2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 20:53:53 +08:00
linux-next/drivers/scsi/arcmsr/arcmsr_hba.c
Tejun Heo 43829731dd workqueue: deprecate flush[_delayed]_work_sync()
flush[_delayed]_work_sync() are now spurious.  Mark them deprecated
and convert all users to flush[_delayed]_work().

If you're cc'd and wondering what's going on: Now all workqueues are
non-reentrant and the regular flushes guarantee that the work item is
not pending or running on any CPU on return, so there's no reason to
use the sync flushes at all and they're going away.

This patch doesn't make any functional difference.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Ian Campbell <ian.campbell@citrix.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Mattia Dongili <malattia@linux.it>
Cc: Kent Yoder <key@linux.vnet.ibm.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Karsten Keil <isdn@linux-pingi.de>
Cc: Bryan Wu <bryan.wu@canonical.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Mauro Carvalho Chehab <mchehab@infradead.org>
Cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: linux-wireless@vger.kernel.org
Cc: Anton Vorontsov <cbou@mail.ru>
Cc: Sangbeom Kim <sbkim73@samsung.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Eric Van Hensbergen <ericvh@gmail.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Petr Vandrovec <petr@vandrovec.name>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Avi Kivity <avi@redhat.com>
2012-08-20 14:51:24 -07:00

3128 lines
98 KiB
C

/*
*******************************************************************************
** O.S : Linux
** FILE NAME : arcmsr_hba.c
** BY : Nick Cheng
** Description: SCSI RAID Device Driver for
** ARECA RAID Host adapter
*******************************************************************************
** Copyright (C) 2002 - 2005, Areca Technology Corporation All rights reserved
**
** Web site: www.areca.com.tw
** E-mail: support@areca.com.tw
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License version 2 as
** published by the Free Software Foundation.
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
*******************************************************************************
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES(INCLUDING,BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION)HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE)ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
** For history of changes, see Documentation/scsi/ChangeLog.arcmsr
** Firmware Specification, see Documentation/scsi/arcmsr_spec.txt
*******************************************************************************
*/
#include <linux/module.h>
#include <linux/reboot.h>
#include <linux/spinlock.h>
#include <linux/pci_ids.h>
#include <linux/interrupt.h>
#include <linux/moduleparam.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/aer.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_transport.h>
#include <scsi/scsicam.h>
#include "arcmsr.h"
MODULE_AUTHOR("Nick Cheng <support@areca.com.tw>");
MODULE_DESCRIPTION("ARECA (ARC11xx/12xx/16xx/1880) SATA/SAS RAID Host Bus Adapter");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(ARCMSR_DRIVER_VERSION);
#define ARCMSR_SLEEPTIME 10
#define ARCMSR_RETRYCOUNT 12
wait_queue_head_t wait_q;
static int arcmsr_iop_message_xfer(struct AdapterControlBlock *acb,
struct scsi_cmnd *cmd);
static int arcmsr_iop_confirm(struct AdapterControlBlock *acb);
static int arcmsr_abort(struct scsi_cmnd *);
static int arcmsr_bus_reset(struct scsi_cmnd *);
static int arcmsr_bios_param(struct scsi_device *sdev,
struct block_device *bdev, sector_t capacity, int *info);
static int arcmsr_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
static int arcmsr_probe(struct pci_dev *pdev,
const struct pci_device_id *id);
static void arcmsr_remove(struct pci_dev *pdev);
static void arcmsr_shutdown(struct pci_dev *pdev);
static void arcmsr_iop_init(struct AdapterControlBlock *acb);
static void arcmsr_free_ccb_pool(struct AdapterControlBlock *acb);
static u32 arcmsr_disable_outbound_ints(struct AdapterControlBlock *acb);
static void arcmsr_stop_adapter_bgrb(struct AdapterControlBlock *acb);
static void arcmsr_flush_hba_cache(struct AdapterControlBlock *acb);
static void arcmsr_flush_hbb_cache(struct AdapterControlBlock *acb);
static void arcmsr_request_device_map(unsigned long pacb);
static void arcmsr_request_hba_device_map(struct AdapterControlBlock *acb);
static void arcmsr_request_hbb_device_map(struct AdapterControlBlock *acb);
static void arcmsr_request_hbc_device_map(struct AdapterControlBlock *acb);
static void arcmsr_message_isr_bh_fn(struct work_struct *work);
static bool arcmsr_get_firmware_spec(struct AdapterControlBlock *acb);
static void arcmsr_start_adapter_bgrb(struct AdapterControlBlock *acb);
static void arcmsr_hbc_message_isr(struct AdapterControlBlock *pACB);
static void arcmsr_hardware_reset(struct AdapterControlBlock *acb);
static const char *arcmsr_info(struct Scsi_Host *);
static irqreturn_t arcmsr_interrupt(struct AdapterControlBlock *acb);
static int arcmsr_adjust_disk_queue_depth(struct scsi_device *sdev,
int queue_depth, int reason)
{
if (reason != SCSI_QDEPTH_DEFAULT)
return -EOPNOTSUPP;
if (queue_depth > ARCMSR_MAX_CMD_PERLUN)
queue_depth = ARCMSR_MAX_CMD_PERLUN;
scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, queue_depth);
return queue_depth;
}
static struct scsi_host_template arcmsr_scsi_host_template = {
.module = THIS_MODULE,
.name = "ARCMSR ARECA SATA/SAS RAID Controller"
ARCMSR_DRIVER_VERSION,
.info = arcmsr_info,
.queuecommand = arcmsr_queue_command,
.eh_abort_handler = arcmsr_abort,
.eh_bus_reset_handler = arcmsr_bus_reset,
.bios_param = arcmsr_bios_param,
.change_queue_depth = arcmsr_adjust_disk_queue_depth,
.can_queue = ARCMSR_MAX_FREECCB_NUM,
.this_id = ARCMSR_SCSI_INITIATOR_ID,
.sg_tablesize = ARCMSR_DEFAULT_SG_ENTRIES,
.max_sectors = ARCMSR_MAX_XFER_SECTORS_C,
.cmd_per_lun = ARCMSR_MAX_CMD_PERLUN,
.use_clustering = ENABLE_CLUSTERING,
.shost_attrs = arcmsr_host_attrs,
};
static struct pci_device_id arcmsr_device_id_table[] = {
