mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-03 11:13:56 +08:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
439 lines
12 KiB
C
439 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Framebuffer driver for EFI/UEFI based system
|
|
*
|
|
* (c) 2006 Edgar Hucek <gimli@dark-green.com>
|
|
* Original efi driver written by Gerd Knorr <kraxel@goldbach.in-berlin.de>
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/fb.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/screen_info.h>
|
|
#include <video/vga.h>
|
|
#include <asm/efi.h>
|
|
|
|
static bool request_mem_succeeded = false;
|
|
static bool nowc = false;
|
|
|
|
static struct fb_var_screeninfo efifb_defined = {
|
|
.activate = FB_ACTIVATE_NOW,
|
|
.height = -1,
|
|
.width = -1,
|
|
.right_margin = 32,
|
|
.upper_margin = 16,
|
|
.lower_margin = 4,
|
|
.vsync_len = 4,
|
|
.vmode = FB_VMODE_NONINTERLACED,
|
|
};
|
|
|
|
static struct fb_fix_screeninfo efifb_fix = {
|
|
.id = "EFI VGA",
|
|
.type = FB_TYPE_PACKED_PIXELS,
|
|
.accel = FB_ACCEL_NONE,
|
|
.visual = FB_VISUAL_TRUECOLOR,
|
|
};
|
|
|
|
static int efifb_setcolreg(unsigned regno, unsigned red, unsigned green,
|
|
unsigned blue, unsigned transp,
|
|
struct fb_info *info)
|
|
{
|
|
/*
|
|
* Set a single color register. The values supplied are
|
|
* already rounded down to the hardware's capabilities
|
|
* (according to the entries in the `var' structure). Return
|
|
* != 0 for invalid regno.
|
|
*/
|
|
|
|
if (regno >= info->cmap.len)
|
|
return 1;
|
|
|
|
if (regno < 16) {
|
|
red >>= 16 - info->var.red.length;
|
|
green >>= 16 - info->var.green.length;
|
|
blue >>= 16 - info->var.blue.length;
|
|
((u32 *)(info->pseudo_palette))[regno] =
|
|
(red << info->var.red.offset) |
|
|
(green << info->var.green.offset) |
|
|
(blue << info->var.blue.offset);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void efifb_destroy(struct fb_info *info)
|
|
{
|
|
if (info->screen_base)
|
|
iounmap(info->screen_base);
|
|
if (request_mem_succeeded)
|
|
release_mem_region(info->apertures->ranges[0].base,
|
|
info->apertures->ranges[0].size);
|
|
fb_dealloc_cmap(&info->cmap);
|
|
}
|
|
|
|
static struct fb_ops efifb_ops = {
|
|
.owner = THIS_MODULE,
|
|
.fb_destroy = efifb_destroy,
|
|
.fb_setcolreg = efifb_setcolreg,
|
|
.fb_fillrect = cfb_fillrect,
|
|
.fb_copyarea = cfb_copyarea,
|
|
.fb_imageblit = cfb_imageblit,
|
|
};
|
|
|
|
static int efifb_setup(char *options)
|
|
{
|
|
char *this_opt;
|
|
|
|
if (options && *options) {
|
|
while ((this_opt = strsep(&options, ",")) != NULL) {
|
|
if (!*this_opt) continue;
|
|
|
|
efifb_setup_from_dmi(&screen_info, this_opt);
|
|
|
|
if (!strncmp(this_opt, "base:", 5))
|
|
screen_info.lfb_base = simple_strtoul(this_opt+5, NULL, 0);
|
|
else if (!strncmp(this_opt, "stride:", 7))
|
|
screen_info.lfb_linelength = simple_strtoul(this_opt+7, NULL, 0) * 4;
|
|
else if (!strncmp(this_opt, "height:", 7))
|
|
screen_info.lfb_height = simple_strtoul(this_opt+7, NULL, 0);
|
|
else if (!strncmp(this_opt, "width:", 6))
|
|
screen_info.lfb_width = simple_strtoul(this_opt+6, NULL, 0);
|
|
else if (!strcmp(this_opt, "nowc"))
|
|
nowc = true;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool fb_base_is_valid(void)
|
|
{
|
|
if (screen_info.lfb_base)
|
