup
* @dev: Reference to pch_udc_dev structure
*/
static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
{
pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
mdelay(1);
pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
}
/**
* pch_udc_get_frame() - Get the current frame from device status register
* @dev: Reference to pch_udc_dev structure
* Retern current frame
*/
static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
{
u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
}
/**
* pch_udc_clear_selfpowered() - Clear the self power control
* @dev: Reference to pch_udc_regs structure
*/
static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
{
pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
}
/**
* pch_udc_set_selfpowered() - Set the self power control
* @dev: Reference to pch_udc_regs structure
*/
static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
{
pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
}
/**
* pch_udc_set_disconnect() - Set the disconnect status.
* @dev: Reference to pch_udc_regs structure
*/
static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
{
pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
}
/**
* pch_udc_clear_disconnect() - Clear the disconnect status.
* @dev: Reference to pch_udc_regs structure
*/
static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
{
/* Clear the disconnect */
pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
mdelay(1);
/* Resume USB signalling */
pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
}
/**
* pch_udc_reconnect() - This API initializes usb device controller,
* and clear the disconnect status.
* @dev: Reference to pch_udc_regs structure
*/
static void pch_udc_init(struct pch_udc_dev *dev);
static void pch_udc_reconnect(struct pch_udc_dev *dev)
{
pch_udc_init(dev);
/* enable device interrupts */
/* pch_udc_enable_interrupts() */
pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR,
UDC_DEVINT_UR | UDC_DEVINT_ENUM);
/* Clear the disconnect */
pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
mdelay(1);
/* Resume USB signalling */
pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
}
/**
* pch_udc_vbus_session() - set or clearr the disconnect status.
* @dev: Reference to pch_udc_regs structure
* @is_active: Parameter specifying the action
* 0: indicating VBUS power is ending
* !0: indicating VBUS power is starting
*/
static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
int is_active)
{
if (is_active) {
pch_udc_reconnect(dev);
dev->vbus_session = 1;
} else {
if (dev->driver && dev->driver->disconnect) {
spin_unlock(&dev->lock);
dev->driver->disconnect(&dev->gadget);
spin_lock(&dev->lock);
}
pch_udc_set_disconnect(dev);
dev->vbus_session = 0;
}
}
/**
* pch_udc_ep_set_stall() - Set the stall of endpoint
* @ep: Reference to structure of type pch_udc_ep_regs
*/
static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
{
if (ep->in) {
pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
} else {
pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
}
}
/**
* pch_udc_ep_clear_stall() - Clear the stall of endpoint
* @ep: Reference to structure of type pch_udc_ep_regs
*/
static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
{
/* Clear the stall */
pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
/* Clear NAK by writing CNAK */
pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
}
/**
* pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
* @ep: Reference to structure of type pch_udc_ep_regs
* @type: Type of endpoint
*/
static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
u8 type)
{
pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
}
/**
* pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
* @ep: Reference to structure of type pch_udc_ep_regs
* @buf_size: The buffer word size
*/
static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
u32 buf_size, u32 ep_in)
{
u32 data;
if (ep_in) {
data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
data = (data & 0xffff0000) | (buf_size & 0xffff);
pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
} else {
data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
data = (buf_size << 16) | (data & 0xffff);
pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
}
}
/**
* pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
* @ep: Reference to structure of type pch_udc_ep_regs
* @pkt_size: The packet byte size
*/
static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
{
u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
data = (data & 0xffff0000) | (pkt_size & 0xffff);
pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
}
/**
* pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
* @ep: Reference to structure of type pch_udc_ep_regs
* @addr: Address of the register
*/
static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
{
pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
}
/**
* pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
* @ep: Reference to structure of type pch_udc_ep_regs
* @addr: Address of the register
*/
static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
{
pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
}
/**
* pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
* @ep: Reference to structure of type pch_udc_ep_regs
*/
static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
{
pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
}
/**
* pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
* @ep: Reference to structure of type pch_udc_ep_regs
*/
static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
{
pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
}
/**
* pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
* @ep: Reference to structure of type pch_udc_ep_regs
*/
static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
{
pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
}
/**
* pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
* register depending on the direction specified
* @dev: Reference to structure of type pch_udc_regs
* @dir: whether Tx or Rx
* DMA_DIR_RX: Receive
* DMA_DIR_TX: Transmit
*/
static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
{
if (dir == DMA_DIR_RX)
pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
else if (dir == DMA_DIR_TX)
pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
}
/**
* pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
* register depending on the direction specified
* @dev: Reference to structure of type pch_udc_regs
* @dir: Whether Tx or Rx
* DMA_DIR_RX: Receive
* DMA_DIR_TX: Transmit
*/
static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
{
if (dir == DMA_DIR_RX)
pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
else if (dir == DMA_DIR_TX)
pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
}
/**
* pch_udc_set_csr_done() - Set the device control register
* CSR done field (bit 13)
* @dev: reference to structure of type pch_udc_regs
*/
static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
{
pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
}
/**
* pch_udc_disable_interrupts() - Disables the specified interrupts
* @dev: Reference to structure of type pch_udc_regs
* @mask: Mask to disable interrupts
*/
static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
u32 mask)
{
pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
}
/**
* pch_udc_enable_interrupts() - Enable the specified interrupts
* @dev: Reference to structure of type pch_udc_regs
* @mask: Mask to enable interrupts
*/
static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
u32 mask)
{
pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
}
/**
* pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
* @dev: Reference to structure of type pch_udc_regs
* @mask: Mask to disable interrupts
*/
static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
u32 mask)
{
pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
}
/**
* pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
* @dev: Reference to structure of type pch_udc_regs
* @mask: Mask to enable interrupts
*/
static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
u32 mask)
{
pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
}
/**
* pch_udc_read_device_interrupts() - Read the device interrupts
* @dev: Reference to structure of type pch_udc_regs
* Retern The device interrupts
*/
static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
{
return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
}
/**
* pch_udc_write_device_interrupts() - Write device interrupts
* @dev: Reference to structure of type pch_udc_regs
* @val: The value to be written to interrupt register
*/
static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
u32 val)
{
pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
}
/**
* pch_udc_read_ep_interrupts() - Read the endpoint interrupts
* @dev: Reference to structure of type pch_udc_regs
* Retern The endpoint interrupt
*/
static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
{
return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
}
/**
* pch_udc_write_ep_interrupts() - Clear endpoint interupts
* @dev: Reference to structure of type pch_udc_regs
* @val: The value to be written to interrupt register
*/
static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
u32 val)
{
pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
}
/**
* pch_udc_read_device_status() - Read the device status
* @dev: Reference to structure of type pch_udc_regs
* Retern The device status
*/
static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
{
return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
}
/**
* pch_udc_read_ep_control() - Read the endpoint control
* @ep: Reference to structure of type pch_udc_ep_regs
* Retern The endpoint control register value
*/
static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
{
return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
}
/**
* pch_udc_clear_ep_control() - Clear the endpoint control register
* @ep: Reference to structure of type pch_udc_ep_regs
* Retern The endpoint control register value
*/
static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
{
return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
}
/**
* pch_udc_read_ep_status() - Read the endpoint status
* @ep: Reference to structure of type pch_udc_ep_regs
* Retern The endpoint status
*/
static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
{
return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
}
/**
* pch_udc_clear_ep_status() - Clear the endpoint status
* @ep: Reference to structure of type pch_udc_ep_regs
* @stat: Endpoint status
*/
static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
u32 stat)
{
return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
}
/**
* pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
* of the endpoint control register
* @ep: Reference to structure of type pch_udc_ep_regs
*/
static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
{
pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
}
/**
* pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
* of the endpoint control register
* @ep: reference to structure of type pch_udc_ep_regs
*/
static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
{
unsigned int loopcnt = 0;
struct pch_udc_dev *dev = ep->dev;
if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
return;
if (!ep->in) {
loopcnt = 10000;
while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
--loopcnt)
udelay(5);
if (!loopcnt)
dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
__func__);
}
loopcnt = 10000;
while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
udelay(5);
}
if (!loopcnt)
dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
__func__, ep->num, (ep->in ? "in" : "out"));
}
/**
* pch_udc_ep_fifo_flush() - Flush the endpoint fifo
* @ep: reference to structure of type pch_udc_ep_regs
* @dir: direction of endpoint
* 0: endpoint is OUT
* !0: endpoint is IN
*/
static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
{
if (dir) { /* IN ep */
pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
return;
}
}
/**
* pch_udc_ep_enable() - This api enables endpoint
* @regs: Reference to structure pch_udc_ep_regs
* @desc: endpoint descriptor
*/
static void pch_udc_ep_enable(struct pch_udc_ep *ep,
struct pch_udc_cfg_data *cfg,
const struct usb_endpoint_descriptor *desc)
{
u32 val = 0;
u32 buff_size = 0;
pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
if (ep->in)
buff_size = UDC_EPIN_BUFF_SIZE;
else
buff_size = UDC_EPOUT_BUFF_SIZE;
pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
pch_udc_ep_set_maxpkt(ep, usb_endpoint_maxp(desc));
pch_udc_ep_set_nak(ep);
pch_udc_ep_fifo_flush(ep, ep->in);
/* Configure the endpoint */
val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
UDC_CSR_NE_TYPE_SHIFT) |
(cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
(cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
(cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
usb_endpoint_maxp(desc) << UDC_CSR_NE_MAX_PKT_SHIFT;
if (ep->in)
pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
else
pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
}
/**
* pch_udc_ep_disable() - This api disables endpoint
* @regs: Reference to structure pch_udc_ep_regs
*/
static void pch_udc_ep_disable(struct pch_udc_ep *ep)
{
if (ep->in) {
/* flush the fifo */
pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
/* set NAK */
pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
} else {
/* set NAK */
pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
}
/* reset desc pointer */
pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
}
/**
* pch_udc_wait_ep_stall() - Wait EP stall.
