2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-26 07:35:44 +08:00
linux-next/include/linux/slab.h
Glauber Costa 943a451a87 slab: propagate tunable values
SLAB allows us to tune a particular cache behavior with tunables.  When
creating a new memcg cache copy, we'd like to preserve any tunables the
parent cache already had.

This could be done by an explicit call to do_tune_cpucache() after the
cache is created.  But this is not very convenient now that the caches are
created from common code, since this function is SLAB-specific.

Another method of doing that is taking advantage of the fact that
do_tune_cpucache() is always called from enable_cpucache(), which is
called at cache initialization.  We can just preset the values, and then
things work as expected.

It can also happen that a root cache has its tunables updated during
normal system operation.  In this case, we will propagate the change to
all caches that are already active.

This change will require us to move the assignment of root_cache in
memcg_params a bit earlier.  We need this to be already set - which
memcg_kmem_register_cache will do - when we reach __kmem_cache_create()

Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18 15:02:14 -08:00

449 lines
14 KiB
C

/*
* Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
*
* (C) SGI 2006, Christoph Lameter
* Cleaned up and restructured to ease the addition of alternative
* implementations of SLAB allocators.
*/
#ifndef _LINUX_SLAB_H
#define _LINUX_SLAB_H
#include <linux/gfp.h>
#include <linux/types.h>
#include <linux/workqueue.h>
/*
* Flags to pass to kmem_cache_create().
* The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
*/
#define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
/*
* SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
*
* This delays freeing the SLAB page by a grace period, it does _NOT_
* delay object freeing. This means that if you do kmem_cache_free()
* that memory location is free to be reused at any time. Thus it may
* be possible to see another object there in the same RCU grace period.
*
* This feature only ensures the memory location backing the object
* stays valid, the trick to using this is relying on an independent
* object validation pass. Something like:
*
* rcu_read_lock()
* again:
* obj = lockless_lookup(key);
* if (obj) {
* if (!try_get_ref(obj)) // might fail for free objects
* goto again;
*
* if (obj->key != key) { // not the object we expected
* put_ref(obj);
* goto again;
* }
* }
* rcu_read_unlock();
*
* See also the comment on struct slab_rcu in mm/slab.c.
*/
#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
/* Flag to prevent checks on free */
#ifdef CONFIG_DEBUG_OBJECTS
# define SLAB_DEBUG_OBJECTS 0x00400000UL
#else
# define SLAB_DEBUG_OBJECTS 0x00000000UL
#endif
#define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
/* Don't track use of uninitialized memory */
#ifdef CONFIG_KMEMCHECK
# define SLAB_NOTRACK 0x01000000UL
#else
# define SLAB_NOTRACK 0x00000000UL
#endif
#ifdef CONFIG_FAILSLAB
# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
#else
# define SLAB_FAILSLAB 0x00000000UL
#endif
/* The following flags affect the page allocator grouping pages by mobility */
#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
/*
* ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
*
* Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
*
* ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
* Both make kfree a no-op.
*/
#define ZERO_SIZE_PTR ((void *)16)
#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
(unsigned long)ZERO_SIZE_PTR)
/*
* Common fields provided in kmem_cache by all slab allocators
* This struct is either used directly by the allocator (SLOB)
* or the allocator must include definitions for all fields
* provided in kmem_cache_common in their definition of kmem_cache.
*
* Once we can do anonymous structs (C11 standard) we could put a
* anonymous struct definition in these allocators so that the
* separate allocations in the kmem_cache structure of SLAB and
* SLUB is no longer needed.
*/
#ifdef CONFIG_SLOB
struct kmem_cache {
unsigned int object_size;/* The original size of the object */
unsigned int size; /* The aligned/padded/added on size */
unsigned int align; /* Alignment as calculated */
unsigned long flags; /* Active flags on the slab */
const char *name; /* Slab name for sysfs */
int refcount; /* Use counter */
void (*ctor)(void *); /* Called on object slot creation */
struct list_head list; /* List of all slab caches on the system */
};
#endif
struct mem_cgroup;
/*
* struct kmem_cache related prototypes
*/
void __init kmem_cache_init(void);
int slab_is_available(void);
struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
unsigned long,
void (*)(void *));
struct kmem_cache *
kmem_cache_create_memcg(struct mem_cgroup *, const char *, size_t, size_t,
