mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-29 23:53:55 +08:00
bea99a5007
Signed-off-by: Keith Busch <keith.busch@intel.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
647 lines
16 KiB
C
647 lines
16 KiB
C
/*
|
|
* blk-mq scheduling framework
|
|
*
|
|
* Copyright (C) 2016 Jens Axboe
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/blk-mq.h>
|
|
|
|
#include <trace/events/block.h>
|
|
|
|
#include "blk.h"
|
|
#include "blk-mq.h"
|
|
#include "blk-mq-debugfs.h"
|
|
#include "blk-mq-sched.h"
|
|
#include "blk-mq-tag.h"
|
|
#include "blk-wbt.h"
|
|
|
|
void blk_mq_sched_free_hctx_data(struct request_queue *q,
|
|
void (*exit)(struct blk_mq_hw_ctx *))
|
|
{
|
|
struct blk_mq_hw_ctx *hctx;
|
|
int i;
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
if (exit && hctx->sched_data)
|
|
exit(hctx);
|
|
kfree(hctx->sched_data);
|
|
hctx->sched_data = NULL;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
|
|
|
|
void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
|
|
{
|
|
struct request_queue *q = rq->q;
|
|
struct io_context *ioc = rq_ioc(bio);
|
|
struct io_cq *icq;
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
icq = ioc_lookup_icq(ioc, q);
|
|
spin_unlock_irq(q->queue_lock);
|
|
|
|
if (!icq) {
|
|
icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
|
|
if (!icq)
|
|
return;
|
|
}
|
|
get_io_context(icq->ioc);
|
|
rq->elv.icq = icq;
|
|
}
|
|
|
|
/*
|
|
* Mark a hardware queue as needing a restart. For shared queues, maintain
|
|
* a count of how many hardware queues are marked for restart.
|
|
*/
|
|
static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
|
|
return;
|
|
|
|
if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
|
|
struct request_queue *q = hctx->queue;
|
|
|
|
if (!test_and_set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
|
|
atomic_inc(&q->shared_hctx_restart);
|
|
} else
|
|
set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
|
|
}
|
|
|
|
static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
|
|
return false;
|
|
|
|
if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
|
|
struct request_queue *q = hctx->queue;
|
|
|
|
if (test_and_clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
|
|
atomic_dec(&q->shared_hctx_restart);
|
|
} else
|
|
clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
|
|
|
|
return blk_mq_run_hw_queue(hctx, true);
|
|
}
|
|
|
|
/*
|
|
* Only SCSI implements .get_budget and .put_budget, and SCSI restarts
|
|
* its queue by itself in its completion handler, so we don't need to
|
|
* restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
|
|
*/
|
|
static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct request_queue *q = hctx->queue;
|
|
struct elevator_queue *e = q->elevator;
|
|
LIST_HEAD(rq_list);
|
|
|
|
do {
|
|
struct request *rq;
|
|
|
|
if (e->type->ops.mq.has_work &&
|
|
!e->type->ops.mq.has_work(hctx))
|
|
break;
|
|
|
|
if (!blk_mq_get_dispatch_budget(hctx))
|
|
break;
|
|
|
|
rq = e->type->ops.mq.dispatch_request(hctx);
|
|
if (!rq) {
|
|
blk_mq_put_dispatch_budget(hctx);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Now this rq owns the budget which has to be released
|
|
* if this rq won't be queued to driver via .queue_rq()
|
|
* in blk_mq_dispatch_rq_list().