|
return true;
|
|
|
|
if (!(screen_info.capabilities & VIDEO_CAPABILITY_64BIT_BASE))
|
|
return false;
|
|
|
|
if (screen_info.ext_lfb_base)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
#define efifb_attr_decl(name, fmt) \
|
|
static ssize_t name##_show(struct device *dev, \
|
|
struct device_attribute *attr, \
|
|
char *buf) \
|
|
{ \
|
|
return sprintf(buf, fmt "\n", (screen_info.lfb_##name)); \
|
|
} \
|
|
static DEVICE_ATTR_RO(name)
|
|
|
|
efifb_attr_decl(base, "0x%x");
|
|
efifb_attr_decl(linelength, "%u");
|
|
efifb_attr_decl(height, "%u");
|
|
efifb_attr_decl(width, "%u");
|
|
efifb_attr_decl(depth, "%u");
|
|
|
|
static struct attribute *efifb_attrs[] = {
|
|
&dev_attr_base.attr,
|
|
&dev_attr_linelength.attr,
|
|
&dev_attr_width.attr,
|
|
&dev_attr_height.attr,
|
|
&dev_attr_depth.attr,
|
|
NULL
|
|
};
|
|
ATTRIBUTE_GROUPS(efifb);
|
|
|
|
static bool pci_dev_disabled; /* FB base matches BAR of a disabled device */
|
|
|
|
static struct pci_dev *efifb_pci_dev; /* dev with BAR covering the efifb */
|
|
static struct resource *bar_resource;
|
|
static u64 bar_offset;
|
|
|
|
static int efifb_probe(struct platform_device *dev)
|
|
{
|
|
struct fb_info *info;
|
|
int err;
|
|
unsigned int size_vmode;
|
|
unsigned int size_remap;
|
|
unsigned int size_total;
|
|
char *option = NULL;
|
|
|
|
if (screen_info.orig_video_isVGA != VIDEO_TYPE_EFI || pci_dev_disabled)
|
|
return -ENODEV;
|
|
|
|
if (fb_get_options("efifb", &option))
|
|
return -ENODEV;
|
|
efifb_setup(option);
|
|
|
|
/* We don't get linelength from UGA Draw Protocol, only from
|
|
* EFI Graphics Protocol. So if it's not in DMI, and it's not
|
|
* passed in from the user, we really can't use the framebuffer.
|
|
*/
|
|
if (!screen_info.lfb_linelength)
|
|
return -ENODEV;
|
|
|
|
if (!screen_info.lfb_depth)
|
|
screen_info.lfb_depth = 32;
|
|
if (!screen_info.pages)
|
|
screen_info.pages = 1;
|
|
if (!fb_base_is_valid()) {
|
|
printk(KERN_DEBUG "efifb: invalid framebuffer address\n");
|
|
return -ENODEV;
|
|
}
|
|
printk(KERN_INFO "efifb: probing for efifb\n");
|
|
|
|
/* just assume they're all unset if any are */
|
|
if (!screen_info.blue_size) {
|
|
screen_info.blue_size = 8;
|
|
screen_info.blue_pos = 0;
|
|
screen_info.green_size = 8;
|
|
screen_info.green_pos = 8;
|
|
screen_info.red_size = 8;
|
|
screen_info.red_pos = 16;
|
|
screen_info.rsvd_size = 8;
|
|
screen_info.rsvd_pos = 24;
|
|
}
|
|
|
|
efifb_fix.smem_start = screen_info.lfb_base;
|
|
|
|
if (screen_info.capabilities & VIDEO_CAPABILITY_64BIT_BASE) {
|
|
u64 ext_lfb_base;
|
|
|
|
ext_lfb_base = (u64)(unsigned long)screen_info.ext_lfb_base << 32;
|
|
efifb_fix.smem_start |= ext_lfb_base;
|
|
}
|
|
|
|
if (bar_resource &&
|
|
bar_resource->start + bar_offset != efifb_fix.smem_start) {
|
|
dev_info(&efifb_pci_dev->dev,
|
|
"BAR has moved, updating efifb address\n");
|
|
efifb_fix.smem_start = bar_resource->start + bar_offset;
|
|
}
|
|
|
|
efifb_defined.bits_per_pixel = screen_info.lfb_depth;
|
|
efifb_defined.xres = screen_info.lfb_width;
|
|
efifb_defined.yres = screen_info.lfb_height;
|
|
efifb_fix.line_length = screen_info.lfb_linelength;
|
|
|
|
/* size_vmode -- that is the amount of memory needed for the
|
|
* used video mode, i.e. the minimum amount of
|
|