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1110)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1120)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1130)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1160)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1170)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1200)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1201)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1202)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1210)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1220)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1230)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1260)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1270)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1280)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1380)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1381)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1680)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1681)},
{PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1880)},
{0, 0}, /* Terminating entry */
};
MODULE_DEVICE_TABLE(pci, arcmsr_device_id_table);
static struct pci_driver arcmsr_pci_driver = {
.name = "arcmsr",
.id_table = arcmsr_device_id_table,
.probe = arcmsr_probe,
.remove = arcmsr_remove,
.shutdown = arcmsr_shutdown,
};
/*
****************************************************************************
****************************************************************************
*/
static void arcmsr_free_hbb_mu(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
case ACB_ADAPTER_TYPE_C:
break;
case ACB_ADAPTER_TYPE_B:{
dma_free_coherent(&acb->pdev->dev,
sizeof(struct MessageUnit_B),
acb->pmuB, acb->dma_coherent_handle_hbb_mu);
}
}
}
static bool arcmsr_remap_pciregion(struct AdapterControlBlock *acb)
{
struct pci_dev *pdev = acb->pdev;
switch (acb->adapter_type){
case ACB_ADAPTER_TYPE_A:{
acb->pmuA = ioremap(pci_resource_start(pdev,0), pci_resource_len(pdev,0));
if (!acb->pmuA) {
printk(KERN_NOTICE "arcmsr%d: memory mapping region fail \n", acb->host->host_no);
return false;
}
break;
}
case ACB_ADAPTER_TYPE_B:{
void __iomem *mem_base0, *mem_base1;
mem_base0 = ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
if (!mem_base0) {
printk(KERN_NOTICE "arcmsr%d: memory mapping region fail \n", acb->host->host_no);
return false;
}
mem_base1 = ioremap(pci_resource_start(pdev, 2), pci_resource_len(pdev, 2));
if (!mem_base1) {
iounmap(mem_base0);
printk(KERN_NOTICE "arcmsr%d: memory mapping region fail \n", acb->host->host_no);
return false;
}
acb->mem_base0 = mem_base0;
acb->mem_base1 = mem_base1;
break;
}
case ACB_ADAPTER_TYPE_C:{
acb->pmuC = ioremap_nocache(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1));
if (!acb->pmuC) {
printk(KERN_NOTICE "arcmsr%d: memory mapping region fail \n", acb->host->host_no);
return false;
}
if (readl(&acb->pmuC->outbound_doorbell) & ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE) {
writel(ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE_DOORBELL_CLEAR, &acb->pmuC->outbound_doorbell_clear);/*clear interrupt*/
return true;
}
break;
}
}
return true;
}
static void arcmsr_unmap_pciregion(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:{
iounmap(acb->pmuA);
}
break;
case ACB_ADAPTER_TYPE_B:{
iounmap(acb->mem_base0);
iounmap(acb->mem_base1);
}
break;
case ACB_ADAPTER_TYPE_C:{
iounmap(acb->pmuC);
}
}
}
static irqreturn_t arcmsr_do_interrupt(int irq, void *dev_id)
{
irqreturn_t handle_state;
struct AdapterControlBlock *acb = dev_id;
handle_state = arcmsr_interrupt(acb);
return handle_state;
}
static int arcmsr_bios_param(struct scsi_device *sdev,
struct block_device *bdev, sector_t capacity, int *geom)
{
int ret, heads, sectors, cylinders, total_capacity;
unsigned char *buffer;/* return copy of block device's partition table */
buffer = scsi_bios_ptable(bdev);
if (buffer) {
ret = scsi_partsize(buffer, capacity, &geom[2], &geom[0], &geom[1]);
kfree(buffer);
if (ret != -1)
return ret;
}
total_capacity = capacity;
heads = 64;
sectors = 32;
cylinders = total_capacity / (heads * sectors);
if (cylinders > 1024) {
heads = 255;
sectors = 63;
cylinders = total_capacity / (heads * sectors);
}
geom[0] = heads;
geom[1] = sectors;
geom[2] = cylinders;
return 0;
}
static void arcmsr_define_adapter_type(struct AdapterControlBlock *acb)
{
struct pci_dev *pdev = acb->pdev;
u16 dev_id;
pci_read_config_word(pdev, PCI_DEVICE_ID, &dev_id);
acb->dev_id = dev_id;
switch (dev_id) {
case 0x1880: {
acb->adapter_type = ACB_ADAPTER_TYPE_C;
}
break;
case 0x1201: {
acb->adapter_type = ACB_ADAPTER_TYPE_B;
}
break;
default: acb->adapter_type = ACB_ADAPTER_TYPE_A;
}
}
static uint8_t arcmsr_hba_wait_msgint_ready(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
int i;
for (i = 0; i < 2000; i++) {
if (readl(&reg->outbound_intstatus) &
ARCMSR_MU_OUTBOUND_MESSAGE0_INT) {
writel(ARCMSR_MU_OUTBOUND_MESSAGE0_INT,
&reg->outbound_intstatus);
return true;
}
msleep(10);
} /* max 20 seconds */
return false;
}
static uint8_t arcmsr_hbb_wait_msgint_ready(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
int i;
for (i = 0; i < 2000; i++) {
if (readl(reg->iop2drv_doorbell)
& ARCMSR_IOP2DRV_MESSAGE_CMD_DONE) {
writel(ARCMSR_MESSAGE_INT_CLEAR_PATTERN,
reg->iop2drv_doorbell);
writel(ARCMSR_DRV2IOP_END_OF_INTERRUPT,
reg->drv2iop_doorbell);
return true;
}
msleep(10);
} /* max 20 seconds */
return false;
}
static uint8_t arcmsr_hbc_wait_msgint_ready(struct AdapterControlBlock *pACB)
{
struct MessageUnit_C *phbcmu = (struct MessageUnit_C *)pACB->pmuC;
int i;
for (i = 0; i < 2000; i++) {
if (readl(&phbcmu->outbound_doorbell)
& ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE) {
writel(ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE_DOORBELL_CLEAR,
&phbcmu->outbound_doorbell_clear); /*clear interrupt*/
return true;
}
msleep(10);
} /* max 20 seconds */
return false;
}
static void arcmsr_flush_hba_cache(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
int retry_count = 30;
writel(ARCMSR_INBOUND_MESG0_FLUSH_CACHE, &reg->inbound_msgaddr0);
do {
if (arcmsr_hba_wait_msgint_ready(acb))
break;
else {
retry_count--;
printk(KERN_NOTICE "arcmsr%d: wait 'flush adapter cache' \
timeout, retry count down = %d \n", acb->host->host_no, retry_count);
}
} while (retry_count != 0);
}
static void arcmsr_flush_hbb_cache(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
int retry_count = 30;
writel(ARCMSR_MESSAGE_FLUSH_CACHE, reg->drv2iop_doorbell);
do {
if (arcmsr_hbb_wait_msgint_ready(acb))
break;
else {
retry_count--;
printk(KERN_NOTICE "arcmsr%d: wait 'flush adapter cache' \
timeout,retry count down = %d \n", acb->host->host_no, retry_count);
}
} while (retry_count != 0);
}
static void arcmsr_flush_hbc_cache(struct AdapterControlBlock *pACB)
{
struct MessageUnit_C *reg = (struct MessageUnit_C *)pACB->pmuC;
int retry_count = 30;/* enlarge wait flush adapter cache time: 10 minute */