|
|
*/
|
|
list_add(&rq->queuelist, &rq_list);
|
|
} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
|
|
}
|
|
|
|
static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
|
|
struct blk_mq_ctx *ctx)
|
|
{
|
|
unsigned idx = ctx->index_hw;
|
|
|
|
if (++idx == hctx->nr_ctx)
|
|
idx = 0;
|
|
|
|
return hctx->ctxs[idx];
|
|
}
|
|
|
|
/*
|
|
* Only SCSI implements .get_budget and .put_budget, and SCSI restarts
|
|
* its queue by itself in its completion handler, so we don't need to
|
|
* restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
|
|
*/
|
|
static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct request_queue *q = hctx->queue;
|
|
LIST_HEAD(rq_list);
|
|
struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
|
|
|
|
do {
|
|
struct request *rq;
|
|
|
|
if (!sbitmap_any_bit_set(&hctx->ctx_map))
|
|
break;
|
|
|
|
if (!blk_mq_get_dispatch_budget(hctx))
|
|
break;
|
|
|
|
rq = blk_mq_dequeue_from_ctx(hctx, ctx);
|
|
if (!rq) {
|
|
blk_mq_put_dispatch_budget(hctx);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Now this rq owns the budget which has to be released
|
|
* if this rq won't be queued to driver via .queue_rq()
|
|
* in blk_mq_dispatch_rq_list().
|
|
*/
|
|
list_add(&rq->queuelist, &rq_list);
|
|
|
|
/* round robin for fair dispatch */
|
|
ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
|
|
|
|
} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
|
|
|
|
WRITE_ONCE(hctx->dispatch_from, ctx);
|
|
}
|
|
|
|
void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct request_queue *q = hctx->queue;
|
|
struct elevator_queue *e = q->elevator;
|
|
const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
|
|
LIST_HEAD(rq_list);
|
|
|
|
/* RCU or SRCU read lock is needed before checking quiesced flag */
|
|
if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
|
|
return;
|
|
|
|
hctx->run++;
|
|
|
|
/*
|
|
* If we have previous entries on our dispatch list, grab them first for
|
|
* more fair dispatch.
|
|
*/
|
|
if (!list_empty_careful(&hctx->dispatch)) {
|
|
spin_lock(&hctx->lock);
|
|
if (!list_empty(&hctx->dispatch))
|
|
list_splice_init(&hctx->dispatch, &rq_list);
|
|
spin_unlock(&hctx->lock);
|
|
}
|
|
|
|
/*
|
|
* Only ask the scheduler for requests, if we didn't have residual
|
|
* requests from the dispatch list. This is to avoid the case where
|
|
* we only ever dispatch a fraction of the requests available because
|
|
* of low device queue depth. Once we pull requests out of the IO
|
|
* scheduler, we can no longer merge or sort them. So it's best to
|
|
* leave them there for as long as we can. Mark the hw queue as
|
|
* needing a restart in that case.
|
|
*
|
|
* We want to dispatch from the scheduler if there was nothing
|
|
* on the dispatch list or we were able to dispatch from the
|
|
* dispatch list.
|
|
*/
|
|
if (!list_empty(&rq_list)) {
|
|
blk_mq_sched_mark_restart_hctx(hctx);
|
|
if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
|
|
if (has_sched_dispatch)
|
|
blk_mq_do_dispatch_sched(hctx);
|
|
else
|
|
blk_mq_do_dispatch_ctx(hctx);
|
|
}
|
|
} else if (has_sched_dispatch) {
|
|
blk_mq_do_dispatch_sched(hctx);
|
|
} else if (q->mq_ops->get_budget) {
|
|
/*
|
|
* If we need to get budget before queuing request, we
|
|
* dequeue request one by one from sw queue for avoiding
|
|
* to mess up I/O merge when dispatch runs out of resource.
|
|
*
|
|
* TODO: get more budgets, and dequeue more requests in
|
|
* one time.
|
|
*/
|
|
blk_mq_do_dispatch_ctx(hctx);
|
|
} else {
|
|
blk_mq_flush_busy_ctxs(hctx, &rq_list);
|
|
blk_mq_dispatch_rq_list(q, &rq_list, false);
|
|
}
|
|
}
|
|
|
|
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
|
|
struct request **merged_request)
|
|
{
|
|
struct request *rq;
|
|
|
|
switch (elv_merge(q, &rq, bio)) {
|
|
case ELEVATOR_BACK_MERGE:
|
|
if (!blk_mq_sched_allow_merge(q, rq, bio))
|
|
return false;
|
|
if (!bio_attempt_back_merge(q, rq, bio))
|
|
return false;
|
|
*merged_request = attempt_back_merge(q, rq);
|
|
if (!*merged_request)
|
|
elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
|
|
return true;
|
|
case ELEVATOR_FRONT_MERGE:
|
|
if (!blk_mq_sched_allow_merge(q, rq, bio))
|
|
return false;
|
|
if (!bio_attempt_front_merge(q, rq, bio))
|
|
return false;
|
|
*merged_request = attempt_front_merge(q, rq);
|
|
if (!*merged_request)
|
|
elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
|
|
return true;
|
|
case ELEVATOR_DISCARD_MERGE:
|
|
return bio_attempt_discard_merge(q, rq, bio);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
|
|
|
|
/*
|
|
* Reverse check our software queue for entries that we could potentially
|
|
* merge with. Currently includes a hand-wavy stop count of 8, to not spend
|
|
* too much time checking for merges.