* @dev: Reference to pch_udc_dev structure
*/
static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
{
unsigned int count = 10000;
/* Wait till idle */
while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
udelay(5);
if (!count)
dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
}
/**
* pch_udc_init() - This API initializes usb device controller
* @dev: Rreference to pch_udc_regs structure
*/
static void pch_udc_init(struct pch_udc_dev *dev)
{
if (NULL == dev) {
pr_err("%s: Invalid address\n", __func__);
return;
}
/* Soft Reset and Reset PHY */
pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
mdelay(1);
pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
mdelay(1);
/* mask and clear all device interrupts */
pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
/* mask and clear all ep interrupts */
pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
/* enable dynamic CSR programmingi, self powered and device speed */
if (speed_fs)
pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
else /* defaul high speed */
pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
(PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
(PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
UDC_DEVCTL_THE);
}
/**
* pch_udc_exit() - This API exit usb device controller
* @dev: Reference to pch_udc_regs structure
*/
static void pch_udc_exit(struct pch_udc_dev *dev)
{
/* mask all device interrupts */
pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
/* mask all ep interrupts */
pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
/* put device in disconnected state */
pch_udc_set_disconnect(dev);
}
/**
* pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
* @gadget: Reference to the gadget driver
*
* Return codes:
* 0: Success
* -EINVAL: If the gadget passed is NULL
*/
static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
{
struct pch_udc_dev *dev;
if (!gadget)
return -EINVAL;
dev = container_of(gadget, struct pch_udc_dev, gadget);
return pch_udc_get_frame(dev);
}
/**
* pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
* @gadget: Reference to the gadget driver
*
* Return codes:
* 0: Success
* -EINVAL: If the gadget passed is NULL
*/
static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
{
struct pch_udc_dev *dev;
unsigned long flags;
if (!gadget)
return -EINVAL;
dev = container_of(gadget, struct pch_udc_dev, gadget);
spin_lock_irqsave(&dev->lock, flags);
pch_udc_rmt_wakeup(dev);
spin_unlock_irqrestore(&dev->lock, flags);
return 0;
}
/**
* pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
* is self powered or not
* @gadget: Reference to the gadget driver
* @value: Specifies self powered or not
*
* Return codes:
* 0: Success
* -EINVAL: If the gadget passed is NULL
*/
static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
{
struct pch_udc_dev *dev;
if (!gadget)
return -EINVAL;
dev = container_of(gadget, struct pch_udc_dev, gadget);
if (value)
pch_udc_set_selfpowered(dev);
else
pch_udc_clear_selfpowered(dev);
return 0;
}
/**
* pch_udc_pcd_pullup() - This API is invoked to make the device
* visible/invisible to the host
* @gadget: Reference to the gadget driver
* @is_on: Specifies whether the pull up is made active or inactive
*
* Return codes:
* 0: Success
* -EINVAL: If the gadget passed is NULL
*/
static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
{
struct pch_udc_dev *dev;
if (!gadget)
return -EINVAL;
dev = container_of(gadget, struct pch_udc_dev, gadget);
if (is_on) {
pch_udc_reconnect(dev);
} else {
if (dev->driver && dev->driver->disconnect) {
spin_unlock(&dev->lock);
dev->driver->disconnect(&dev->gadget);
spin_lock(&dev->lock);
}
pch_udc_set_disconnect(dev);
}
return 0;
}
/**
* pch_udc_pcd_vbus_session() - This API is used by a driver for an external
* transceiver (or GPIO) that
* detects a VBUS power session starting/ending
* @gadget: Reference to the gadget driver
* @is_active: specifies whether the session is starting or ending
*
* Return codes:
* 0: Success
* -EINVAL: If the gadget passed is NULL
*/
static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
{
struct pch_udc_dev *dev;
if (!gadget)
return -EINVAL;
dev = container_of(gadget, struct pch_udc_dev, gadget);
pch_udc_vbus_session(dev, is_active);
return 0;
}
/**
* pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
* SET_CONFIGURATION calls to
* specify how much power the device can consume
* @gadget: Reference to the gadget driver
* @mA: specifies the current limit in 2mA unit
*
* Return codes:
* -EINVAL: If the gadget passed is NULL
* -EOPNOTSUPP:
*/
static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
{
return -EOPNOTSUPP;
}
static int pch_udc_start(struct usb_gadget *g,
struct usb_gadget_driver *driver);
static int pch_udc_stop(struct usb_gadget *g,
struct usb_gadget_driver *driver);
static const struct usb_gadget_ops pch_udc_ops = {
.get_frame = pch_udc_pcd_get_frame,
.wakeup = pch_udc_pcd_wakeup,
.set_selfpowered = pch_udc_pcd_selfpowered,
.pullup = pch_udc_pcd_pullup,
.vbus_session = pch_udc_pcd_vbus_session,
.vbus_draw = pch_udc_pcd_vbus_draw,
.udc_start = pch_udc_start,
.udc_stop = pch_udc_stop,
};
/**
* pch_vbus_gpio_get_value() - This API gets value of GPIO port as VBUS status.
* @dev: Reference to the driver structure
*
* Return value:
* 1: VBUS is high
* 0: VBUS is low
* -1: It is not enable to detect VBUS using GPIO
*/
static int pch_vbus_gpio_get_value(struct pch_udc_dev *dev)
{
int vbus = 0;
if (dev->vbus_gpio.port)
vbus = gpio_get_value(dev->vbus_gpio.port) ? 1 : 0;
else
vbus = -1;
return vbus;
}
/**
* pch_vbus_gpio_work_fall() - This API keeps watch on VBUS becoming Low.
* If VBUS is Low, disconnect is processed
* @irq_work: Structure for WorkQueue
*
*/
static void pch_vbus_gpio_work_fall(struct work_struct *irq_work)
{
struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
struct pch_vbus_gpio_data, irq_work_fall);
struct pch_udc_dev *dev =
container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
int vbus_saved = -1;
int vbus;
int count;
if (!dev->vbus_gpio.port)
return;
for (count = 0; count < (PCH_VBUS_PERIOD / PCH_VBUS_INTERVAL);
count++) {
vbus = pch_vbus_gpio_get_value(dev);
if ((vbus_saved == vbus) && (vbus == 0)) {
dev_dbg(&dev->pdev->dev, "VBUS fell");
if (dev->driver
&& dev->driver->disconnect) {
dev->driver->disconnect(
&dev->gadget);
}
if (dev->vbus_gpio.intr)
pch_udc_init(dev);
else
pch_udc_reconnect(dev);
return;
}
vbus_saved = vbus;
mdelay(PCH_VBUS_INTERVAL);
}
}
/**
* pch_vbus_gpio_work_rise() - This API checks VBUS is High.
* If VBUS is High, connect is processed
* @irq_work: Structure for WorkQueue
*
*/
static void pch_vbus_gpio_work_rise(struct work_struct *irq_work)
{
struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
struct pch_vbus_gpio_data, irq_work_rise);
struct pch_udc_dev *dev =
container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
int vbus;
if (!dev->vbus_gpio.port)
return;
mdelay(PCH_VBUS_INTERVAL);
vbus = pch_vbus_gpio_get_value(dev);
if (vbus == 1) {
dev_dbg(&dev->pdev->dev, "VBUS rose");
pch_udc_reconnect(dev);
return;
}
}
/**
* pch_vbus_gpio_irq() - IRQ handler for GPIO intrerrupt for changing VBUS
* @irq: Interrupt request number
* @dev: Reference to the device structure
*
* Return codes:
* 0: Success
* -EINVAL: GPIO port is invalid or can't be initialized.