* memory we need. */
|
|
size_vmode = efifb_defined.yres * efifb_fix.line_length;
|
|
|
|
/* size_total -- all video memory we have. Used for
|
|
* entries, ressource allocation and bounds
|
|
* checking. */
|
|
size_total = screen_info.lfb_size;
|
|
if (size_total < size_vmode)
|
|
size_total = size_vmode;
|
|
|
|
/* size_remap -- the amount of video memory we are going to
|
|
* use for efifb. With modern cards it is no
|
|
* option to simply use size_total as that
|
|
* wastes plenty of kernel address space. */
|
|
size_remap = size_vmode * 2;
|
|
if (size_remap > size_total)
|
|
size_remap = size_total;
|
|
if (size_remap % PAGE_SIZE)
|
|
size_remap += PAGE_SIZE - (size_remap % PAGE_SIZE);
|
|
efifb_fix.smem_len = size_remap;
|
|
|
|
if (request_mem_region(efifb_fix.smem_start, size_remap, "efifb")) {
|
|
request_mem_succeeded = true;
|
|
} else {
|
|
/* We cannot make this fatal. Sometimes this comes from magic
|
|
spaces our resource handlers simply don't know about */
|
|
pr_warn("efifb: cannot reserve video memory at 0x%lx\n",
|
|
efifb_fix.smem_start);
|
|
}
|
|
|
|
info = framebuffer_alloc(sizeof(u32) * 16, &dev->dev);
|
|
if (!info) {
|
|
pr_err("efifb: cannot allocate framebuffer\n");
|
|
err = -ENOMEM;
|
|
goto err_release_mem;
|
|
}
|
|
platform_set_drvdata(dev, info);
|
|
info->pseudo_palette = info->par;
|
|
info->par = NULL;
|
|
|
|
info->apertures = alloc_apertures(1);
|
|
if (!info->apertures) {
|
|
err = -ENOMEM;
|
|
goto err_release_fb;
|
|
}
|
|
info->apertures->ranges[0].base = efifb_fix.smem_start;
|
|
info->apertures->ranges[0].size = size_remap;
|
|
|
|
if (nowc)
|
|
info->screen_base = ioremap(efifb_fix.smem_start, efifb_fix.smem_len);
|
|
else
|
|
info->screen_base = ioremap_wc(efifb_fix.smem_start, efifb_fix.smem_len);
|
|
if (!info->screen_base) {
|
|
pr_err("efifb: abort, cannot ioremap video memory 0x%x @ 0x%lx\n",
|
|
efifb_fix.smem_len, efifb_fix.smem_start);
|
|
err = -EIO;
|
|
goto err_release_fb;
|
|
}
|
|
|
|
pr_info("efifb: framebuffer at 0x%lx, using %dk, total %dk\n",
|
|
efifb_fix.smem_start, size_remap/1024, size_total/1024);
|
|
pr_info("efifb: mode is %dx%dx%d, linelength=%d, pages=%d\n",
|
|
efifb_defined.xres, efifb_defined.yres,
|
|
efifb_defined.bits_per_pixel, efifb_fix.line_length,
|
|
screen_info.pages);
|
|
|
|
efifb_defined.xres_virtual = efifb_defined.xres;
|
|
efifb_defined.yres_virtual = efifb_fix.smem_len /
|
|
efifb_fix.line_length;
|
|
pr_info("efifb: scrolling: redraw\n");
|
|
efifb_defined.yres_virtual = efifb_defined.yres;
|
|
|
|
/* some dummy values for timing to make fbset happy */
|
|
efifb_defined.pixclock = 10000000 / efifb_defined.xres *
|
|
1000 / efifb_defined.yres;
|
|
efifb_defined.left_margin = (efifb_defined.xres / 8) & 0xf8;
|
|
efifb_defined.hsync_len = (efifb_defined.xres / 8) & 0xf8;
|
|
|
|
efifb_defined.red.offset = screen_info.red_pos;
|
|
efifb_defined.red.length = screen_info.red_size;
|
|
efifb_defined.green.offset = screen_info.green_pos;
|
|
efifb_defined.green.length = screen_info.green_size;
|
|
efifb_defined.blue.offset = screen_info.blue_pos;
|
|
efifb_defined.blue.length = screen_info.blue_size;
|
|
efifb_defined.transp.offset = screen_info.rsvd_pos;
|
|
efifb_defined.transp.length = screen_info.rsvd_size;
|
|
|