unsigned long, void (*)(void *), struct kmem_cache *);
void kmem_cache_destroy(struct kmem_cache *);
int kmem_cache_shrink(struct kmem_cache *);
void kmem_cache_free(struct kmem_cache *, void *);
/*
* Please use this macro to create slab caches. Simply specify the
* name of the structure and maybe some flags that are listed above.
*
* The alignment of the struct determines object alignment. If you
* f.e. add ____cacheline_aligned_in_smp to the struct declaration
* then the objects will be properly aligned in SMP configurations.
*/
#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
sizeof(struct __struct), __alignof__(struct __struct),\
(__flags), NULL)
/*
* The largest kmalloc size supported by the slab allocators is
* 32 megabyte (2^25) or the maximum allocatable page order if that is
* less than 32 MB.
*
* WARNING: Its not easy to increase this value since the allocators have
* to do various tricks to work around compiler limitations in order to
* ensure proper constant folding.
*/
#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
(MAX_ORDER + PAGE_SHIFT - 1) : 25)
#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_HIGH)
#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_HIGH - PAGE_SHIFT)
/*
* Some archs want to perform DMA into kmalloc caches and need a guaranteed
* alignment larger than the alignment of a 64-bit integer.
* Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
*/
#ifdef ARCH_DMA_MINALIGN
#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
#else
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
#endif
/*
* Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
* Intended for arches that get misalignment faults even for 64 bit integer
* aligned buffers.
*/
#ifndef ARCH_SLAB_MINALIGN
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
#endif
/*
* This is the main placeholder for memcg-related information in kmem caches.
* struct kmem_cache will hold a pointer to it, so the memory cost while
* disabled is 1 pointer. The runtime cost while enabled, gets bigger than it
* would otherwise be if that would be bundled in kmem_cache: we'll need an
* extra pointer chase. But the trade off clearly lays in favor of not
* penalizing non-users.
*
* Both the root cache and the child caches will have it. For the root cache,
* this will hold a dynamically allocated array large enough to hold
* information about the currently limited memcgs in the system.
*
* Child caches will hold extra metadata needed for its operation. Fields are:
*
* @memcg: pointer to the memcg this cache belongs to
* @list: list_head for the list of all caches in this memcg
* @root_cache: pointer to the global, root cache, this cache was derived from
* @dead: set to true after the memcg dies; the cache may still be around.
* @nr_pages: number of pages that belongs to this cache.
* @destroy: worker to be called whenever we are ready, or believe we may be
* ready, to destroy this cache.
*/
struct memcg_cache_params {
bool is_root_cache;
union {
struct kmem_cache *memcg_caches[0];
struct {
struct mem_cgroup *memcg;
struct list_head list;
struct kmem_cache *root_cache;
bool dead;
atomic_t nr_pages;
struct work_struct destroy;
};
};
};
int memcg_update_all_caches(int num_memcgs);
struct seq_file;
int cache_show(struct kmem_cache *s, struct seq_file *m);
void print_slabinfo_header(struct seq_file *m);
/*
* Common kmalloc functions provided by all allocators
*/
void * __must_check __krealloc(const void *, size_t, gfp_t);
void * __must_check krealloc(const void *, size_t, gfp_t);
void kfree(const void *);
void kzfree(const void *);
size_t ksize(const void *);
/*
* Allocator specific definitions. These are mainly used to establish optimized
* ways to convert kmalloc() calls to kmem_cache_alloc() invocations by
* selecting the appropriate general cache at compile time.
*
* Allocators must define at least:
*
* kmem_cache_alloc()
* __kmalloc()
* kmalloc()
*
* Those wishing to support NUMA must also define:
*
* kmem_cache_alloc_node()
* kmalloc_node()
*
* See each allocator definition file for additional comments and
* implementation notes.
*/
#ifdef CONFIG_SLUB
#include <linux/slub_def.h>
#elif defined(CONFIG_SLOB)
#include <linux/slob_def.h>
#else
#include <linux/slab_def.h>
#endif
/**
* kmalloc_array - allocate memory for an array.
* @n: number of elements.
* @size: element size.
* @flags: the type of memory to allocate.
*
* The @flags argument may be one of:
*
* %GFP_USER - Allocate memory on behalf of user. May sleep.
*
* %GFP_KERNEL - Allocate normal kernel ram. May sleep.
*
* %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
* For example, use this inside interrupt handlers.
*
* %GFP_HIGHUSER - Allocate pages from high memory.
*
* %GFP_NOIO - Do not do any I/O at all while trying to get memory.
*
* %GFP_NOFS - Do not make any fs calls while trying to get memory.