*/
static irqreturn_t pch_vbus_gpio_irq(int irq, void *data)
{
struct pch_udc_dev *dev = (struct pch_udc_dev *)data;
if (!dev->vbus_gpio.port || !dev->vbus_gpio.intr)
return IRQ_NONE;
if (pch_vbus_gpio_get_value(dev))
schedule_work(&dev->vbus_gpio.irq_work_rise);
else
schedule_work(&dev->vbus_gpio.irq_work_fall);
return IRQ_HANDLED;
}
/**
* pch_vbus_gpio_init() - This API initializes GPIO port detecting VBUS.
* @dev: Reference to the driver structure
* @vbus_gpio Number of GPIO port to detect gpio
*
* Return codes:
* 0: Success
* -EINVAL: GPIO port is invalid or can't be initialized.
*/
static int pch_vbus_gpio_init(struct pch_udc_dev *dev, int vbus_gpio_port)
{
int err;
int irq_num = 0;
dev->vbus_gpio.port = 0;
dev->vbus_gpio.intr = 0;
if (vbus_gpio_port <= -1)
return -EINVAL;
err = gpio_is_valid(vbus_gpio_port);
if (!err) {
pr_err("%s: gpio port %d is invalid\n",
__func__, vbus_gpio_port);
return -EINVAL;
}
err = gpio_request(vbus_gpio_port, "pch_vbus");
if (err) {
pr_err("%s: can't request gpio port %d, err: %d\n",
__func__, vbus_gpio_port, err);
return -EINVAL;
}
dev->vbus_gpio.port = vbus_gpio_port;
gpio_direction_input(vbus_gpio_port);
INIT_WORK(&dev->vbus_gpio.irq_work_fall, pch_vbus_gpio_work_fall);
irq_num = gpio_to_irq(vbus_gpio_port);
if (irq_num > 0) {
irq_set_irq_type(irq_num, IRQ_TYPE_EDGE_BOTH);
err = request_irq(irq_num, pch_vbus_gpio_irq, 0,
"vbus_detect", dev);
if (!err) {
dev->vbus_gpio.intr = irq_num;
INIT_WORK(&dev->vbus_gpio.irq_work_rise,
pch_vbus_gpio_work_rise);
} else {
pr_err("%s: can't request irq %d, err: %d\n",
__func__, irq_num, err);
}
}
return 0;
}
/**
* pch_vbus_gpio_free() - This API frees resources of GPIO port
* @dev: Reference to the driver structure
*/
static void pch_vbus_gpio_free(struct pch_udc_dev *dev)
{
if (dev->vbus_gpio.intr)
free_irq(dev->vbus_gpio.intr, dev);
if (dev->vbus_gpio.port)
gpio_free(dev->vbus_gpio.port);
}
/**
* complete_req() - This API is invoked from the driver when processing
* of a request is complete
* @ep: Reference to the endpoint structure
* @req: Reference to the request structure
* @status: Indicates the success/failure of completion
*/
static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
int status)
__releases(&dev->lock)
__acquires(&dev->lock)
{
struct pch_udc_dev *dev;
unsigned halted = ep->halted;
list_del_init(&req->queue);
/* set new status if pending */
if (req->req.status == -EINPROGRESS)
req->req.status = status;
else
status = req->req.status;
dev = ep->dev;
if (req->dma_mapped) {
if (req->dma == DMA_ADDR_INVALID) {
if (ep->in)
dma_unmap_single(&dev->pdev->dev, req->req.dma,
req->req.length,
DMA_TO_DEVICE);
else
dma_unmap_single(&dev->pdev->dev, req->req.dma,
req->req.length,
DMA_FROM_DEVICE);
req->req.dma = DMA_ADDR_INVALID;
} else {
if (ep->in)
dma_unmap_single(&dev->pdev->dev, req->dma,
req->req.length,
DMA_TO_DEVICE);
else {
dma_unmap_single(&dev->pdev->dev, req->dma,
req->req.length,
DMA_FROM_DEVICE);
memcpy(req->req.buf, req->buf, req->req.length);
}
kfree(req->buf);
req->dma = DMA_ADDR_INVALID;
}
req->dma_mapped = 0;
}
ep->halted = 1;
spin_unlock(&dev->lock);
if (!ep->in)
pch_udc_ep_clear_rrdy(ep);
req->req.complete(&ep->ep, &req->req);
spin_lock(&dev->lock);
ep->halted = halted;
}
/**
* empty_req_queue() - This API empties the request queue of an endpoint
* @ep: Reference to the endpoint structure
*/
static void empty_req_queue(struct pch_udc_ep *ep)
{
struct pch_udc_request *req;
ep->halted = 1;
while (!list_empty(&ep->queue)) {
req = list_entry(ep->queue.next, struct pch_udc_request, queue);
complete_req(ep, req, -ESHUTDOWN); /* Remove from list */
}
}
/**
* pch_udc_free_dma_chain() - This function frees the DMA chain created
* for the request
* @dev Reference to the driver structure
* @req Reference to the request to be freed
*
* Return codes:
* 0: Success
*/
static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
struct pch_udc_request *req)
{
struct pch_udc_data_dma_desc *td = req->td_data;
unsigned i = req->chain_len;
dma_addr_t addr2;
dma_addr_t addr = (dma_addr_t)td->next;
td->next = 0x00;
for (; i > 1; --i) {
/* do not free first desc., will be done by free for request */
td = phys_to_virt(addr);
addr2 = (dma_addr_t)td->next;
pci_pool_free(dev->data_requests, td, addr);
td->next = 0x00;
addr = addr2;
}
req->chain_len = 1;
}
/**
* pch_udc_create_dma_chain() - This function creates or reinitializes
* a DMA chain
* @ep: Reference to the endpoint structure
* @req: Reference to the request
* @buf_len: The buffer length
* @gfp_flags: Flags to be used while mapping the data buffer
*
* Return codes:
* 0: success,
* -ENOMEM: pci_pool_alloc invocation fails
*/
static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
struct pch_udc_request *req,
unsigned long buf_len,
gfp_t gfp_flags)
{
struct pch_udc_data_dma_desc *td = req->td_data, *last;
unsigned long bytes = req->req.length, i = 0;
dma_addr_t dma_addr;
unsigned len = 1;
if (req->chain_len > 1)
pch_udc_free_dma_chain(ep->dev, req);
if (req->dma == DMA_ADDR_INVALID)
td->dataptr = req->req.dma;
else
td->dataptr = req->dma;
td->status = PCH_UDC_BS_HST_BSY;
for (; ; bytes -= buf_len, ++len) {
td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
if (bytes <= buf_len)
break;
last = td;
td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
&dma_addr);
if (!td)
goto nomem;
i += buf_len;
td->dataptr = req->td_data->dataptr + i;
last->next = dma_addr;
}
req->td_data_last = td;
td->status |= PCH_UDC_DMA_LAST;
td->next = req->td_data_phys;
req->chain_len = len;
return 0;
nomem:
if (len > 1) {
req->chain_len = len;
pch_udc_free_dma_chain(ep->dev, req);
}
req->chain_len = 1;
return -ENOMEM;
}
/**
* prepare_dma() - This function creates and initializes the DMA chain
* for the request
* @ep: Reference to the endpoint structure
* @req: Reference to the request
* @gfp: Flag to be used while mapping the data buffer
*
* Return codes:
* 0: Success
* Other 0: linux error number on failure
*/
static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
gfp_t gfp)
{
int retval;
/* Allocate and create a DMA chain */
retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
if (retval) {
pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
return retval;
}
if (ep->in)
req->td_data->status = (req->td_data->status &
~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
return 0;
}
/**
* process_zlp() - This function process zero length packets
* from the gadget driver
* @ep: Reference to the endpoint structure
* @req: Reference to the request
*/
static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
{
struct pch_udc_dev *dev = ep->dev;
/* IN zlp's are handled by hardware */
complete_req(ep, req, 0);
/* if set_config or set_intf is waiting for ack by zlp
* then set CSR_DONE
*/
if (dev->set_cfg_not_acked) {
pch_udc_set_csr_done(dev);
dev->set_cfg_not_acked = 0;
}
/* setup command is ACK'ed now by zlp */
if (!dev->stall && dev->waiting_zlp_ack) {
pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
dev->waiting_zlp_ack = 0;
}
}
/**
* pch_udc_start_rxrequest() - This function starts the receive requirement.