|
|
*/
|
|
static bool blk_mq_attempt_merge(struct request_queue *q,
|
|
struct blk_mq_ctx *ctx, struct bio *bio)
|
|
{
|
|
struct request *rq;
|
|
int checked = 8;
|
|
|
|
lockdep_assert_held(&ctx->lock);
|
|
|
|
list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
|
|
bool merged = false;
|
|
|
|
if (!checked--)
|
|
break;
|
|
|
|
if (!blk_rq_merge_ok(rq, bio))
|
|
continue;
|
|
|
|
switch (blk_try_merge(rq, bio)) {
|
|
case ELEVATOR_BACK_MERGE:
|
|
if (blk_mq_sched_allow_merge(q, rq, bio))
|
|
merged = bio_attempt_back_merge(q, rq, bio);
|
|
break;
|
|
case ELEVATOR_FRONT_MERGE:
|
|
if (blk_mq_sched_allow_merge(q, rq, bio))
|
|
merged = bio_attempt_front_merge(q, rq, bio);
|
|
break;
|
|
case ELEVATOR_DISCARD_MERGE:
|
|
merged = bio_attempt_discard_merge(q, rq, bio);
|
|
break;
|
|
default:
|
|
continue;
|
|
}
|
|
|
|
if (merged)
|
|
ctx->rq_merged++;
|
|
return merged;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
|
|
{
|
|
struct elevator_queue *e = q->elevator;
|
|
struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
|
|
struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
|
|
bool ret = false;
|
|
|
|
if (e && e->type->ops.mq.bio_merge) {
|
|
blk_mq_put_ctx(ctx);
|
|
return e->type->ops.mq.bio_merge(hctx, bio);
|
|
}
|
|
|
|
if (hctx->flags & BLK_MQ_F_SHOULD_MERGE) {
|
|
/* default per sw-queue merge */
|
|
spin_lock(&ctx->lock);
|
|
ret = blk_mq_attempt_merge(q, ctx, bio);
|
|
spin_unlock(&ctx->lock);
|
|
}
|
|
|
|
blk_mq_put_ctx(ctx);
|
|
return ret;
|
|
}
|
|
|
|
bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
|
|
{
|
|
return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
|
|
|
|
void blk_mq_sched_request_inserted(struct request *rq)
|
|
{
|
|
trace_block_rq_insert(rq->q, rq);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
|
|
|
|
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
|
|
bool has_sched,
|
|
struct request *rq)
|
|
{
|
|
/* dispatch flush rq directly */
|
|
if (rq->rq_flags & RQF_FLUSH_SEQ) {
|
|
spin_lock(&hctx->lock);
|
|
list_add(&rq->queuelist, &hctx->dispatch);
|
|
spin_unlock(&hctx->lock);
|
|
return true;
|
|
}
|
|
|
|
if (has_sched)
|
|
rq->rq_flags |= RQF_SORTED;
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list
|
|
* @pos: loop cursor.
|
|
* @skip: the list element that will not be examined. Iteration starts at
|
|
* @skip->next.
|
|
* @head: head of the list to examine. This list must have at least one
|
|
* element, namely @skip.
|
|
* @member: name of the list_head structure within typeof(*pos).