*
* %GFP_NOWAIT - Allocation will not sleep.
*
* %GFP_THISNODE - Allocate node-local memory only.
*
* %GFP_DMA - Allocation suitable for DMA.
* Should only be used for kmalloc() caches. Otherwise, use a
* slab created with SLAB_DMA.
*
* Also it is possible to set different flags by OR'ing
* in one or more of the following additional @flags:
*
* %__GFP_COLD - Request cache-cold pages instead of
* trying to return cache-warm pages.
*
* %__GFP_HIGH - This allocation has high priority and may use emergency pools.
*
* %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
* (think twice before using).
*
* %__GFP_NORETRY - If memory is not immediately available,
* then give up at once.
*
* %__GFP_NOWARN - If allocation fails, don't issue any warnings.
*
* %__GFP_REPEAT - If allocation fails initially, try once more before failing.
*
* There are other flags available as well, but these are not intended
* for general use, and so are not documented here. For a full list of
* potential flags, always refer to linux/gfp.h.
*/
static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
{
if (size != 0 && n > SIZE_MAX / size)
return NULL;
return __kmalloc(n * size, flags);
}
/**
* kcalloc - allocate memory for an array. The memory is set to zero.
* @n: number of elements.
* @size: element size.
* @flags: the type of memory to allocate (see kmalloc).
*/
static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
{
return kmalloc_array(n, size, flags | __GFP_ZERO);
}
#if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
/**
* kmalloc_node - allocate memory from a specific node
* @size: how many bytes of memory are required.
* @flags: the type of memory to allocate (see kcalloc).
* @node: node to allocate from.
*
* kmalloc() for non-local nodes, used to allocate from a specific node
* if available. Equivalent to kmalloc() in the non-NUMA single-node
* case.
*/
static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
{
return kmalloc(size, flags);
}
static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
return __kmalloc(size, flags);
}
void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
gfp_t flags, int node)
{
return kmem_cache_alloc(cachep, flags);
}
#endif /* !CONFIG_NUMA && !CONFIG_SLOB */
/*
* kmalloc_track_caller is a special version of kmalloc that records the
* calling function of the routine calling it for slab leak tracking instead
* of just the calling function (confusing, eh?).
* It's useful when the call to kmalloc comes from a widely-used standard
* allocator where we care about the real place the memory allocation
* request comes from.
*/
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
(defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
(defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
#define kmalloc_track_caller(size, flags) \
__kmalloc_track_caller(size, flags, _RET_IP_)
#else
#define kmalloc_track_caller(size, flags) \
__kmalloc(size, flags)
#endif /* DEBUG_SLAB */
#ifdef CONFIG_NUMA
/*
* kmalloc_node_track_caller is a special version of kmalloc_node that
* records the calling function of the routine calling it for slab leak
* tracking instead of just the calling function (confusing, eh?).
* It's useful when the call to kmalloc_node comes from a widely-used
* standard allocator where we care about the real place the memory
* allocation request comes from.
*/
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
(defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
(defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
#define kmalloc_node_track_caller(size, flags, node) \
__kmalloc_node_track_caller(size, flags, node, \
_RET_IP_)
#else
#define kmalloc_node_track_caller(size, flags, node) \
__kmalloc_node(size, flags, node)
#endif
#else /* CONFIG_NUMA */
#define kmalloc_node_track_caller(size, flags, node) \
kmalloc_track_caller(size, flags)
#endif /* CONFIG_NUMA */
/*
* Shortcuts
*/
static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
{
return kmem_cache_alloc(k, flags | __GFP_ZERO);
}
/**
* kzalloc - allocate memory. The memory is set to zero.
* @size: how many bytes of memory are required.
* @flags: the type of memory to allocate (see kmalloc).
*/
static inline void *kzalloc(size_t size, gfp_t flags)
{
return kmalloc(size, flags | __GFP_ZERO);
}
/**
* kzalloc_node - allocate zeroed memory from a particular memory node.
* @size: how many bytes of memory are required.
* @flags: the type of memory to allocate (see kmalloc).
* @node: memory node from which to allocate
*/
static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
{
return kmalloc_node(size, flags | __GFP_ZERO, node);
}
/*
* Determine the size of a slab object
*/
static inline unsigned int kmem_cache_size(struct kmem_cache *s)
{
return s->object_size;
}
void __init kmem_cache_init_late(void);
#endif /* _LINUX_SLAB_H */