* @ep: Reference to the endpoint structure
* @req: Reference to the request structure
*/
static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
struct pch_udc_request *req)
{
struct pch_udc_data_dma_desc *td_data;
pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
td_data = req->td_data;
/* Set the status bits for all descriptors */
while (1) {
td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
PCH_UDC_BS_HST_RDY;
if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
break;
td_data = phys_to_virt(td_data->next);
}
/* Write the descriptor pointer */
pch_udc_ep_set_ddptr(ep, req->td_data_phys);
req->dma_going = 1;
pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
pch_udc_set_dma(ep->dev, DMA_DIR_RX);
pch_udc_ep_clear_nak(ep);
pch_udc_ep_set_rrdy(ep);
}
/**
* pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
* from gadget driver
* @usbep: Reference to the USB endpoint structure
* @desc: Reference to the USB endpoint descriptor structure
*
* Return codes:
* 0: Success
* -EINVAL:
* -ESHUTDOWN:
*/
static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
const struct usb_endpoint_descriptor *desc)
{
struct pch_udc_ep *ep;
struct pch_udc_dev *dev;
unsigned long iflags;
if (!usbep || (usbep->name == ep0_string) || !desc ||
(desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
return -EINVAL;
ep = container_of(usbep, struct pch_udc_ep, ep);
dev = ep->dev;
if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
return -ESHUTDOWN;
spin_lock_irqsave(&dev->lock, iflags);
ep->ep.desc = desc;
ep->halted = 0;
pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
ep->ep.maxpacket = usb_endpoint_maxp(desc);
pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
spin_unlock_irqrestore(&dev->lock, iflags);
return 0;
}
/**
* pch_udc_pcd_ep_disable() - This API disables endpoint and is called
* from gadget driver
* @usbep Reference to the USB endpoint structure
*
* Return codes:
* 0: Success
* -EINVAL:
*/
static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
{
struct pch_udc_ep *ep;
struct pch_udc_dev *dev;
unsigned long iflags;
if (!usbep)
return -EINVAL;
ep = container_of(usbep, struct pch_udc_ep, ep);
dev = ep->dev;
if ((usbep->name == ep0_string) || !ep->ep.desc)
return -EINVAL;
spin_lock_irqsave(&ep->dev->lock, iflags);
empty_req_queue(ep);
ep->halted = 1;
pch_udc_ep_disable(ep);
pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
ep->ep.desc = NULL;
INIT_LIST_HEAD(&ep->queue);
spin_unlock_irqrestore(&ep->dev->lock, iflags);
return 0;
}
/**
* pch_udc_alloc_request() - This function allocates request structure.
* It is called by gadget driver
* @usbep: Reference to the USB endpoint structure
* @gfp: Flag to be used while allocating memory
*
* Return codes:
* NULL: Failure
* Allocated address: Success
*/
static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
gfp_t gfp)
{
struct pch_udc_request *req;
struct pch_udc_ep *ep;
struct pch_udc_data_dma_desc *dma_desc;
struct pch_udc_dev *dev;
if (!usbep)
return NULL;
ep = container_of(usbep, struct pch_udc_ep, ep);
dev = ep->dev;
req = kzalloc(sizeof *req, gfp);
if (!req)
return NULL;
req->req.dma = DMA_ADDR_INVALID;
req->dma = DMA_ADDR_INVALID;
INIT_LIST_HEAD(&req->queue);
if (!ep->dev->dma_addr)
return &req->req;
/* ep0 in requests are allocated from data pool here */
dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
&req->td_data_phys);
if (NULL == dma_desc) {
kfree(req);
return NULL;
}
/* prevent from using desc. - set HOST BUSY */
dma_desc->status |= PCH_UDC_BS_HST_BSY;
dma_desc->dataptr = __constant_cpu_to_le32(DMA_ADDR_INVALID);
req->td_data = dma_desc;
req->td_data_last = dma_desc;
req->chain_len = 1;
return &req->req;
}
/**
* pch_udc_free_request() - This function frees request structure.
* It is called by gadget driver
* @usbep: Reference to the USB endpoint structure
* @usbreq: Reference to the USB request
*/
static void pch_udc_free_request(struct usb_ep *usbep,
struct usb_request *usbreq)
{
struct pch_udc_ep *ep;
struct pch_udc_request *req;
struct pch_udc_dev *dev;
if (!usbep || !usbreq)
return;
ep = container_of(usbep, struct pch_udc_ep, ep);
req = container_of(usbreq, struct pch_udc_request, req);
dev = ep->dev;
if (!list_empty(&req->queue))
dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
__func__, usbep->name, req);
if (req->td_data != NULL) {
if (req->chain_len > 1)
pch_udc_free_dma_chain(ep->dev, req);
pci_pool_free(ep->dev->data_requests, req->td_data,
req->td_data_phys);
}
kfree(req);
}
/**
* pch_udc_pcd_queue() - This function queues a request packet. It is called
* by gadget driver
* @usbep: Reference to the USB endpoint structure
* @usbreq: Reference to the USB request
* @gfp: Flag to be used while mapping the data buffer
*
* Return codes:
* 0: Success
* linux error number: Failure
*/
static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
gfp_t gfp)
{
int retval = 0;
struct pch_udc_ep *ep;
struct pch_udc_dev *dev;
struct pch_udc_request *req;
unsigned long iflags;
if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
return -EINVAL;
ep = container_of(usbep, struct pch_udc_ep, ep);
dev = ep->dev;
if (!ep->ep.desc && ep->num)
return -EINVAL;
req = container_of(usbreq, struct pch_udc_request, req);
if (!list_empty(&req->queue))
return -EINVAL;
if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
return -ESHUTDOWN;
spin_lock_irqsave(&dev->lock, iflags);
/* map the buffer for dma */
if (usbreq->length &&
((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
if (!((unsigned long)(usbreq->buf) & 0x03)) {
if (ep->in)
usbreq->dma = dma_map_single(&dev->pdev->dev,
usbreq->buf,
usbreq->length,
DMA_TO_DEVICE);
else
usbreq->dma = dma_map_single(&dev->pdev->dev,
usbreq->buf,
usbreq->length,
DMA_FROM_DEVICE);
} else {
req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
if (!req->buf) {
retval = -ENOMEM;
goto probe_end;
}
if (ep->in) {
memcpy(req->buf, usbreq->buf, usbreq->length);
req->dma = dma_map_single(&dev->pdev->dev,
req->buf,
usbreq->length,
DMA_TO_DEVICE);
} else
req->dma = dma_map_single(&dev->pdev->dev,
req->buf,
usbreq->length,
DMA_FROM_DEVICE);
}
req->dma_mapped = 1;
}
if (usbreq->length > 0) {
retval = prepare_dma(ep, req, GFP_ATOMIC);
if (retval)
goto probe_end;
}
usbreq->actual = 0;
usbreq->status = -EINPROGRESS;
req->dma_done = 0;
if (list_empty(&ep->queue) && !ep->halted) {
/* no pending transfer, so start this req */
if (!usbreq->length) {
process_zlp(ep, req);
retval = 0;
goto probe_end;
}
if (!ep->in) {
pch_udc_start_rxrequest(ep, req);
} else {
/*
* For IN trfr the descriptors will be programmed and
* P bit will be set when
* we get an IN token
*/
pch_udc_wait_ep_stall(ep);
pch_udc_ep_clear_nak(ep);
pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
}
}
/* Now add this request to the ep's pending requests */
if (req != NULL)
list_add_tail(&req->queue, &ep->queue);
probe_end:
spin_unlock_irqrestore(&dev->lock, iflags);
return retval;
}
/**
* pch_udc_pcd_dequeue() - This function de-queues a request packet.
