2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 10:13:58 +08:00
linux-next/crypto/jitterentropy-kcapi.c
Ben Dooks 965d7286d8 crypto: jitter - add header to fix buildwarnings
Fix the following build warnings by adding a header for
the definitions shared between jitterentropy.c and
jitterentropy-kcapi.c. Fixes the following:

crypto/jitterentropy.c:445:5: warning: symbol 'jent_read_entropy' was not declared. Should it be static?
crypto/jitterentropy.c:475:18: warning: symbol 'jent_entropy_collector_alloc' was not declared. Should it be static?
crypto/jitterentropy.c:509:6: warning: symbol 'jent_entropy_collector_free' was not declared. Should it be static?
crypto/jitterentropy.c:516:5: warning: symbol 'jent_entropy_init' was not declared. Should it be static?
crypto/jitterentropy-kcapi.c:59:6: warning: symbol 'jent_zalloc' was not declared. Should it be static?
crypto/jitterentropy-kcapi.c:64:6: warning: symbol 'jent_zfree' was not declared. Should it be static?
crypto/jitterentropy-kcapi.c:69:5: warning: symbol 'jent_fips_enabled' was not declared. Should it be static?
crypto/jitterentropy-kcapi.c:74:6: warning: symbol 'jent_panic' was not declared. Should it be static?
crypto/jitterentropy-kcapi.c:79:6: warning: symbol 'jent_memcpy' was not declared. Should it be static?
crypto/jitterentropy-kcapi.c:93:6: warning: symbol 'jent_get_nstime' was not declared. Should it be static?

Signed-off-by: Ben Dooks <ben.dooks@codethink.co.uk>
Reviewed-by: Stephan Mueller <smueller@chronox.de
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-10-18 18:49:40 +11:00

197 lines
5.6 KiB
C

/*
* Non-physical true random number generator based on timing jitter --
* Linux Kernel Crypto API specific code
*
* Copyright Stephan Mueller <smueller@chronox.de>, 2015
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, and the entire permission notice in its entirety,
* including the disclaimer of warranties.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* ALTERNATIVELY, this product may be distributed under the terms of
* the GNU General Public License, in which case the provisions of the GPL2 are
* required INSTEAD OF the above restrictions. (This clause is
* necessary due to a potential bad interaction between the GPL and
* the restrictions contained in a BSD-style copyright.)
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
* WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/fips.h>
#include <linux/time.h>
#include <linux/crypto.h>
#include <crypto/internal/rng.h>
#include "jitterentropy.h"
/***************************************************************************
* Helper function
***************************************************************************/
void *jent_zalloc(unsigned int len)
{
return kzalloc(len, GFP_KERNEL);
}
void jent_zfree(void *ptr)
{
kzfree(ptr);
}
int jent_fips_enabled(void)
{
return fips_enabled;
}
void jent_panic(char *s)
{
panic("%s", s);
}
void jent_memcpy(void *dest, const void *src, unsigned int n)
{
memcpy(dest, src, n);
}
/*
* Obtain a high-resolution time stamp value. The time stamp is used to measure
* the execution time of a given code path and its variations. Hence, the time
* stamp must have a sufficiently high resolution.
*
* Note, if the function returns zero because a given architecture does not
* implement a high-resolution time stamp, the RNG code's runtime test
* will detect it and will not produce output.
*/
void jent_get_nstime(__u64 *out)
{
__u64 tmp = 0;
tmp = random_get_entropy();
/*
* If random_get_entropy does not return a value, i.e. it is not
* implemented for a given architecture, use a clock source.
* hoping that there are timers we can work with.
*/
if (tmp == 0)
tmp = ktime_get_ns();
*out = tmp;
}
/***************************************************************************
* Kernel crypto API interface
***************************************************************************/
struct jitterentropy {
spinlock_t jent_lock;
struct rand_data *entropy_collector;
};
static int jent_kcapi_init(struct crypto_tfm *tfm)
{
struct jitterentropy *rng = crypto_tfm_ctx(tfm);
int ret = 0;
rng->entropy_collector = jent_entropy_collector_alloc(1, 0);
if (!rng->entropy_collector)
ret = -ENOMEM;
spin_lock_init(&rng->jent_lock);
return ret;
}
static void jent_kcapi_cleanup(struct crypto_tfm *tfm)
{
struct jitterentropy *rng = crypto_tfm_ctx(tfm);
spin_lock(&rng->jent_lock);
if (rng->entropy_collector)
jent_entropy_collector_free(rng->entropy_collector);
rng->entropy_collector = NULL;
spin_unlock(&rng->jent_lock);
}
static int jent_kcapi_random(struct crypto_rng *tfm,
const u8 *src, unsigned int slen,
u8 *rdata, unsigned int dlen)
{
struct jitterentropy *rng = crypto_rng_ctx(tfm);
int ret = 0;
spin_lock(&rng->jent_lock);
ret = jent_read_entropy(rng->entropy_collector, rdata, dlen);
spin_unlock(&rng->jent_lock);
return ret;
}
static int jent_kcapi_reset(struct crypto_rng *tfm,
const u8 *seed, unsigned int slen)
{
return 0;
}
static struct rng_alg jent_alg = {
.generate = jent_kcapi_random,
.seed = jent_kcapi_reset,
.seedsize = 0,
.base = {
.cra_name = "jitterentropy_rng",
.cra_driver_name = "jitterentropy_rng",
.cra_priority = 100,
.cra_ctxsize = sizeof(struct jitterentropy),
.cra_module = THIS_MODULE,
.cra_init = jent_kcapi_init,
.cra_exit = jent_kcapi_cleanup,
}
};
static int __init jent_mod_init(void)
{
int ret = 0;
ret = jent_entropy_init();
if (ret) {
pr_info("jitterentropy: Initialization failed with host not compliant with requirements: %d\n", ret);
return -EFAULT;
}
return crypto_register_rng(&jent_alg);
}
static void __exit jent_mod_exit(void)
{
crypto_unregister_rng(&jent_alg);
}
module_init(jent_mod_init);
module_exit(jent_mod_exit);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
MODULE_DESCRIPTION("Non-physical True Random Number Generator based on CPU Jitter");
MODULE_ALIAS_CRYPTO("jitterentropy_rng");