|
|
*/
|
|
#define list_for_each_entry_rcu_rr(pos, skip, head, member) \
|
|
for ((pos) = (skip); \
|
|
(pos = (pos)->member.next != (head) ? list_entry_rcu( \
|
|
(pos)->member.next, typeof(*pos), member) : \
|
|
list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \
|
|
(pos) != (skip); )
|
|
|
|
/*
|
|
* Called after a driver tag has been freed to check whether a hctx needs to
|
|
* be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware
|
|
* queues in a round-robin fashion if the tag set of @hctx is shared with other
|
|
* hardware queues.
|
|
*/
|
|
void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx)
|
|
{
|
|
struct blk_mq_tags *const tags = hctx->tags;
|
|
struct blk_mq_tag_set *const set = hctx->queue->tag_set;
|
|
struct request_queue *const queue = hctx->queue, *q;
|
|
struct blk_mq_hw_ctx *hctx2;
|
|
unsigned int i, j;
|
|
|
|
if (set->flags & BLK_MQ_F_TAG_SHARED) {
|
|
/*
|
|
* If this is 0, then we know that no hardware queues
|
|
* have RESTART marked. We're done.
|
|
*/
|
|
if (!atomic_read(&queue->shared_hctx_restart))
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu_rr(q, queue, &set->tag_list,
|
|
tag_set_list) {
|
|
queue_for_each_hw_ctx(q, hctx2, i)
|
|
if (hctx2->tags == tags &&
|
|
blk_mq_sched_restart_hctx(hctx2))
|
|
goto done;
|
|
}
|
|
j = hctx->queue_num + 1;
|
|
for (i = 0; i < queue->nr_hw_queues; i++, j++) {
|
|
if (j == queue->nr_hw_queues)
|
|
j = 0;
|
|
hctx2 = queue->queue_hw_ctx[j];
|
|
if (hctx2->tags == tags &&
|
|
blk_mq_sched_restart_hctx(hctx2))
|
|
break;
|
|
}
|
|
done:
|
|
rcu_read_unlock();
|
|
} else {
|
|
blk_mq_sched_restart_hctx(hctx);
|
|
}
|
|
}
|
|
|
|
void blk_mq_sched_insert_request(struct request *rq, bool at_head,
|
|
bool run_queue, bool async)
|
|
{
|
|
struct request_queue *q = rq->q;
|
|
struct elevator_queue *e = q->elevator;
|
|
struct blk_mq_ctx *ctx = rq->mq_ctx;
|
|
struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
|
|
|
|
/* flush rq in flush machinery need to be dispatched directly */
|
|
if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
|
|
blk_insert_flush(rq);
|
|
goto run;
|
|
}
|
|
|
|
WARN_ON(e && (rq->tag != -1));
|
|
|
|
if (blk_mq_sched_bypass_insert(hctx, !!e, rq))
|
|
goto run;
|
|
|
|
if (e && e->type->ops.mq.insert_requests) {
|
|
LIST_HEAD(list);
|
|
|
|
list_add(&rq->queuelist, &list);
|
|
e->type->ops.mq.insert_requests(hctx, &list, at_head);
|
|
} else {
|
|
spin_lock(&ctx->lock);
|
|
__blk_mq_insert_request(hctx, rq, at_head);
|
|
spin_unlock(&ctx->lock);
|
|
}
|
|
|
|
run:
|
|
if (run_queue)
|
|
blk_mq_run_hw_queue(hctx, async);
|
|
}
|
|
|
|
void blk_mq_sched_insert_requests(struct request_queue *q,
|
|
struct blk_mq_ctx *ctx,
|
|
struct list_head *list, bool run_queue_async)
|
|
{
|
|
struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
|
|
struct elevator_queue *e = hctx->queue->elevator;
|
|
|
|
if (e && e->type->ops.mq.insert_requests)
|
|
e->type->ops.mq.insert_requests(hctx, list, false);
|
|
else
|
|
blk_mq_insert_requests(hctx, ctx, list);
|
|
|
|
blk_mq_run_hw_queue(hctx, run_queue_async);
|
|
}
|
|
|
|
static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
|
|
struct blk_mq_hw_ctx *hctx,
|
|
unsigned int hctx_idx)
|
|
{
|
|
if (hctx->sched_tags) {
|
|
blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
|
|
blk_mq_free_rq_map(hctx->sched_tags);
|
|
hctx->sched_tags = NULL;
|
|
}
|
|
}
|
|
|
|
static int blk_mq_sched_alloc_tags(struct request_queue *q,
|
|
struct blk_mq_hw_ctx *hctx,
|
|