writel(ARCMSR_INBOUND_MESG0_FLUSH_CACHE, &reg->inbound_msgaddr0);
writel(ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE, &reg->inbound_doorbell);
do {
if (arcmsr_hbc_wait_msgint_ready(pACB)) {
break;
} else {
retry_count--;
printk(KERN_NOTICE "arcmsr%d: wait 'flush adapter cache' \
timeout,retry count down = %d \n", pACB->host->host_no, retry_count);
}
} while (retry_count != 0);
return;
}
static void arcmsr_flush_adapter_cache(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
arcmsr_flush_hba_cache(acb);
}
break;
case ACB_ADAPTER_TYPE_B: {
arcmsr_flush_hbb_cache(acb);
}
break;
case ACB_ADAPTER_TYPE_C: {
arcmsr_flush_hbc_cache(acb);
}
}
}
static int arcmsr_alloc_ccb_pool(struct AdapterControlBlock *acb)
{
struct pci_dev *pdev = acb->pdev;
void *dma_coherent;
dma_addr_t dma_coherent_handle;
struct CommandControlBlock *ccb_tmp;
int i = 0, j = 0;
dma_addr_t cdb_phyaddr;
unsigned long roundup_ccbsize;
unsigned long max_xfer_len;
unsigned long max_sg_entrys;
uint32_t firm_config_version;
for (i = 0; i < ARCMSR_MAX_TARGETID; i++)
for (j = 0; j < ARCMSR_MAX_TARGETLUN; j++)
acb->devstate[i][j] = ARECA_RAID_GONE;
max_xfer_len = ARCMSR_MAX_XFER_LEN;
max_sg_entrys = ARCMSR_DEFAULT_SG_ENTRIES;
firm_config_version = acb->firm_cfg_version;
if((firm_config_version & 0xFF) >= 3){
max_xfer_len = (ARCMSR_CDB_SG_PAGE_LENGTH << ((firm_config_version >> 8) & 0xFF)) * 1024;/* max 4M byte */
max_sg_entrys = (max_xfer_len/4096);
}
acb->host->max_sectors = max_xfer_len/512;
acb->host->sg_tablesize = max_sg_entrys;
roundup_ccbsize = roundup(sizeof(struct CommandControlBlock) + (max_sg_entrys - 1) * sizeof(struct SG64ENTRY), 32);
acb->uncache_size = roundup_ccbsize * ARCMSR_MAX_FREECCB_NUM;
dma_coherent = dma_alloc_coherent(&pdev->dev, acb->uncache_size, &dma_coherent_handle, GFP_KERNEL);
if(!dma_coherent){
printk(KERN_NOTICE "arcmsr%d: dma_alloc_coherent got error\n", acb->host->host_no);
return -ENOMEM;
}
acb->dma_coherent = dma_coherent;
acb->dma_coherent_handle = dma_coherent_handle;
memset(dma_coherent, 0, acb->uncache_size);
ccb_tmp = dma_coherent;
acb->vir2phy_offset = (unsigned long)dma_coherent - (unsigned long)dma_coherent_handle;
for(i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++){
cdb_phyaddr = dma_coherent_handle + offsetof(struct CommandControlBlock, arcmsr_cdb);
ccb_tmp->cdb_phyaddr_pattern = ((acb->adapter_type == ACB_ADAPTER_TYPE_C) ? cdb_phyaddr : (cdb_phyaddr >> 5));
acb->pccb_pool[i] = ccb_tmp;
ccb_tmp->acb = acb;
INIT_LIST_HEAD(&ccb_tmp->list);
list_add_tail(&ccb_tmp->list, &acb->ccb_free_list);
ccb_tmp = (struct CommandControlBlock *)((unsigned long)ccb_tmp + roundup_ccbsize);
dma_coherent_handle = dma_coherent_handle + roundup_ccbsize;
}
return 0;
}
static void arcmsr_message_isr_bh_fn(struct work_struct *work)
{
struct AdapterControlBlock *acb = container_of(work,struct AdapterControlBlock, arcmsr_do_message_isr_bh);
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
char *acb_dev_map = (char *)acb->device_map;
uint32_t __iomem *signature = (uint32_t __iomem*) (&reg->message_rwbuffer[0]);
char __iomem *devicemap = (char __iomem*) (&reg->message_rwbuffer[21]);
int target, lun;
struct scsi_device *psdev;
char diff;
atomic_inc(&acb->rq_map_token);
if (readl(signature) == ARCMSR_SIGNATURE_GET_CONFIG) {
for(target = 0; target < ARCMSR_MAX_TARGETID -1; target++) {
diff = (*acb_dev_map)^readb(devicemap);
if (diff != 0) {
char temp;
*acb_dev_map = readb(devicemap);
temp =*acb_dev_map;
for(lun = 0; lun < ARCMSR_MAX_TARGETLUN; lun++) {
if((temp & 0x01)==1 && (diff & 0x01) == 1) {
scsi_add_device(acb->host, 0, target, lun);
}else if((temp & 0x01) == 0 && (diff & 0x01) == 1) {
psdev = scsi_device_lookup(acb->host, 0, target, lun);
if (psdev != NULL ) {
scsi_remove_device(psdev);
scsi_device_put(psdev);
}
}
temp >>= 1;
diff >>= 1;
}
}
devicemap++;
acb_dev_map++;
}
}
break;
}
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
char *acb_dev_map = (char *)acb->device_map;
uint32_t __iomem *signature = (uint32_t __iomem*)(&reg->message_rwbuffer[0]);
char __iomem *devicemap = (char __iomem*)(&reg->message_rwbuffer[21]);
int target, lun;
struct scsi_device *psdev;
char diff;
atomic_inc(&acb->rq_map_token);
if (readl(signature) == ARCMSR_SIGNATURE_GET_CONFIG) {
for(target = 0; target < ARCMSR_MAX_TARGETID -1; target++) {
diff = (*acb_dev_map)^readb(devicemap);
if (diff != 0) {
char temp;
*acb_dev_map = readb(devicemap);
temp =*acb_dev_map;
for(lun = 0; lun < ARCMSR_MAX_TARGETLUN; lun++) {
if((temp & 0x01)==1 && (diff & 0x01) == 1) {
scsi_add_device(acb->host, 0, target, lun);
}else if((temp & 0x01) == 0 && (diff & 0x01) == 1) {
psdev = scsi_device_lookup(acb->host, 0, target, lun);
if (psdev != NULL ) {
scsi_remove_device(psdev);
scsi_device_put(psdev);
}
}
temp >>= 1;
diff >>= 1;
}
}
devicemap++;
acb_dev_map++;
}
}
}
break;
case ACB_ADAPTER_TYPE_C: {
struct MessageUnit_C *reg = acb->pmuC;
char *acb_dev_map = (char *)acb->device_map;
uint32_t __iomem *signature = (uint32_t __iomem *)(&reg->msgcode_rwbuffer[0]);
char __iomem *devicemap = (char __iomem *)(&reg->msgcode_rwbuffer[21]);
int target, lun;
struct scsi_device *psdev;
char diff;
atomic_inc(&acb->rq_map_token);
if (readl(signature) == ARCMSR_SIGNATURE_GET_CONFIG) {
for (target = 0; target < ARCMSR_MAX_TARGETID - 1; target++) {
diff = (*acb_dev_map)^readb(devicemap);
if (diff != 0) {
char temp;
*acb_dev_map = readb(devicemap);
temp = *acb_dev_map;
for (lun = 0; lun < ARCMSR_MAX_TARGETLUN; lun++) {
if ((temp & 0x01) == 1 && (diff & 0x01) == 1) {
scsi_add_device(acb->host, 0, target, lun);
} else if ((temp & 0x01) == 0 && (diff & 0x01) == 1) {
psdev = scsi_device_lookup(acb->host, 0, target, lun);
if (psdev != NULL) {
scsi_remove_device(psdev);
scsi_device_put(psdev);
}
}
temp >>= 1;
diff >>= 1;
}
}
devicemap++;
acb_dev_map++;
}
}
}
}
}
static int arcmsr_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct Scsi_Host *host;
struct AdapterControlBlock *acb;
uint8_t bus,dev_fun;
int error;
error = pci_enable_device(pdev);
if(error){
return -ENODEV;
}
host = scsi_host_alloc(&arcmsr_scsi_host_template, sizeof(struct AdapterControlBlock));
if(!host){
goto pci_disable_dev;
}
error = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
if(error){
error = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if(error){
printk(KERN_WARNING
"scsi%d: No suitable DMA mask available\n",
host->host_no);
goto scsi_host_release;
}
}
init_waitqueue_head(&wait_q);
bus = pdev->bus->number;
dev_fun = pdev->devfn;
acb = (struct AdapterControlBlock *) host->hostdata;