* It is called by gadget driver
* @usbep: Reference to the USB endpoint structure
* @usbreq: Reference to the USB request
*
* Return codes:
* 0: Success
* linux error number: Failure
*/
static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
struct usb_request *usbreq)
{
struct pch_udc_ep *ep;
struct pch_udc_request *req;
struct pch_udc_dev *dev;
unsigned long flags;
int ret = -EINVAL;
ep = container_of(usbep, struct pch_udc_ep, ep);
dev = ep->dev;
if (!usbep || !usbreq || (!ep->ep.desc && ep->num))
return ret;
req = container_of(usbreq, struct pch_udc_request, req);
spin_lock_irqsave(&ep->dev->lock, flags);
/* make sure it's still queued on this endpoint */
list_for_each_entry(req, &ep->queue, queue) {
if (&req->req == usbreq) {
pch_udc_ep_set_nak(ep);
if (!list_empty(&req->queue))
complete_req(ep, req, -ECONNRESET);
ret = 0;
break;
}
}
spin_unlock_irqrestore(&ep->dev->lock, flags);
return ret;
}
/**
* pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
* feature
* @usbep: Reference to the USB endpoint structure
* @halt: Specifies whether to set or clear the feature
*
* Return codes:
* 0: Success
* linux error number: Failure
*/
static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
{
struct pch_udc_ep *ep;
struct pch_udc_dev *dev;
unsigned long iflags;
int ret;
if (!usbep)
return -EINVAL;
ep = container_of(usbep, struct pch_udc_ep, ep);
dev = ep->dev;
if (!ep->ep.desc && !ep->num)
return -EINVAL;
if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
return -ESHUTDOWN;
spin_lock_irqsave(&udc_stall_spinlock, iflags);
if (list_empty(&ep->queue)) {
if (halt) {
if (ep->num == PCH_UDC_EP0)
ep->dev->stall = 1;
pch_udc_ep_set_stall(ep);
pch_udc_enable_ep_interrupts(ep->dev,
PCH_UDC_EPINT(ep->in,
ep->num));
} else {
pch_udc_ep_clear_stall(ep);
}
ret = 0;
} else {
ret = -EAGAIN;
}
spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
return ret;
}
/**
* pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
* halt feature
* @usbep: Reference to the USB endpoint structure
* @halt: Specifies whether to set or clear the feature
*
* Return codes:
* 0: Success
* linux error number: Failure
*/
static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
{
struct pch_udc_ep *ep;
struct pch_udc_dev *dev;
unsigned long iflags;
int ret;
if (!usbep)
return -EINVAL;
ep = container_of(usbep, struct pch_udc_ep, ep);
dev = ep->dev;
if (!ep->ep.desc && !ep->num)
return -EINVAL;
if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
return -ESHUTDOWN;
spin_lock_irqsave(&udc_stall_spinlock, iflags);
if (!list_empty(&ep->queue)) {
ret = -EAGAIN;
} else {
if (ep->num == PCH_UDC_EP0)
ep->dev->stall = 1;
pch_udc_ep_set_stall(ep);
pch_udc_enable_ep_interrupts(ep->dev,
PCH_UDC_EPINT(ep->in, ep->num));
ep->dev->prot_stall = 1;
ret = 0;
}
spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
return ret;
}
/**
* pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
* @usbep: Reference to the USB endpoint structure
*/
static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
{
struct pch_udc_ep *ep;
if (!usbep)
return;
ep = container_of(usbep, struct pch_udc_ep, ep);
if (ep->ep.desc || !ep->num)
pch_udc_ep_fifo_flush(ep, ep->in);
}
static const struct usb_ep_ops pch_udc_ep_ops = {
.enable = pch_udc_pcd_ep_enable,
.disable = pch_udc_pcd_ep_disable,
.alloc_request = pch_udc_alloc_request,
.free_request = pch_udc_free_request,
.queue = pch_udc_pcd_queue,
.dequeue = pch_udc_pcd_dequeue,
.set_halt = pch_udc_pcd_set_halt,
.set_wedge = pch_udc_pcd_set_wedge,
.fifo_status = NULL,
.fifo_flush = pch_udc_pcd_fifo_flush,
};
/**
* pch_udc_init_setup_buff() - This function initializes the SETUP buffer
* @td_stp: Reference to the SETP buffer structure
*/
static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
{
static u32 pky_marker;
if (!td_stp)
return;
td_stp->reserved = ++pky_marker;
memset(&td_stp->request, 0xFF, sizeof td_stp->request);
td_stp->status = PCH_UDC_BS_HST_RDY;
}
/**
* pch_udc_start_next_txrequest() - This function starts
* the next transmission requirement
* @ep: Reference to the endpoint structure
*/
static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
{
struct pch_udc_request *req;
struct pch_udc_data_dma_desc *td_data;
if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
return;
if (list_empty(&ep->queue))
return;
/* next request */
req = list_entry(ep->queue.next, struct pch_udc_request, queue);
if (req->dma_going)
return;
if (!req->td_data)
return;
pch_udc_wait_ep_stall(ep);
req->dma_going = 1;
pch_udc_ep_set_ddptr(ep, 0);
td_data = req->td_data;
while (1) {
td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
PCH_UDC_BS_HST_RDY;
if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
break;
td_data = phys_to_virt(td_data->next);
}
pch_udc_ep_set_ddptr(ep, req->td_data_phys);
pch_udc_set_dma(ep->dev, DMA_DIR_TX);
pch_udc_ep_set_pd(ep);
pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
pch_udc_ep_clear_nak(ep);
}
/**
* pch_udc_complete_transfer() - This function completes a transfer
* @ep: Reference to the endpoint structure
*/
static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
{
struct pch_udc_request *req;
struct pch_udc_dev *dev = ep->dev;
if (list_empty(&ep->queue))
return;
req = list_entry(ep->queue.next, struct pch_udc_request, queue);
if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
PCH_UDC_BS_DMA_DONE)
return;
if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
PCH_UDC_RTS_SUCC) {
dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
"epstatus=0x%08x\n",
(req->td_data_last->status & PCH_UDC_RXTX_STS),
(int)(ep->epsts));
return;
}
req->req.actual = req->req.length;
req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
complete_req(ep, req, 0);
req->dma_going = 0;
if (!list_empty(&ep->queue)) {
pch_udc_wait_ep_stall(ep);
pch_udc_ep_clear_nak(ep);
pch_udc_enable_ep_interrupts(ep->dev,
PCH_UDC_EPINT(ep->in, ep->num));
} else {
pch_udc_disable_ep_interrupts(ep->dev,
PCH_UDC_EPINT(ep->in, ep->num));
}
}
/**
* pch_udc_complete_receiver() - This function completes a receiver
* @ep: Reference to the endpoint structure
*/
static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
{
struct pch_udc_request *req;
struct pch_udc_dev *dev = ep->dev;
unsigned int count;
struct pch_udc_data_dma_desc *td;
dma_addr_t addr;
if (list_empty(&ep->queue))
return;
/* next request */
req = list_entry(ep->queue.next, struct pch_udc_request, queue);
pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
pch_udc_ep_set_ddptr(ep, 0);
if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
PCH_UDC_BS_DMA_DONE)
td = req->td_data_last;
else
td = req->td_data;
while (1) {
if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
"epstatus=0x%08x\n",
(req->td_data->status & PCH_UDC_RXTX_STS),
(int)(ep->epsts));
return;
}
if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
if (td->status & PCH_UDC_DMA_LAST) {
count = td->status & PCH_UDC_RXTX_BYTES;
break;
}
if (td == req->td_data_last) {
dev_err(&dev->pdev->dev, "Not complete RX descriptor");
return;
}
addr = (dma_addr_t)td->next;
td = phys_to_virt(addr);
}
/* on 64k packets the RXBYTES field is zero */
if (!count && (req->req.length == UDC_DMA_MAXPACKET))
count = UDC_DMA_MAXPACKET;
req->td_data->status |= PCH_UDC_DMA_LAST;
td->status |= PCH_UDC_BS_HST_BSY;
req->dma_going = 0;
req->req.actual = count;
complete_req(ep, req, 0);
/* If there is a new/failed requests try that now */
if (!list_empty(&ep->queue)) {
req = list_entry(ep->queue.next, struct pch_udc_request, queue);
pch_udc_start_rxrequest(ep, req);
}
}
/**
* pch_udc_svc_data_in() - This function process endpoint interrupts
* for IN endpoints
* @dev: Reference to the device structure
* @ep_num: Endpoint that generated the interrupt
*/
static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
{
u32 epsts;
struct pch_udc_ep *ep;
ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
epsts = ep->epsts;
ep->epsts = 0;
if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
return;
if ((epsts & UDC_EPSTS_BNA))
return;
if (epsts & UDC_EPSTS_HE)
return;
if (epsts & UDC_EPSTS_RSS) {
pch_udc_ep_set_stall(ep);
pch_udc_enable_ep_interrupts(ep->dev,
PCH_UDC_EPINT(ep->in, ep->num));
}
if (epsts & UDC_EPSTS_RCS) {
if (!dev->prot_stall) {
pch_udc_ep_clear_stall(ep);
} else {
pch_udc_ep_set_stall(ep);