unsigned int hctx_idx)
|
|
{
|
|
struct blk_mq_tag_set *set = q->tag_set;
|
|
int ret;
|
|
|
|
hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
|
|
set->reserved_tags);
|
|
if (!hctx->sched_tags)
|
|
return -ENOMEM;
|
|
|
|
ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
|
|
if (ret)
|
|
blk_mq_sched_free_tags(set, hctx, hctx_idx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void blk_mq_sched_tags_teardown(struct request_queue *q)
|
|
{
|
|
struct blk_mq_tag_set *set = q->tag_set;
|
|
struct blk_mq_hw_ctx *hctx;
|
|
int i;
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i)
|
|
blk_mq_sched_free_tags(set, hctx, i);
|
|
}
|
|
|
|
int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
|
|
unsigned int hctx_idx)
|
|
{
|
|
struct elevator_queue *e = q->elevator;
|
|
int ret;
|
|
|
|
if (!e)
|
|
return 0;
|
|
|
|
ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (e->type->ops.mq.init_hctx) {
|
|
ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
|
|
if (ret) {
|
|
blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
blk_mq_debugfs_register_sched_hctx(q, hctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
|
|
unsigned int hctx_idx)
|
|
{
|
|
struct elevator_queue *e = q->elevator;
|
|
|
|
if (!e)
|
|
return;
|
|
|
|
blk_mq_debugfs_unregister_sched_hctx(hctx);
|
|
|
|
if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
|
|
e->type->ops.mq.exit_hctx(hctx, hctx_idx);
|
|
hctx->sched_data = NULL;
|
|
}
|
|
|
|
blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
|
|
}
|
|
|
|
int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
|
|
{
|
|
struct blk_mq_hw_ctx *hctx;
|
|
struct elevator_queue *eq;
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
if (!e) {
|
|
q->elevator = NULL;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Default to double of smaller one between hw queue_depth and 128,
|
|
* since we don't split into sync/async like the old code did.
|
|
* Additionally, this is a per-hw queue depth.
|
|
*/
|
|
q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
|
|
BLKDEV_MAX_RQ);
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
ret = blk_mq_sched_alloc_tags(q, hctx, i);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
ret = e->ops.mq.init_sched(q, e);
|
|
if (ret)
|
|
goto err;
|
|
|
|
blk_mq_debugfs_register_sched(q);
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
if (e->ops.mq.init_hctx) {
|
|
ret = e->ops.mq.init_hctx(hctx, i);
|
|
if (ret) {
|
|
eq = q->elevator;
|
|
blk_mq_exit_sched(q, eq);
|
|
kobject_put(&eq->kobj);
|
|
return ret;
|
|
}
|
|
}
|
|
blk_mq_debugfs_register_sched_hctx(q, hctx);
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
blk_mq_sched_tags_teardown(q);
|
|
q->elevator = NULL;
|
|
return ret;
|
|
}
|
|
|
|
void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
|
|
{
|
|
struct blk_mq_hw_ctx *hctx;
|
|
unsigned int i;
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
blk_mq_debugfs_unregister_sched_hctx(hctx);
|
|
if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
|
|
e->type->ops.mq.exit_hctx(hctx, i);
|
|
hctx->sched_data = NULL;
|
|
}
|
|
}
|
|
blk_mq_debugfs_unregister_sched(q);
|
|
if (e->type->ops.mq.exit_sched)
|
|
e->type->ops.mq.exit_sched(e);
|
|
blk_mq_sched_tags_teardown(q);
|
|
q->elevator = NULL;
|
|
}
|
|
|
|
int blk_mq_sched_init(struct request_queue *q)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&q->sysfs_lock);
|
|
ret = elevator_init(q, NULL);
|
|
mutex_unlock(&q->sysfs_lock);
|
|
|
|
return ret;
|
|
}
|