memset(acb,0,sizeof(struct AdapterControlBlock));
acb->pdev = pdev;
acb->host = host;
host->max_lun = ARCMSR_MAX_TARGETLUN;
host->max_id = ARCMSR_MAX_TARGETID; /*16:8*/
host->max_cmd_len = 16; /*this is issue of 64bit LBA ,over 2T byte*/
host->can_queue = ARCMSR_MAX_FREECCB_NUM; /* max simultaneous cmds */
host->cmd_per_lun = ARCMSR_MAX_CMD_PERLUN;
host->this_id = ARCMSR_SCSI_INITIATOR_ID;
host->unique_id = (bus << 8) | dev_fun;
pci_set_drvdata(pdev, host);
pci_set_master(pdev);
error = pci_request_regions(pdev, "arcmsr");
if(error){
goto scsi_host_release;
}
spin_lock_init(&acb->eh_lock);
spin_lock_init(&acb->ccblist_lock);
acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED |
ACB_F_MESSAGE_RQBUFFER_CLEARED |
ACB_F_MESSAGE_WQBUFFER_READED);
acb->acb_flags &= ~ACB_F_SCSISTOPADAPTER;
INIT_LIST_HEAD(&acb->ccb_free_list);
arcmsr_define_adapter_type(acb);
error = arcmsr_remap_pciregion(acb);
if(!error){
goto pci_release_regs;
}
error = arcmsr_get_firmware_spec(acb);
if(!error){
goto unmap_pci_region;
}
error = arcmsr_alloc_ccb_pool(acb);
if(error){
goto free_hbb_mu;
}
arcmsr_iop_init(acb);
error = scsi_add_host(host, &pdev->dev);
if(error){
goto RAID_controller_stop;
}
error = request_irq(pdev->irq, arcmsr_do_interrupt, IRQF_SHARED, "arcmsr", acb);
if(error){
goto scsi_host_remove;
}
host->irq = pdev->irq;
scsi_scan_host(host);
INIT_WORK(&acb->arcmsr_do_message_isr_bh, arcmsr_message_isr_bh_fn);
atomic_set(&acb->rq_map_token, 16);
atomic_set(&acb->ante_token_value, 16);
acb->fw_flag = FW_NORMAL;
init_timer(&acb->eternal_timer);
acb->eternal_timer.expires = jiffies + msecs_to_jiffies(6 * HZ);
acb->eternal_timer.data = (unsigned long) acb;
acb->eternal_timer.function = &arcmsr_request_device_map;
add_timer(&acb->eternal_timer);
if(arcmsr_alloc_sysfs_attr(acb))
goto out_free_sysfs;
return 0;
out_free_sysfs:
scsi_host_remove:
scsi_remove_host(host);
RAID_controller_stop:
arcmsr_stop_adapter_bgrb(acb);
arcmsr_flush_adapter_cache(acb);
arcmsr_free_ccb_pool(acb);
free_hbb_mu:
arcmsr_free_hbb_mu(acb);
unmap_pci_region:
arcmsr_unmap_pciregion(acb);
pci_release_regs:
pci_release_regions(pdev);
scsi_host_release:
scsi_host_put(host);
pci_disable_dev:
pci_disable_device(pdev);
return -ENODEV;
}
static uint8_t arcmsr_abort_hba_allcmd(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
writel(ARCMSR_INBOUND_MESG0_ABORT_CMD, &reg->inbound_msgaddr0);
if (!arcmsr_hba_wait_msgint_ready(acb)) {
printk(KERN_NOTICE
"arcmsr%d: wait 'abort all outstanding command' timeout \n"
, acb->host->host_no);
return false;
}
return true;
}
static uint8_t arcmsr_abort_hbb_allcmd(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
writel(ARCMSR_MESSAGE_ABORT_CMD, reg->drv2iop_doorbell);
if (!arcmsr_hbb_wait_msgint_ready(acb)) {
printk(KERN_NOTICE
"arcmsr%d: wait 'abort all outstanding command' timeout \n"
, acb->host->host_no);
return false;
}
return true;
}
static uint8_t arcmsr_abort_hbc_allcmd(struct AdapterControlBlock *pACB)
{
struct MessageUnit_C *reg = (struct MessageUnit_C *)pACB->pmuC;
writel(ARCMSR_INBOUND_MESG0_ABORT_CMD, &reg->inbound_msgaddr0);
writel(ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE, &reg->inbound_doorbell);
if (!arcmsr_hbc_wait_msgint_ready(pACB)) {
printk(KERN_NOTICE
"arcmsr%d: wait 'abort all outstanding command' timeout \n"
, pACB->host->host_no);
return false;
}
return true;
}
static uint8_t arcmsr_abort_allcmd(struct AdapterControlBlock *acb)
{
uint8_t rtnval = 0;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
rtnval = arcmsr_abort_hba_allcmd(acb);
}
break;
case ACB_ADAPTER_TYPE_B: {
rtnval = arcmsr_abort_hbb_allcmd(acb);
}
break;
case ACB_ADAPTER_TYPE_C: {
rtnval = arcmsr_abort_hbc_allcmd(acb);
}
}
return rtnval;
}
static bool arcmsr_hbb_enable_driver_mode(struct AdapterControlBlock *pacb)
{
struct MessageUnit_B *reg = pacb->pmuB;
writel(ARCMSR_MESSAGE_START_DRIVER_MODE, reg->drv2iop_doorbell);
if (!arcmsr_hbb_wait_msgint_ready(pacb)) {
printk(KERN_ERR "arcmsr%d: can't set driver mode. \n", pacb->host->host_no);
return false;
}
return true;
}
static void arcmsr_pci_unmap_dma(struct CommandControlBlock *ccb)
{
struct scsi_cmnd *pcmd = ccb->pcmd;
scsi_dma_unmap(pcmd);
}
static void arcmsr_ccb_complete(struct CommandControlBlock *ccb)
{
struct AdapterControlBlock *acb = ccb->acb;
struct scsi_cmnd *pcmd = ccb->pcmd;
unsigned long flags;
atomic_dec(&acb->ccboutstandingcount);
arcmsr_pci_unmap_dma(ccb);
ccb->startdone = ARCMSR_CCB_DONE;
spin_lock_irqsave(&acb->ccblist_lock, flags);
list_add_tail(&ccb->list, &acb->ccb_free_list);
spin_unlock_irqrestore(&acb->ccblist_lock, flags);
pcmd->scsi_done(pcmd);
}
static void arcmsr_report_sense_info(struct CommandControlBlock *ccb)
{
struct scsi_cmnd *pcmd = ccb->pcmd;
struct SENSE_DATA *sensebuffer = (struct SENSE_DATA *)pcmd->sense_buffer;
pcmd->result = DID_OK << 16;
if (sensebuffer) {
int sense_data_length =
sizeof(struct SENSE_DATA) < SCSI_SENSE_BUFFERSIZE
? sizeof(struct SENSE_DATA) : SCSI_SENSE_BUFFERSIZE;
memset(sensebuffer, 0, SCSI_SENSE_BUFFERSIZE);
memcpy(sensebuffer, ccb->arcmsr_cdb.SenseData, sense_data_length);
sensebuffer->ErrorCode = SCSI_SENSE_CURRENT_ERRORS;
sensebuffer->Valid = 1;
}
}
static u32 arcmsr_disable_outbound_ints(struct AdapterControlBlock *acb)
{
u32 orig_mask = 0;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A : {
struct MessageUnit_A __iomem *reg = acb->pmuA;
orig_mask = readl(&reg->outbound_intmask);
writel(orig_mask|ARCMSR_MU_OUTBOUND_ALL_INTMASKENABLE, \
&reg->outbound_intmask);
}
break;
case ACB_ADAPTER_TYPE_B : {
struct MessageUnit_B *reg = acb->pmuB;
orig_mask = readl(reg->iop2drv_doorbell_mask);
writel(0, reg->iop2drv_doorbell_mask);
}
break;
case ACB_ADAPTER_TYPE_C:{
struct MessageUnit_C *reg = (struct MessageUnit_C *)acb->pmuC;
/* disable all outbound interrupt */
orig_mask = readl(&reg->host_int_mask); /* disable outbound message0 int */
writel(orig_mask|ARCMSR_HBCMU_ALL_INTMASKENABLE, &reg->host_int_mask);
}
break;
}
return orig_mask;
}
static void arcmsr_report_ccb_state(struct AdapterControlBlock *acb,
struct CommandControlBlock *ccb, bool error)
{
uint8_t id, lun;
id = ccb->pcmd->device->id;
lun = ccb->pcmd->device->lun;
if (!error) {
if (acb->devstate[id][lun] == ARECA_RAID_GONE)
acb->devstate[id][lun] = ARECA_RAID_GOOD;
ccb->pcmd->result = DID_OK << 16;
arcmsr_ccb_complete(ccb);
}else{
switch (ccb->arcmsr_cdb.DeviceStatus) {
case ARCMSR_DEV_SELECT_TIMEOUT: {
acb->devstate[id][lun] = ARECA_RAID_GONE;
ccb->pcmd->result = DID_NO_CONNECT << 16;
arcmsr_ccb_complete(ccb);
}