pch_udc_enable_ep_interrupts(ep->dev,
PCH_UDC_EPINT(ep->in, ep->num));
}
}
if (epsts & UDC_EPSTS_TDC)
pch_udc_complete_transfer(ep);
/* On IN interrupt, provide data if we have any */
if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
!(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
pch_udc_start_next_txrequest(ep);
}
/**
* pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
* @dev: Reference to the device structure
* @ep_num: Endpoint that generated the interrupt
*/
static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
{
u32 epsts;
struct pch_udc_ep *ep;
struct pch_udc_request *req = NULL;
ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
epsts = ep->epsts;
ep->epsts = 0;
if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
/* next request */
req = list_entry(ep->queue.next, struct pch_udc_request,
queue);
if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
PCH_UDC_BS_DMA_DONE) {
if (!req->dma_going)
pch_udc_start_rxrequest(ep, req);
return;
}
}
if (epsts & UDC_EPSTS_HE)
return;
if (epsts & UDC_EPSTS_RSS) {
pch_udc_ep_set_stall(ep);
pch_udc_enable_ep_interrupts(ep->dev,
PCH_UDC_EPINT(ep->in, ep->num));
}
if (epsts & UDC_EPSTS_RCS) {
if (!dev->prot_stall) {
pch_udc_ep_clear_stall(ep);
} else {
pch_udc_ep_set_stall(ep);
pch_udc_enable_ep_interrupts(ep->dev,
PCH_UDC_EPINT(ep->in, ep->num));
}
}
if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
UDC_EPSTS_OUT_DATA) {
if (ep->dev->prot_stall == 1) {
pch_udc_ep_set_stall(ep);
pch_udc_enable_ep_interrupts(ep->dev,
PCH_UDC_EPINT(ep->in, ep->num));
} else {
pch_udc_complete_receiver(ep);
}
}
if (list_empty(&ep->queue))
pch_udc_set_dma(dev, DMA_DIR_RX);
}
/**
* pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
* @dev: Reference to the device structure
*/
static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
{
u32 epsts;
struct pch_udc_ep *ep;
struct pch_udc_ep *ep_out;
ep = &dev->ep[UDC_EP0IN_IDX];
ep_out = &dev->ep[UDC_EP0OUT_IDX];
epsts = ep->epsts;
ep->epsts = 0;
if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
UDC_EPSTS_XFERDONE)))
return;
if ((epsts & UDC_EPSTS_BNA))
return;
if (epsts & UDC_EPSTS_HE)
return;
if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
pch_udc_complete_transfer(ep);
pch_udc_clear_dma(dev, DMA_DIR_RX);
ep_out->td_data->status = (ep_out->td_data->status &
~PCH_UDC_BUFF_STS) |
PCH_UDC_BS_HST_RDY;
pch_udc_ep_clear_nak(ep_out);
pch_udc_set_dma(dev, DMA_DIR_RX);
pch_udc_ep_set_rrdy(ep_out);
}
/* On IN interrupt, provide data if we have any */
if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
!(epsts & UDC_EPSTS_TXEMPTY))
pch_udc_start_next_txrequest(ep);
}
/**
* pch_udc_svc_control_out() - Routine that handle Control
* OUT endpoint interrupts
* @dev: Reference to the device structure
*/
static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
__releases(&dev->lock)
__acquires(&dev->lock)
{
u32 stat;
int setup_supported;
struct pch_udc_ep *ep;
ep = &dev->ep[UDC_EP0OUT_IDX];
stat = ep->epsts;
ep->epsts = 0;
/* If setup data */
if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
UDC_EPSTS_OUT_SETUP) {
dev->stall = 0;
dev->ep[UDC_EP0IN_IDX].halted = 0;
dev->ep[UDC_EP0OUT_IDX].halted = 0;
dev->setup_data = ep->td_stp->request;
pch_udc_init_setup_buff(ep->td_stp);
pch_udc_clear_dma(dev, DMA_DIR_RX);
pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
dev->ep[UDC_EP0IN_IDX].in);
if ((dev->setup_data.bRequestType & USB_DIR_IN))
dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
else /* OUT */
dev->gadget.ep0 = &ep->ep;
spin_unlock(&dev->lock);
/* If Mass storage Reset */
if ((dev->setup_data.bRequestType == 0x21) &&
(dev->setup_data.bRequest == 0xFF))
dev->prot_stall = 0;
/* call gadget with setup data received */
setup_supported = dev->driver->setup(&dev->gadget,
&dev->setup_data);
spin_lock(&dev->lock);
if (dev->setup_data.bRequestType & USB_DIR_IN) {
ep->td_data->status = (ep->td_data->status &
~PCH_UDC_BUFF_STS) |
PCH_UDC_BS_HST_RDY;
pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
}
/* ep0 in returns data on IN phase */
if (setup_supported >= 0 && setup_supported <
UDC_EP0IN_MAX_PKT_SIZE) {
pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
/* Gadget would have queued a request when
* we called the setup */
if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
pch_udc_set_dma(dev, DMA_DIR_RX);
pch_udc_ep_clear_nak(ep);
}
} else if (setup_supported < 0) {
/* if unsupported request, then stall */
pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
pch_udc_enable_ep_interrupts(ep->dev,
PCH_UDC_EPINT(ep->in, ep->num));
dev->stall = 0;
pch_udc_set_dma(dev, DMA_DIR_RX);
} else {
dev->waiting_zlp_ack = 1;
}
} else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
UDC_EPSTS_OUT_DATA) && !dev->stall) {
pch_udc_clear_dma(dev, DMA_DIR_RX);
pch_udc_ep_set_ddptr(ep, 0);
if (!list_empty(&ep->queue)) {
ep->epsts = stat;
pch_udc_svc_data_out(dev, PCH_UDC_EP0);
}
pch_udc_set_dma(dev, DMA_DIR_RX);
}
pch_udc_ep_set_rrdy(ep);
}
/**
* pch_udc_postsvc_epinters() - This function enables end point interrupts
* and clears NAK status
* @dev: Reference to the device structure
* @ep_num: End point number
*/
static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
{
struct pch_udc_ep *ep;
struct pch_udc_request *req;
ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
if (!list_empty(&ep->queue)) {
req = list_entry(ep->queue.next, struct pch_udc_request, queue);
pch_udc_enable_ep_interrupts(ep->dev,
PCH_UDC_EPINT(ep->in, ep->num));
pch_udc_ep_clear_nak(ep);
}
}
/**
* pch_udc_read_all_epstatus() - This function read all endpoint status
* @dev: Reference to the device structure
* @ep_intr: Status of endpoint interrupt
*/
static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
{
int i;
struct pch_udc_ep *ep;
for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
/* IN */
if (ep_intr & (0x1 << i)) {
ep = &dev->ep[UDC_EPIN_IDX(i)];
ep->epsts = pch_udc_read_ep_status(ep);
pch_udc_clear_ep_status(ep, ep->epsts);
}
/* OUT */
if (ep_intr & (0x10000 << i)) {
ep = &dev->ep[UDC_EPOUT_IDX(i)];
ep->epsts = pch_udc_read_ep_status(ep);
pch_udc_clear_ep_status(ep, ep->epsts);
}
}
}
/**
* pch_udc_activate_control_ep() - This function enables the control endpoints
* for traffic after a reset
* @dev: Reference to the device structure
*/
static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
{
struct pch_udc_ep *ep;
u32 val;
/* Setup the IN endpoint */
ep = &dev->ep[UDC_EP0IN_IDX];
pch_udc_clear_ep_control(ep);
pch_udc_ep_fifo_flush(ep, ep->in);
pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
/* Initialize the IN EP Descriptor */
ep->td_data = NULL;
ep->td_stp = NULL;
ep->td_data_phys = 0;
ep->td_stp_phys = 0;
/* Setup the OUT endpoint */
ep = &dev->ep[UDC_EP0OUT_IDX];
pch_udc_clear_ep_control(ep);
pch_udc_ep_fifo_flush(ep, ep->in);
pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
/* Initialize the SETUP buffer */
pch_udc_init_setup_buff(ep->td_stp);
/* Write the pointer address of dma descriptor */
pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
/* Write the pointer address of Setup descriptor */
pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
/* Initialize the dma descriptor */
ep->td_data->status = PCH_UDC_DMA_LAST;
ep->td_data->dataptr = dev->dma_addr;
ep->td_data->next = ep->td_data_phys;
pch_udc_ep_clear_nak(ep);
}
/**
* pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
* @dev: Reference to driver structure
*/
static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
{
struct pch_udc_ep *ep;
int i;
pch_udc_clear_dma(dev, DMA_DIR_TX);
pch_udc_clear_dma(dev, DMA_DIR_RX);
/* Mask all endpoint interrupts */
pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
/* clear all endpoint interrupts */
pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
for (i = 0; i < PCH_UDC_EP_NUM; i++) {
ep = &dev->ep[i];
pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
pch_udc_clear_ep_control(ep);
pch_udc_ep_set_ddptr(ep, 0);
pch_udc_write_csr(ep->dev, 0x00, i);
}
dev->stall = 0;
dev->prot_stall = 0;
dev->waiting_zlp_ack = 0;
dev->set_cfg_not_acked = 0;
/* disable ep to empty req queue. Skip the control EP's */
for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
ep = &dev->ep[i];
pch_udc_ep_set_nak(ep);
pch_udc_ep_fifo_flush(ep, ep->in);