|
pr_info("efifb: %s: "
|
|
"size=%d:%d:%d:%d, shift=%d:%d:%d:%d\n",
|
|
"Truecolor",
|
|
screen_info.rsvd_size,
|
|
screen_info.red_size,
|
|
screen_info.green_size,
|
|
screen_info.blue_size,
|
|
screen_info.rsvd_pos,
|
|
screen_info.red_pos,
|
|
screen_info.green_pos,
|
|
screen_info.blue_pos);
|
|
|
|
efifb_fix.ypanstep = 0;
|
|
efifb_fix.ywrapstep = 0;
|
|
|
|
info->fbops = &efifb_ops;
|
|
info->var = efifb_defined;
|
|
info->fix = efifb_fix;
|
|
info->flags = FBINFO_FLAG_DEFAULT | FBINFO_MISC_FIRMWARE;
|
|
|
|
err = sysfs_create_groups(&dev->dev.kobj, efifb_groups);
|
|
if (err) {
|
|
pr_err("efifb: cannot add sysfs attrs\n");
|
|
goto err_unmap;
|
|
}
|
|
err = fb_alloc_cmap(&info->cmap, 256, 0);
|
|
if (err < 0) {
|
|
pr_err("efifb: cannot allocate colormap\n");
|
|
goto err_groups;
|
|
}
|
|
err = register_framebuffer(info);
|
|
if (err < 0) {
|
|
pr_err("efifb: cannot register framebuffer\n");
|
|
goto err_fb_dealoc;
|
|
}
|
|
fb_info(info, "%s frame buffer device\n", info->fix.id);
|
|
return 0;
|
|
|
|
err_fb_dealoc:
|
|
fb_dealloc_cmap(&info->cmap);
|
|
err_groups:
|
|
sysfs_remove_groups(&dev->dev.kobj, efifb_groups);
|
|
err_unmap:
|
|
iounmap(info->screen_base);
|
|
err_release_fb:
|
|
framebuffer_release(info);
|
|
err_release_mem:
|
|
if (request_mem_succeeded)
|
|
release_mem_region(efifb_fix.smem_start, size_total);
|
|
return err;
|
|
}
|
|
|
|
static int efifb_remove(struct platform_device *pdev)
|
|
{
|
|
struct fb_info *info = platform_get_drvdata(pdev);
|
|
|
|
unregister_framebuffer(info);
|
|
sysfs_remove_groups(&pdev->dev.kobj, efifb_groups);
|
|
framebuffer_release(info);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver efifb_driver = {
|
|
.driver = {
|
|
.name = "efi-framebuffer",
|
|
},
|
|
.probe = efifb_probe,
|
|
.remove = efifb_remove,
|
|
};
|
|
|
|
builtin_platform_driver(efifb_driver);
|
|
|
|
#if defined(CONFIG_PCI)
|
|
|
|
static void record_efifb_bar_resource(struct pci_dev *dev, int idx, u64 offset)
|
|
{
|
|
u16 word;
|
|
|
|
efifb_pci_dev = dev;
|
|
|
|
pci_read_config_word(dev, PCI_COMMAND, &word);
|
|
if (!(word & PCI_COMMAND_MEMORY)) {
|
|
pci_dev_disabled = true;
|
|
dev_err(&dev->dev,
|
|
"BAR %d: assigned to efifb but device is disabled!\n",
|
|
idx);
|
|
return;
|
|
}
|
|
|
|
bar_resource = &dev->resource[idx];
|
|
bar_offset = offset;
|
|
|
|
dev_info(&dev->dev, "BAR %d: assigned to efifb\n", idx);
|
|
}
|
|
|
|
static void efifb_fixup_resources(struct pci_dev *dev)
|
|
{
|
|
u64 base = screen_info.lfb_base;
|
|
u64 size = screen_info.lfb_size;
|
|
int i;
|
|
|
|
if (efifb_pci_dev || screen_info.orig_video_isVGA != VIDEO_TYPE_EFI)
|
|
return;
|
|
|
|
if (screen_info.capabilities & VIDEO_CAPABILITY_64BIT_BASE)
|
|
base |= (u64)screen_info.ext_lfb_base << 32;
|
|
|
|
if (!base)
|
|
return;
|
|
|
|
for (i = 0; i <= PCI_STD_RESOURCE_END; i++) {
|
|
struct resource *res = &dev->resource[i];
|
|
|
|
if (!(res->flags & IORESOURCE_MEM))
|
|
continue;
|
|
|
|
if (res->start <= base && res->end >= base + size - 1) {
|
|
record_efifb_bar_resource(dev, i, base - res->start);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
DECLARE_PCI_FIXUP_CLASS_HEADER(PCI_ANY_ID, PCI_ANY_ID, PCI_BASE_CLASS_DISPLAY,
|
|
16, efifb_fixup_resources);
|
|
|
|
#endif
|