break;
case ARCMSR_DEV_ABORTED:
case ARCMSR_DEV_INIT_FAIL: {
acb->devstate[id][lun] = ARECA_RAID_GONE;
ccb->pcmd->result = DID_BAD_TARGET << 16;
arcmsr_ccb_complete(ccb);
}
break;
case ARCMSR_DEV_CHECK_CONDITION: {
acb->devstate[id][lun] = ARECA_RAID_GOOD;
arcmsr_report_sense_info(ccb);
arcmsr_ccb_complete(ccb);
}
break;
default:
printk(KERN_NOTICE
"arcmsr%d: scsi id = %d lun = %d isr get command error done, \
but got unknown DeviceStatus = 0x%x \n"
, acb->host->host_no
, id
, lun
, ccb->arcmsr_cdb.DeviceStatus);
acb->devstate[id][lun] = ARECA_RAID_GONE;
ccb->pcmd->result = DID_NO_CONNECT << 16;
arcmsr_ccb_complete(ccb);
break;
}
}
}
static void arcmsr_drain_donequeue(struct AdapterControlBlock *acb, struct CommandControlBlock *pCCB, bool error)
{
int id, lun;
if ((pCCB->acb != acb) || (pCCB->startdone != ARCMSR_CCB_START)) {
if (pCCB->startdone == ARCMSR_CCB_ABORTED) {
struct scsi_cmnd *abortcmd = pCCB->pcmd;
if (abortcmd) {
id = abortcmd->device->id;
lun = abortcmd->device->lun;
abortcmd->result |= DID_ABORT << 16;
arcmsr_ccb_complete(pCCB);
printk(KERN_NOTICE "arcmsr%d: pCCB ='0x%p' isr got aborted command \n",
acb->host->host_no, pCCB);
}
return;
}
printk(KERN_NOTICE "arcmsr%d: isr get an illegal ccb command \
done acb = '0x%p'"
"ccb = '0x%p' ccbacb = '0x%p' startdone = 0x%x"
" ccboutstandingcount = %d \n"
, acb->host->host_no
, acb
, pCCB
, pCCB->acb
, pCCB->startdone
, atomic_read(&acb->ccboutstandingcount));
return;
}
arcmsr_report_ccb_state(acb, pCCB, error);
}
static void arcmsr_done4abort_postqueue(struct AdapterControlBlock *acb)
{
int i = 0;
uint32_t flag_ccb;
struct ARCMSR_CDB *pARCMSR_CDB;
bool error;
struct CommandControlBlock *pCCB;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
uint32_t outbound_intstatus;
outbound_intstatus = readl(&reg->outbound_intstatus) &
acb->outbound_int_enable;
/*clear and abort all outbound posted Q*/
writel(outbound_intstatus, &reg->outbound_intstatus);/*clear interrupt*/
while(((flag_ccb = readl(&reg->outbound_queueport)) != 0xFFFFFFFF)
&& (i++ < ARCMSR_MAX_OUTSTANDING_CMD)) {
pARCMSR_CDB = (struct ARCMSR_CDB *)(acb->vir2phy_offset + (flag_ccb << 5));/*frame must be 32 bytes aligned*/
pCCB = container_of(pARCMSR_CDB, struct CommandControlBlock, arcmsr_cdb);
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? true : false;
arcmsr_drain_donequeue(acb, pCCB, error);
}
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
/*clear all outbound posted Q*/
writel(ARCMSR_DOORBELL_INT_CLEAR_PATTERN, reg->iop2drv_doorbell); /* clear doorbell interrupt */
for (i = 0; i < ARCMSR_MAX_HBB_POSTQUEUE; i++) {
if ((flag_ccb = readl(&reg->done_qbuffer[i])) != 0) {
writel(0, &reg->done_qbuffer[i]);
pARCMSR_CDB = (struct ARCMSR_CDB *)(acb->vir2phy_offset+(flag_ccb << 5));/*frame must be 32 bytes aligned*/
pCCB = container_of(pARCMSR_CDB, struct CommandControlBlock, arcmsr_cdb);
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? true : false;
arcmsr_drain_donequeue(acb, pCCB, error);
}
reg->post_qbuffer[i] = 0;
}
reg->doneq_index = 0;
reg->postq_index = 0;
}
break;
case ACB_ADAPTER_TYPE_C: {
struct MessageUnit_C *reg = acb->pmuC;
struct ARCMSR_CDB *pARCMSR_CDB;
uint32_t flag_ccb, ccb_cdb_phy;
bool error;
struct CommandControlBlock *pCCB;
while ((readl(&reg->host_int_status) & ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR) && (i++ < ARCMSR_MAX_OUTSTANDING_CMD)) {
/*need to do*/
flag_ccb = readl(&reg->outbound_queueport_low);
ccb_cdb_phy = (flag_ccb & 0xFFFFFFF0);
pARCMSR_CDB = (struct ARCMSR_CDB *)(acb->vir2phy_offset+ccb_cdb_phy);/*frame must be 32 bytes aligned*/
pCCB = container_of(pARCMSR_CDB, struct CommandControlBlock, arcmsr_cdb);
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE1) ? true : false;
arcmsr_drain_donequeue(acb, pCCB, error);
}
}
}
}
static void arcmsr_remove(struct pci_dev *pdev)
{
struct Scsi_Host *host = pci_get_drvdata(pdev);
struct AdapterControlBlock *acb =
(struct AdapterControlBlock *) host->hostdata;
int poll_count = 0;
arcmsr_free_sysfs_attr(acb);
scsi_remove_host(host);
flush_work(&acb->arcmsr_do_message_isr_bh);
del_timer_sync(&acb->eternal_timer);
arcmsr_disable_outbound_ints(acb);
arcmsr_stop_adapter_bgrb(acb);
arcmsr_flush_adapter_cache(acb);
acb->acb_flags |= ACB_F_SCSISTOPADAPTER;
acb->acb_flags &= ~ACB_F_IOP_INITED;
for (poll_count = 0; poll_count < ARCMSR_MAX_OUTSTANDING_CMD; poll_count++){
if (!atomic_read(&acb->ccboutstandingcount))
break;
arcmsr_interrupt(acb);/* FIXME: need spinlock */
msleep(25);
}
if (atomic_read(&acb->ccboutstandingcount)) {
int i;
arcmsr_abort_allcmd(acb);
arcmsr_done4abort_postqueue(acb);
for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) {
struct CommandControlBlock *ccb = acb->pccb_pool[i];
if (ccb->startdone == ARCMSR_CCB_START) {
ccb->startdone = ARCMSR_CCB_ABORTED;
ccb->pcmd->result = DID_ABORT << 16;
arcmsr_ccb_complete(ccb);
}
}
}
free_irq(pdev->irq, acb);
arcmsr_free_ccb_pool(acb);
arcmsr_free_hbb_mu(acb);
arcmsr_unmap_pciregion(acb);
pci_release_regions(pdev);
scsi_host_put(host);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
static void arcmsr_shutdown(struct pci_dev *pdev)
{
struct Scsi_Host *host = pci_get_drvdata(pdev);
struct AdapterControlBlock *acb =
(struct AdapterControlBlock *)host->hostdata;
del_timer_sync(&acb->eternal_timer);
arcmsr_disable_outbound_ints(acb);
flush_work(&acb->arcmsr_do_message_isr_bh);
arcmsr_stop_adapter_bgrb(acb);
arcmsr_flush_adapter_cache(acb);
}
static int arcmsr_module_init(void)
{
int error = 0;
error = pci_register_driver(&arcmsr_pci_driver);
return error;
}
static void arcmsr_module_exit(void)
{
pci_unregister_driver(&arcmsr_pci_driver);
}
module_init(arcmsr_module_init);
module_exit(arcmsr_module_exit);
static void arcmsr_enable_outbound_ints(struct AdapterControlBlock *acb,
u32 intmask_org)
{
u32 mask;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
mask = intmask_org & ~(ARCMSR_MU_OUTBOUND_POSTQUEUE_INTMASKENABLE |
ARCMSR_MU_OUTBOUND_DOORBELL_INTMASKENABLE|
ARCMSR_MU_OUTBOUND_MESSAGE0_INTMASKENABLE);
writel(mask, &reg->outbound_intmask);
acb->outbound_int_enable = ~(intmask_org & mask) & 0x000000ff;
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
mask = intmask_org | (ARCMSR_IOP2DRV_DATA_WRITE_OK |
ARCMSR_IOP2DRV_DATA_READ_OK |
ARCMSR_IOP2DRV_CDB_DONE |
ARCMSR_IOP2DRV_MESSAGE_CMD_DONE);
writel(mask, reg->iop2drv_doorbell_mask);
acb->outbound_int_enable = (intmask_org | mask) & 0x0000000f;
}
break;
case ACB_ADAPTER_TYPE_C: {
struct MessageUnit_C *reg = acb->pmuC;