/* Complete request queue */
empty_req_queue(ep);
}
if (dev->driver && dev->driver->disconnect) {
spin_unlock(&dev->lock);
dev->driver->disconnect(&dev->gadget);
spin_lock(&dev->lock);
}
}
/**
* pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
* done interrupt
* @dev: Reference to driver structure
*/
static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
{
u32 dev_stat, dev_speed;
u32 speed = USB_SPEED_FULL;
dev_stat = pch_udc_read_device_status(dev);
dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
UDC_DEVSTS_ENUM_SPEED_SHIFT;
switch (dev_speed) {
case UDC_DEVSTS_ENUM_SPEED_HIGH:
speed = USB_SPEED_HIGH;
break;
case UDC_DEVSTS_ENUM_SPEED_FULL:
speed = USB_SPEED_FULL;
break;
case UDC_DEVSTS_ENUM_SPEED_LOW:
speed = USB_SPEED_LOW;
break;
default:
BUG();
}
dev->gadget.speed = speed;
pch_udc_activate_control_ep(dev);
pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
pch_udc_set_dma(dev, DMA_DIR_TX);
pch_udc_set_dma(dev, DMA_DIR_RX);
pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
/* enable device interrupts */
pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
UDC_DEVINT_ES | UDC_DEVINT_ENUM |
UDC_DEVINT_SI | UDC_DEVINT_SC);
}
/**
* pch_udc_svc_intf_interrupt() - This function handles a set interface
* interrupt
* @dev: Reference to driver structure
*/
static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
{
u32 reg, dev_stat = 0;
int i, ret;
dev_stat = pch_udc_read_device_status(dev);
dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
UDC_DEVSTS_INTF_SHIFT;
dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
UDC_DEVSTS_ALT_SHIFT;
dev->set_cfg_not_acked = 1;
/* Construct the usb request for gadget driver and inform it */
memset(&dev->setup_data, 0 , sizeof dev->setup_data);
dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
/* programm the Endpoint Cfg registers */
/* Only one end point cfg register */
reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
(dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
(dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
/* clear stall bits */
pch_udc_ep_clear_stall(&(dev->ep[i]));
dev->ep[i].halted = 0;
}
dev->stall = 0;
spin_unlock(&dev->lock);
ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
spin_lock(&dev->lock);
}
/**
* pch_udc_svc_cfg_interrupt() - This function handles a set configuration
* interrupt
* @dev: Reference to driver structure
*/
static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
{
int i, ret;
u32 reg, dev_stat = 0;
dev_stat = pch_udc_read_device_status(dev);
dev->set_cfg_not_acked = 1;
dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
UDC_DEVSTS_CFG_SHIFT;
/* make usb request for gadget driver */
memset(&dev->setup_data, 0 , sizeof dev->setup_data);
dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
/* program the NE registers */
/* Only one end point cfg register */
reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
(dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
/* clear stall bits */
pch_udc_ep_clear_stall(&(dev->ep[i]));
dev->ep[i].halted = 0;
}
dev->stall = 0;
/* call gadget zero with setup data received */
spin_unlock(&dev->lock);
ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
spin_lock(&dev->lock);
}
/**
* pch_udc_dev_isr() - This function services device interrupts
* by invoking appropriate routines.
* @dev: Reference to the device structure
* @dev_intr: The Device interrupt status.
*/
static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
{
int vbus;
/* USB Reset Interrupt */
if (dev_intr & UDC_DEVINT_UR) {
pch_udc_svc_ur_interrupt(dev);
dev_dbg(&dev->pdev->dev, "USB_RESET\n");
}
/* Enumeration Done Interrupt */
if (dev_intr & UDC_DEVINT_ENUM) {
pch_udc_svc_enum_interrupt(dev);
dev_dbg(&dev->pdev->dev, "USB_ENUM\n");
}
/* Set Interface Interrupt */
if (dev_intr & UDC_DEVINT_SI)
pch_udc_svc_intf_interrupt(dev);
/* Set Config Interrupt */
if (dev_intr & UDC_DEVINT_SC)
pch_udc_svc_cfg_interrupt(dev);
/* USB Suspend interrupt */
if (dev_intr & UDC_DEVINT_US) {
if (dev->driver
&& dev->driver->suspend) {
spin_unlock(&dev->lock);
dev->driver->suspend(&dev->gadget);
spin_lock(&dev->lock);
}
vbus = pch_vbus_gpio_get_value(dev);
if ((dev->vbus_session == 0)
&& (vbus != 1)) {
if (dev->driver && dev->driver->disconnect) {
spin_unlock(&dev->lock);
dev->driver->disconnect(&dev->gadget);
spin_lock(&dev->lock);
}
pch_udc_reconnect(dev);
} else if ((dev->vbus_session == 0)
&& (vbus == 1)
&& !dev->vbus_gpio.intr)
schedule_work(&dev->vbus_gpio.irq_work_fall);
dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
}
/* Clear the SOF interrupt, if enabled */
if (dev_intr & UDC_DEVINT_SOF)
dev_dbg(&dev->pdev->dev, "SOF\n");
/* ES interrupt, IDLE > 3ms on the USB */
if (dev_intr & UDC_DEVINT_ES)
dev_dbg(&dev->pdev->dev, "ES\n");
/* RWKP interrupt */
if (dev_intr & UDC_DEVINT_RWKP)
dev_dbg(&dev->pdev->dev, "RWKP\n");
}
/**
* pch_udc_isr() - This function handles interrupts from the PCH USB Device
* @irq: Interrupt request number
* @dev: Reference to the device structure
*/
static irqreturn_t pch_udc_isr(int irq, void *pdev)
{
struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
u32 dev_intr, ep_intr;
int i;
dev_intr = pch_udc_read_device_interrupts(dev);
ep_intr = pch_udc_read_ep_interrupts(dev);
/* For a hot plug, this find that the controller is hung up. */
if (dev_intr == ep_intr)
if (dev_intr == pch_udc_readl(dev, UDC_DEVCFG_ADDR)) {
dev_dbg(&dev->pdev->dev, "UDC: Hung up\n");
/* The controller is reset */
pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
return IRQ_HANDLED;
}
if (dev_intr)
/* Clear device interrupts */
pch_udc_write_device_interrupts(dev, dev_intr);
if (ep_intr)
/* Clear ep interrupts */
pch_udc_write_ep_interrupts(dev, ep_intr);
if (!dev_intr && !ep_intr)
return IRQ_NONE;
spin_lock(&dev->lock);
if (dev_intr)
pch_udc_dev_isr(dev, dev_intr);
if (ep_intr) {
pch_udc_read_all_epstatus(dev, ep_intr);
/* Process Control In interrupts, if present */
if (ep_intr & UDC_EPINT_IN_EP0) {
pch_udc_svc_control_in(dev);
pch_udc_postsvc_epinters(dev, 0);
}
/* Process Control Out interrupts, if present */
if (ep_intr & UDC_EPINT_OUT_EP0)
pch_udc_svc_control_out(dev);
/* Process data in end point interrupts */
for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
if (ep_intr & (1 << i)) {
pch_udc_svc_data_in(dev, i);
pch_udc_postsvc_epinters(dev, i);
}
}
/* Process data out end point interrupts */
for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
PCH_UDC_USED_EP_NUM); i++)
if (ep_intr & (1 << i))
pch_udc_svc_data_out(dev, i -
UDC_EPINT_OUT_SHIFT);
}
spin_unlock(&dev->lock);
return IRQ_HANDLED;
}
/**
* pch_udc_setup_ep0() - This function enables control endpoint for traffic
* @dev: Reference to the device structure
*/
static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
{
/* enable ep0 interrupts */
pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
UDC_EPINT_OUT_EP0);
/* enable device interrupts */
pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
UDC_DEVINT_ES | UDC_DEVINT_ENUM |
UDC_DEVINT_SI | UDC_DEVINT_SC);
}
/**
* gadget_release() - Free the gadget driver private data
* @pdev reference to struct pci_dev
*/
static void gadget_release(struct device *pdev)
{
struct pch_udc_dev *dev = dev_get_drvdata(pdev);
kfree(dev);
}
/**
* pch_udc_pcd_reinit() - This API initializes the endpoint structures
* @dev: Reference to the driver structure
*/
static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
{
const char *const ep_string[] = {
ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
"ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
"ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
"ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
"ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
"ep15in", "ep15out",
};
int i;
dev->gadget.speed = USB_SPEED_UNKNOWN;
INIT_LIST_HEAD(&dev->gadget.ep_list);
/* Initialize the endpoints structures */
memset(dev->ep, 0, sizeof dev->ep);
for (i = 0; i < PCH_UDC_EP_NUM; i++) {
struct pch_udc_ep *ep = &dev->ep[i];
ep->dev = dev;
ep->halted = 1;
ep->num = i / 2;
ep->in = ~i & 1;
ep->ep.name = ep_string[i];
ep->ep.ops = &pch_udc_ep_ops;
if (ep->in)
ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
else
ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