mask = ~(ARCMSR_HBCMU_UTILITY_A_ISR_MASK | ARCMSR_HBCMU_OUTBOUND_DOORBELL_ISR_MASK|ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR_MASK);
writel(intmask_org & mask, &reg->host_int_mask);
acb->outbound_int_enable = ~(intmask_org & mask) & 0x0000000f;
}
}
}
static int arcmsr_build_ccb(struct AdapterControlBlock *acb,
struct CommandControlBlock *ccb, struct scsi_cmnd *pcmd)
{
struct ARCMSR_CDB *arcmsr_cdb = (struct ARCMSR_CDB *)&ccb->arcmsr_cdb;
int8_t *psge = (int8_t *)&arcmsr_cdb->u;
__le32 address_lo, address_hi;
int arccdbsize = 0x30;
__le32 length = 0;
int i;
struct scatterlist *sg;
int nseg;
ccb->pcmd = pcmd;
memset(arcmsr_cdb, 0, sizeof(struct ARCMSR_CDB));
arcmsr_cdb->TargetID = pcmd->device->id;
arcmsr_cdb->LUN = pcmd->device->lun;
arcmsr_cdb->Function = 1;
arcmsr_cdb->Context = 0;
memcpy(arcmsr_cdb->Cdb, pcmd->cmnd, pcmd->cmd_len);
nseg = scsi_dma_map(pcmd);
if (unlikely(nseg > acb->host->sg_tablesize || nseg < 0))
return FAILED;
scsi_for_each_sg(pcmd, sg, nseg, i) {
/* Get the physical address of the current data pointer */
length = cpu_to_le32(sg_dma_len(sg));
address_lo = cpu_to_le32(dma_addr_lo32(sg_dma_address(sg)));
address_hi = cpu_to_le32(dma_addr_hi32(sg_dma_address(sg)));
if (address_hi == 0) {
struct SG32ENTRY *pdma_sg = (struct SG32ENTRY *)psge;
pdma_sg->address = address_lo;
pdma_sg->length = length;
psge += sizeof (struct SG32ENTRY);
arccdbsize += sizeof (struct SG32ENTRY);
} else {
struct SG64ENTRY *pdma_sg = (struct SG64ENTRY *)psge;
pdma_sg->addresshigh = address_hi;
pdma_sg->address = address_lo;
pdma_sg->length = length|cpu_to_le32(IS_SG64_ADDR);
psge += sizeof (struct SG64ENTRY);
arccdbsize += sizeof (struct SG64ENTRY);
}
}
arcmsr_cdb->sgcount = (uint8_t)nseg;
arcmsr_cdb->DataLength = scsi_bufflen(pcmd);
arcmsr_cdb->msgPages = arccdbsize/0x100 + (arccdbsize % 0x100 ? 1 : 0);
if ( arccdbsize > 256)
arcmsr_cdb->Flags |= ARCMSR_CDB_FLAG_SGL_BSIZE;
if (pcmd->sc_data_direction == DMA_TO_DEVICE)
arcmsr_cdb->Flags |= ARCMSR_CDB_FLAG_WRITE;
ccb->arc_cdb_size = arccdbsize;
return SUCCESS;
}
static void arcmsr_post_ccb(struct AdapterControlBlock *acb, struct CommandControlBlock *ccb)
{
uint32_t cdb_phyaddr_pattern = ccb->cdb_phyaddr_pattern;
struct ARCMSR_CDB *arcmsr_cdb = (struct ARCMSR_CDB *)&ccb->arcmsr_cdb;
atomic_inc(&acb->ccboutstandingcount);
ccb->startdone = ARCMSR_CCB_START;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
if (arcmsr_cdb->Flags & ARCMSR_CDB_FLAG_SGL_BSIZE)
writel(cdb_phyaddr_pattern | ARCMSR_CCBPOST_FLAG_SGL_BSIZE,
&reg->inbound_queueport);
else {
writel(cdb_phyaddr_pattern, &reg->inbound_queueport);
}
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
uint32_t ending_index, index = reg->postq_index;
ending_index = ((index + 1) % ARCMSR_MAX_HBB_POSTQUEUE);
writel(0, &reg->post_qbuffer[ending_index]);
if (arcmsr_cdb->Flags & ARCMSR_CDB_FLAG_SGL_BSIZE) {
writel(cdb_phyaddr_pattern | ARCMSR_CCBPOST_FLAG_SGL_BSIZE,\
&reg->post_qbuffer[index]);
} else {
writel(cdb_phyaddr_pattern, &reg->post_qbuffer[index]);
}
index++;
index %= ARCMSR_MAX_HBB_POSTQUEUE;/*if last index number set it to 0 */
reg->postq_index = index;
writel(ARCMSR_DRV2IOP_CDB_POSTED, reg->drv2iop_doorbell);
}
break;
case ACB_ADAPTER_TYPE_C: {
struct MessageUnit_C *phbcmu = (struct MessageUnit_C *)acb->pmuC;
uint32_t ccb_post_stamp, arc_cdb_size;
arc_cdb_size = (ccb->arc_cdb_size > 0x300) ? 0x300 : ccb->arc_cdb_size;
ccb_post_stamp = (cdb_phyaddr_pattern | ((arc_cdb_size - 1) >> 6) | 1);
if (acb->cdb_phyaddr_hi32) {
writel(acb->cdb_phyaddr_hi32, &phbcmu->inbound_queueport_high);
writel(ccb_post_stamp, &phbcmu->inbound_queueport_low);
} else {
writel(ccb_post_stamp, &phbcmu->inbound_queueport_low);
}
}
}
}
static void arcmsr_stop_hba_bgrb(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
acb->acb_flags &= ~ACB_F_MSG_START_BGRB;
writel(ARCMSR_INBOUND_MESG0_STOP_BGRB, &reg->inbound_msgaddr0);
if (!arcmsr_hba_wait_msgint_ready(acb)) {
printk(KERN_NOTICE
"arcmsr%d: wait 'stop adapter background rebulid' timeout \n"
, acb->host->host_no);
}
}
static void arcmsr_stop_hbb_bgrb(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
acb->acb_flags &= ~ACB_F_MSG_START_BGRB;
writel(ARCMSR_MESSAGE_STOP_BGRB, reg->drv2iop_doorbell);
if (!arcmsr_hbb_wait_msgint_ready(acb)) {
printk(KERN_NOTICE
"arcmsr%d: wait 'stop adapter background rebulid' timeout \n"
, acb->host->host_no);
}
}
static void arcmsr_stop_hbc_bgrb(struct AdapterControlBlock *pACB)
{
struct MessageUnit_C *reg = (struct MessageUnit_C *)pACB->pmuC;
pACB->acb_flags &= ~ACB_F_MSG_START_BGRB;
writel(ARCMSR_INBOUND_MESG0_STOP_BGRB, &reg->inbound_msgaddr0);
writel(ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE, &reg->inbound_doorbell);
if (!arcmsr_hbc_wait_msgint_ready(pACB)) {
printk(KERN_NOTICE
"arcmsr%d: wait 'stop adapter background rebulid' timeout \n"
, pACB->host->host_no);
}
return;
}
static void arcmsr_stop_adapter_bgrb(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
arcmsr_stop_hba_bgrb(acb);
}
break;
case ACB_ADAPTER_TYPE_B: {
arcmsr_stop_hbb_bgrb(acb);
}
break;
case ACB_ADAPTER_TYPE_C: {
arcmsr_stop_hbc_bgrb(acb);
}
}
}
static void arcmsr_free_ccb_pool(struct AdapterControlBlock *acb)
{
dma_free_coherent(&acb->pdev->dev, acb->uncache_size, acb->dma_coherent, acb->dma_coherent_handle);
}
void arcmsr_iop_message_read(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
writel(ARCMSR_INBOUND_DRIVER_DATA_READ_OK, &reg->inbound_doorbell);
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
writel(ARCMSR_DRV2IOP_DATA_READ_OK, reg->drv2iop_doorbell);
}
break;
case ACB_ADAPTER_TYPE_C: {
struct MessageUnit_C __iomem *reg = acb->pmuC;
writel(ARCMSR_HBCMU_DRV2IOP_DATA_READ_OK, &reg->inbound_doorbell);
}
}
}
static void arcmsr_iop_message_wrote(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
/*
** push inbound doorbell tell iop, driver data write ok
** and wait reply on next hwinterrupt for next Qbuffer post
*/
writel(ARCMSR_INBOUND_DRIVER_DATA_WRITE_OK, &reg->inbound_doorbell);
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
/*
** push inbound doorbell tell iop, driver data write ok
** and wait reply on next hwinterrupt for next Qbuffer post
*/
writel(ARCMSR_DRV2IOP_DATA_WRITE_OK, reg->drv2iop_doorbell);
}
break;
case ACB_ADAPTER_TYPE_C: {
struct MessageUnit_C __iomem *reg = acb->pmuC;
/*
** push inbound doorbell tell iop, driver data write ok
** and wait reply on next hwinterrupt for next Qbuffer post
*/
writel(ARCMSR_HBCMU_DRV2IOP_DATA_WRITE_OK, &reg->inbound_doorbell);
}
break;
}
}
struct QBUFFER __iomem *arcmsr_get_iop_rqbuffer(struct AdapterControlBlock *acb)
{
struct QBUFFER __iomem *qbuffer = NULL;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
qbuffer = (struct QBUFFER __iomem *)&reg->message_rbuffer;
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
qbuffer = (struct QBUFFER __iomem *)reg->message_rbuffer;
}
break;
case ACB_ADAPTER_TYPE_C: {
struct MessageUnit_C *phbcmu = (struct MessageUnit_C *)acb->pmuC;
qbuffer = (struct QBUFFER __iomem *)&phbcmu->message_rbuffer;
}
}
return qbuffer;
}
static struct QBUFFER __iomem *arcmsr_get_iop_wqbuffer(struct AdapterControlBlock *acb)
{
struct QBUFFER __iomem *pqbuffer = NULL;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
pqbuffer = (struct QBUFFER __iomem *) &reg->message_wbuffer;
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
pqbuffer = (struct QBUFFER __iomem *)reg->message_wbuffer;
}
break;
case ACB_ADAPTER_TYPE_C: {
struct MessageUnit_C *reg = (struct MessageUnit_C *)acb->pmuC;
pqbuffer = (struct QBUFFER __iomem *)&reg->message_wbuffer;
}
}
return pqbuffer;
}
static void arcmsr_iop2drv_data_wrote_handle(struct AdapterControlBlock *acb)
{
struct QBUFFER __iomem *prbuffer;
struct QBUFFER *pQbuffer;
uint8_t __iomem *iop_data;
int32_t my_empty_len, iop_len, rqbuf_firstindex, rqbuf_lastindex;
rqbuf_lastindex = acb->rqbuf_lastindex;
rqbuf_firstindex = acb->rqbuf_firstindex;
prbuffer = arcmsr_get_iop_rqbuffer(acb);
iop_data = (uint8_t __iomem *)prbuffer->data;
iop_len = prbuffer->data_len;
my_empty_len = (rqbuf_firstindex - rqbuf_lastindex - 1) & (ARCMSR_MAX_QBUFFER - 1);
if (my_empty_len >= iop_len)
{
while (iop_len > 0) {
pQbuffer = (struct QBUFFER *)&acb->rqbuffer[rqbuf_lastindex];
memcpy(pQbuffer, iop_data, 1);
rqbuf_lastindex++;
rqbuf_lastindex %= ARCMSR_MAX_QBUFFER;
iop_data++;
iop_len--;
}
acb->rqbuf_lastindex = rqbuf_lastindex;
arcmsr_iop_message_read(acb);
}
else {
acb->acb_flags |= ACB_F_IOPDATA_OVERFLOW;
}
}
static void arcmsr_iop2drv_data_read_handle(struct AdapterControlBlock *acb)
{
acb->acb_flags |= ACB_F_MESSAGE_WQBUFFER_READED;
if (acb->wqbuf_firstindex != acb->wqbuf_lastindex) {
uint8_t *pQbuffer;
struct QBUFFER __iomem *pwbuffer;
uint8_t __iomem *iop_data;
int32_t allxfer_len = 0;
acb->acb_flags &= (~ACB_F_MESSAGE_WQBUFFER_READED);
pwbuffer = arcmsr_get_iop_wqbuffer(acb);
iop_data = (uint8_t __iomem *)pwbuffer->data;
while ((acb->wqbuf_firstindex != acb->wqbuf_lastindex) && \
(allxfer_len < 124)) {
pQbuffer = &acb->wqbuffer[acb->wqbuf_firstindex];
memcpy(iop_data, pQbuffer, 1);
acb->wqbuf_firstindex++;
acb->wqbuf_firstindex %= ARCMSR_MAX_QBUFFER;
iop_data++;
allxfer_len++;
}
pwbuffer->data_len = allxfer_len;
arcmsr_iop_message_wrote(acb);
}
if (acb->wqbuf_firstindex == acb->wqbuf_lastindex) {
acb->acb_flags |= ACB_F_MESSAGE_WQBUFFER_CLEARED;
}
}
static void arcmsr_hba_doorbell_isr(struct AdapterControlBlock *acb)
{
uint32_t outbound_doorbell;
struct MessageUnit_A __iomem *reg = acb->pmuA;
outbound_doorbell = readl(&reg->outbound_doorbell);
writel(outbound_doorbell, &reg->outbound_doorbell);
if (outbound_doorbell & ARCMSR_OUTBOUND_IOP331_DATA_WRITE_OK) {
arcmsr_iop2drv_data_wrote_handle(acb);
}
if (outbound_doorbell & ARCMSR_OUTBOUND_IOP331_DATA_READ_OK) {
arcmsr_iop2drv_data_read_handle(acb);
}
}
static void arcmsr_hbc_doorbell_isr(struct AdapterControlBlock *pACB)
{
uint32_t outbound_doorbell;
struct MessageUnit_C *reg = (struct MessageUnit_C *)pACB->pmuC;
/*
*******************************************************************
** Maybe here we need to check wrqbuffer_lock is lock or not
** DOORBELL: din! don!
** check if there are any mail need to pack from firmware
*******************************************************************
*/
outbound_doorbell = readl(&reg->outbound_doorbell);
writel(outbound_doorbell, &reg->outbound_doorbell_clear);/*clear interrupt*/
if (outbound_doorbell & ARCMSR_HBCMU_IOP2DRV_DATA_WRITE_OK) {
arcmsr_iop2drv_data_wrote_handle(pACB);
}
if (outbound_doorbell & ARCMSR_HBCMU_IOP2DRV_DATA_READ_OK) {
arcmsr_iop2drv_data_read_handle(pACB);
}
if (outbound_doorbell & ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE) {
arcmsr_hbc_message_isr(pACB); /* messenger of "driver to iop commands" */
}
return;
}
static void arcmsr_hba_postqueue_isr(struct AdapterControlBlock *acb)
{
uint32_t flag_ccb;
struct MessageUnit_A __iomem *reg = acb->pmuA;
struct ARCMSR_CDB *pARCMSR_CDB;
struct CommandControlBlock *pCCB;
bool error;
while ((flag_ccb = readl(&reg->outbound_queueport)) != 0xFFFFFFFF) {
pARCMSR_CDB = (struct ARCMSR_CDB *)(acb->vir2phy_offset + (flag_ccb << 5));/*frame must be 32 bytes aligned*/
pCCB = container_of(pARCMSR_CDB, struct CommandControlBlock, arcmsr_cdb);
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? true : false;
arcmsr_drain_donequeue(acb, pCCB, error);
}
}
static void arcmsr_hbb_postqueue_isr(struct AdapterControlBlock *acb)
{
uint32_t index;
uint32_t flag_ccb;
struct MessageUnit_B *reg = acb->pmuB;
struct ARCMSR_CDB *pARCMSR_CDB;
struct CommandControlBlock *pCCB;
bool error;
index = reg->doneq_index;
while ((flag_ccb = readl(&reg->done_qbuffer[index])) != 0) {
writel(0, &reg->done_qbuffer[index]);
pARCMSR_CDB = (struct ARCMSR_CDB *)(acb->vir2phy_offset+(flag_ccb << 5));/*frame must be 32 bytes aligned*/
pCCB = container_of(pARCMSR_CDB, struct CommandControlBlock, arcmsr_cdb);
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? true : false;
arcmsr_drain_donequeue(acb, pCCB, error);
index++;
index %= ARCMSR_MAX_HBB_POSTQUEUE;
reg->doneq_index = index;
}
}
static void arcmsr_hbc_postqueue_isr(struct AdapterControlBlock *acb)
{
struct MessageUnit_C *phbcmu;
struct ARCMSR_CDB *arcmsr_cdb;
struct CommandControlBlock *ccb;
uint32_t flag_ccb, ccb_cdb_phy, throttling = 0;
int error;
phbcmu = (struct MessageUnit_C *)acb->pmuC;
/* areca cdb command done */
/* Use correct offset and size for syncing */
while (readl(&phbcmu->host_int_status) &
ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR){
/* check if command done with no error*/
flag_ccb = readl(&phbcmu->outbound_queueport_low);
ccb_cdb_phy = (flag_ccb & 0xFFFFFFF0);/*frame must be 32 bytes aligned*/
arcmsr_cdb = (struct ARCMSR_CDB *)(acb->vir2phy_offset + ccb_cdb_phy);
ccb = container_of(arcmsr_cdb, struct CommandControlBlock, arcmsr_cdb);
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE1) ? true : false;
/* check if command done with no error */
arcmsr_drain_donequeue(acb, ccb, error);
if (throttling == ARCMSR_HBC_ISR_THROTTLING_LEVEL) {
writel(ARCMSR_HBCMU_DRV2IOP_POSTQUEUE_THROTTLING, &phbcmu->inbound_doorbell);
break;
}
throttling++;