UDC_EP_REG_SHIFT;
/* need to set ep->ep.maxpacket and set Default Configuration?*/
usb_ep_set_maxpacket_limit(&ep->ep, UDC_BULK_MAX_PKT_SIZE);
list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
INIT_LIST_HEAD(&ep->queue);
}
usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IDX].ep, UDC_EP0IN_MAX_PKT_SIZE);
usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IDX].ep, UDC_EP0OUT_MAX_PKT_SIZE);
/* remove ep0 in and out from the list. They have own pointer */
list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
}
/**
* pch_udc_pcd_init() - This API initializes the driver structure
* @dev: Reference to the driver structure
*
* Return codes:
* 0: Success
*/
static int pch_udc_pcd_init(struct pch_udc_dev *dev)
{
pch_udc_init(dev);
pch_udc_pcd_reinit(dev);
pch_vbus_gpio_init(dev, vbus_gpio_port);
return 0;
}
/**
* init_dma_pools() - create dma pools during initialization
* @pdev: reference to struct pci_dev
*/
static int init_dma_pools(struct pch_udc_dev *dev)
{
struct pch_udc_stp_dma_desc *td_stp;
struct pch_udc_data_dma_desc *td_data;
/* DMA setup */
dev->data_requests = pci_pool_create("data_requests", dev->pdev,
sizeof(struct pch_udc_data_dma_desc), 0, 0);
if (!dev->data_requests) {
dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
__func__);
return -ENOMEM;
}
/* dma desc for setup data */
dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
sizeof(struct pch_udc_stp_dma_desc), 0, 0);
if (!dev->stp_requests) {
dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
__func__);
return -ENOMEM;
}
/* setup */
td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
&dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
if (!td_stp) {
dev_err(&dev->pdev->dev,
"%s: can't allocate setup dma descriptor\n", __func__);
return -ENOMEM;
}
dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
/* data: 0 packets !? */
td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
&dev->ep[UDC_EP0OUT_IDX].td_data_phys);
if (!td_data) {
dev_err(&dev->pdev->dev,
"%s: can't allocate data dma descriptor\n", __func__);
return -ENOMEM;
}
dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
dev->ep[UDC_EP0IN_IDX].td_data = NULL;
dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
dev->ep0out_buf = kzalloc(UDC_EP0OUT_BUFF_SIZE * 4, GFP_KERNEL);
if (!dev->ep0out_buf)
return -ENOMEM;
dev->dma_addr = dma_map_single(&dev->pdev->dev, dev->ep0out_buf,
UDC_EP0OUT_BUFF_SIZE * 4,
DMA_FROM_DEVICE);
return 0;
}
static int pch_udc_start(struct usb_gadget *g,
struct usb_gadget_driver *driver)
{
struct pch_udc_dev *dev = to_pch_udc(g);
driver->driver.bus = NULL;
dev->driver = driver;
/* get ready for ep0 traffic */
pch_udc_setup_ep0(dev);
/* clear SD */
if ((pch_vbus_gpio_get_value(dev) != 0) || !dev->vbus_gpio.intr)
pch_udc_clear_disconnect(dev);
dev->connected = 1;
return 0;
}
static int pch_udc_stop(struct usb_gadget *g,
struct usb_gadget_driver *driver)
{
struct pch_udc_dev *dev = to_pch_udc(g);
pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
/* Assures that there are no pending requests with this driver */
dev->driver = NULL;
dev->connected = 0;
/* set SD */
pch_udc_set_disconnect(dev);
return 0;
}
static void pch_udc_shutdown(struct pci_dev *pdev)
{
struct pch_udc_dev *dev = pci_get_drvdata(pdev);
pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
/* disable the pullup so the host will think we're gone */
pch_udc_set_disconnect(dev);
}
static void pch_udc_remove(struct pci_dev *pdev)
{
struct pch_udc_dev *dev = pci_get_drvdata(pdev);
usb_del_gadget_udc(&dev->gadget);
/* gadget driver must not be registered */
if (dev->driver)
dev_err(&pdev->dev,
"%s: gadget driver still bound!!!\n", __func__);
/* dma pool cleanup */
if (dev->data_requests)
pci_pool_destroy(dev->data_requests);
if (dev->stp_requests) {
/* cleanup DMA desc's for ep0in */
if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
pci_pool_free(dev->stp_requests,
dev->ep[UDC_EP0OUT_IDX].td_stp,
dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
}
if (dev->ep[UDC_EP0OUT_IDX].td_data) {
pci_pool_free(dev->stp_requests,
dev->ep[UDC_EP0OUT_IDX].td_data,
dev->ep[UDC_EP0OUT_IDX].td_data_phys);
}
pci_pool_destroy(dev->stp_requests);
}
if (dev->dma_addr)
dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
kfree(dev->ep0out_buf);
pch_vbus_gpio_free(dev);
pch_udc_exit(dev);
if (dev->irq_registered)
free_irq(pdev->irq, dev);
if (dev->base_addr)
iounmap(dev->base_addr);
if (dev->mem_region)
release_mem_region(dev->phys_addr,
pci_resource_len(pdev, PCH_UDC_PCI_BAR));
if (dev->active)
pci_disable_device(pdev);
kfree(dev);
}
#ifdef CONFIG_PM
static int pch_udc_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct pch_udc_dev *dev = pci_get_drvdata(pdev);
pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
pci_disable_device(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
if (pci_save_state(pdev)) {
dev_err(&pdev->dev,
"%s: could not save PCI config state\n", __func__);
return -ENOMEM;
}
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int pch_udc_resume(struct pci_dev *pdev)
{
int ret;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
ret = pci_enable_device(pdev);
if (ret) {
dev_err(&pdev->dev, "%s: pci_enable_device failed\n", __func__);
return ret;
}
pci_enable_wake(pdev, PCI_D3hot, 0);
return 0;
}
#else
#define pch_udc_suspend NULL
#define pch_udc_resume NULL
#endif /* CONFIG_PM */
static int pch_udc_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
unsigned long resource;
unsigned long len;
int retval;
struct pch_udc_dev *dev;
/* init */
dev = kzalloc(sizeof *dev, GFP_KERNEL);
if (!dev) {
pr_err("%s: no memory for device structure\n", __func__);
return -ENOMEM;
}
/* pci setup */
if (pci_enable_device(pdev) < 0) {
kfree(dev);
pr_err("%s: pci_enable_device failed\n", __func__);
return -ENODEV;
}
dev->active = 1;
pci_set_drvdata(pdev, dev);
/* PCI resource allocation */
resource = pci_resource_start(pdev, 1);
len = pci_resource_len(pdev, 1);
if (!request_mem_region(resource, len, KBUILD_MODNAME)) {
dev_err(&pdev->dev, "%s: pci device used already\n", __func__);
retval = -EBUSY;
goto finished;
}
dev->phys_addr = resource;
dev->mem_region = 1;
dev->base_addr = ioremap_nocache(resource, len);
if (!dev->base_addr) {
pr_err("%s: device memory cannot be mapped\n", __func__);
retval = -ENOMEM;
goto finished;
}
if (!pdev->irq) {
dev_err(&pdev->dev, "%s: irq not set\n", __func__);
retval = -ENODEV;
goto finished;
}
/* initialize the hardware */
if (pch_udc_pcd_init(dev)) {
retval = -ENODEV;
goto finished;
}
if (request_irq(pdev->irq, pch_udc_isr, IRQF_SHARED, KBUILD_MODNAME,
dev)) {
dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
pdev->irq);
retval = -ENODEV;
goto finished;
}
dev->irq = pdev->irq;
dev->irq_registered = 1;
pci_set_master(pdev);
pci_try_set_mwi(pdev);
/* device struct setup */
spin_lock_init(&dev->lock);
dev->pdev = pdev;
dev->gadget.ops = &pch_udc_ops;
retval = init_dma_pools(dev);
if (retval)
goto finished;
dev->gadget.name = KBUILD_MODNAME;
dev->gadget.max_speed = USB_SPEED_HIGH;
/* Put the device in disconnected state till a driver is bound */
pch_udc_set_disconnect(dev);
retval = usb_add_gadget_udc_release(&pdev->dev, &dev->gadget,
gadget_release);
if (retval)
goto finished;
return 0;
finished:
pch_udc_remove(pdev);
return retval;
}
static const struct pci_device_id pch_udc_pcidev_id[] = {
{
PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
.class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
.class_mask = 0xffffffff,
},
{
PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
.class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
.class_mask = 0xffffffff,
},
{
PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7831_IOH_UDC),
.class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
.class_mask = 0xffffffff,
},
{ 0 },
};
MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
static struct pci_driver pch_udc_driver = {
.name = KBUILD_MODNAME,
.id_table = pch_udc_pcidev_id,
.probe = pch_udc_probe,
.remove = pch_udc_remove,
.suspend = pch_udc_suspend,
.resume = pch_udc_resume,
.shutdown = pch_udc_shutdown,
};
module_pci_driver(pch_udc_driver);
MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
MODULE_AUTHOR("LAPIS Semiconductor, <tomoya-linux@dsn.lapis-semi.com>");
MODULE_LICENSE("GPL");