}
}
/*
**********************************************************************************
** Handle a message interrupt
**
** The only message interrupt we expect is in response to a query for the current adapter config.
** We want this in order to compare the drivemap so that we can detect newly-attached drives.
**********************************************************************************
*/
static void arcmsr_hba_message_isr(struct AdapterControlBlock *acb)
{
struct MessageUnit_A *reg = acb->pmuA;
/*clear interrupt and message state*/
writel(ARCMSR_MU_OUTBOUND_MESSAGE0_INT, &reg->outbound_intstatus);
schedule_work(&acb->arcmsr_do_message_isr_bh);
}
static void arcmsr_hbb_message_isr(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
/*clear interrupt and message state*/
writel(ARCMSR_MESSAGE_INT_CLEAR_PATTERN, reg->iop2drv_doorbell);
schedule_work(&acb->arcmsr_do_message_isr_bh);
}
/*
**********************************************************************************
** Handle a message interrupt
**
** The only message interrupt we expect is in response to a query for the
** current adapter config.
** We want this in order to compare the drivemap so that we can detect newly-attached drives.
**********************************************************************************
*/
static void arcmsr_hbc_message_isr(struct AdapterControlBlock *acb)
{
struct MessageUnit_C *reg = acb->pmuC;
/*clear interrupt and message state*/
writel(ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE_DOORBELL_CLEAR, &reg->outbound_doorbell_clear);
schedule_work(&acb->arcmsr_do_message_isr_bh);
}
static int arcmsr_handle_hba_isr(struct AdapterControlBlock *acb)
{
uint32_t outbound_intstatus;
struct MessageUnit_A __iomem *reg = acb->pmuA;
outbound_intstatus = readl(&reg->outbound_intstatus) &
acb->outbound_int_enable;
if (!(outbound_intstatus & ARCMSR_MU_OUTBOUND_HANDLE_INT)) {
return 1;
}
writel(outbound_intstatus, &reg->outbound_intstatus);
if (outbound_intstatus & ARCMSR_MU_OUTBOUND_DOORBELL_INT) {
arcmsr_hba_doorbell_isr(acb);
}
if (outbound_intstatus & ARCMSR_MU_OUTBOUND_POSTQUEUE_INT) {
arcmsr_hba_postqueue_isr(acb);
}
if(outbound_intstatus & ARCMSR_MU_OUTBOUND_MESSAGE0_INT) {
/* messenger of "driver to iop commands" */
arcmsr_hba_message_isr(acb);
}
return 0;
}
static int arcmsr_handle_hbb_isr(struct AdapterControlBlock *acb)
{
uint32_t outbound_doorbell;
struct MessageUnit_B *reg = acb->pmuB;
outbound_doorbell = readl(reg->iop2drv_doorbell) &
acb->outbound_int_enable;
if (!outbound_doorbell)
return 1;
writel(~outbound_doorbell, reg->iop2drv_doorbell);
/*in case the last action of doorbell interrupt clearance is cached,
this action can push HW to write down the clear bit*/
readl(reg->iop2drv_doorbell);
writel(ARCMSR_DRV2IOP_END_OF_INTERRUPT, reg->drv2iop_doorbell);
if (outbound_doorbell & ARCMSR_IOP2DRV_DATA_WRITE_OK) {
arcmsr_iop2drv_data_wrote_handle(acb);
}
if (outbound_doorbell & ARCMSR_IOP2DRV_DATA_READ_OK) {
arcmsr_iop2drv_data_read_handle(acb);
}
if (outbound_doorbell & ARCMSR_IOP2DRV_CDB_DONE) {
arcmsr_hbb_postqueue_isr(acb);
}
if(outbound_doorbell & ARCMSR_IOP2DRV_MESSAGE_CMD_DONE) {
/* messenger of "driver to iop commands" */
arcmsr_hbb_message_isr(acb);
}
return 0;
}
static int arcmsr_handle_hbc_isr(struct AdapterControlBlock *pACB)
{
uint32_t host_interrupt_status;
struct MessageUnit_C *phbcmu = (struct MessageUnit_C *)pACB->pmuC;
/*
*********************************************
** check outbound intstatus
*********************************************
*/
host_interrupt_status = readl(&phbcmu->host_int_status);
if (!host_interrupt_status) {
/*it must be share irq*/
return 1;
}
/* MU ioctl transfer doorbell interrupts*/
if (host_interrupt_status & ARCMSR_HBCMU_OUTBOUND_DOORBELL_ISR) {
arcmsr_hbc_doorbell_isr(pACB); /* messenger of "ioctl message read write" */
}
/* MU post queue interrupts*/
if (host_interrupt_status & ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR) {
arcmsr_hbc_postqueue_isr(pACB); /* messenger of "scsi commands" */
}
return 0;
}
static irqreturn_t arcmsr_interrupt(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
if (arcmsr_handle_hba_isr(acb)) {
return IRQ_NONE;
}
}
break;
case ACB_ADAPTER_TYPE_B: {
if (arcmsr_handle_hbb_isr(acb)) {
return IRQ_NONE;
}
}
break;
case ACB_ADAPTER_TYPE_C: {
if (arcmsr_handle_hbc_isr(acb)) {
return IRQ_NONE;
}
}
}
return IRQ_HANDLED;
}
static void arcmsr_iop_parking(struct AdapterControlBlock *acb)
{
if (acb) {
/* stop adapter background rebuild */
if (acb->acb_flags & ACB_F_MSG_START_BGRB) {
uint32_t intmask_org;
acb->acb_flags &= ~ACB_F_MSG_START_BGRB;
intmask_org = arcmsr_disable_outbound_ints(acb);
arcmsr_stop_adapter_bgrb(acb);
arcmsr_flush_adapter_cache(acb);
arcmsr_enable_outbound_ints(acb, intmask_org);
}
}
}
void arcmsr_post_ioctldata2iop(struct AdapterControlBlock *acb)
{
int32_t wqbuf_firstindex, wqbuf_lastindex;
uint8_t *pQbuffer;
struct QBUFFER __iomem *pwbuffer;
uint8_t __iomem *iop_data;
int32_t allxfer_len = 0;
pwbuffer = arcmsr_get_iop_wqbuffer(acb);
iop_data = (uint8_t __iomem *)pwbuffer->data;
if (acb->acb_flags & ACB_F_MESSAGE_WQBUFFER_READED) {
acb->acb_flags &= (~ACB_F_MESSAGE_WQBUFFER_READED);
wqbuf_firstindex = acb->wqbuf_firstindex;
wqbuf_lastindex = acb->wqbuf_lastindex;
while ((wqbuf_firstindex != wqbuf_lastindex) && (allxfer_len < 124)) {
pQbuffer = &acb->wqbuffer[wqbuf_firstindex];
memcpy(iop_data, pQbuffer, 1);
wqbuf_firstindex++;
wqbuf_firstindex %= ARCMSR_MAX_QBUFFER;
iop_data++;
allxfer_len++;
}
acb->wqbuf_firstindex = wqbuf_firstindex;
pwbuffer->data_len = allxfer_len;
arcmsr_iop_message_wrote(acb);
}
}
static int arcmsr_iop_message_xfer(struct AdapterControlBlock *acb,
struct scsi_cmnd *cmd)
{
struct CMD_MESSAGE_FIELD *pcmdmessagefld;
int retvalue = 0, transfer_len = 0;
char *buffer;
struct scatterlist *sg;
uint32_t controlcode = (uint32_t ) cmd->cmnd[5] << 24 |
(uint32_t ) cmd->cmnd[6] << 16 |
(uint32_t ) cmd->cmnd[7] << 8 |
(uint32_t ) cmd->cmnd[8];
/* 4 bytes: Areca io control code */
sg = scsi_sglist(cmd);
buffer = kmap_atomic(sg_page(sg)) + sg->offset;
if (scsi_sg_count(cmd) > 1) {
retvalue = ARCMSR_MESSAGE_FAIL;
goto message_out;
}
transfer_len += sg->length;
if (transfer_len > sizeof(struct CMD_MESSAGE_FIELD)) {
retvalue = ARCMSR_MESSAGE_FAIL;
goto message_out;
}
pcmdmessagefld = (struct CMD_MESSAGE_FIELD *) buffer;
switch(controlcode) {
case ARCMSR_MESSAGE_READ_RQBUFFER: {
unsigned char *ver_addr;
uint8_t *pQbuffer, *ptmpQbuffer;
int32_t allxfer_len = 0;
ver_addr = kmalloc(1032, GFP_ATOMIC);
if (!ver_addr) {
retvalue = ARCMSR_MESSAGE_FAIL;
goto message_out;
}
ptmpQbuffer = ver_addr;
while ((acb->rqbuf_firstindex != acb->rqbuf_lastindex)
&& (allxfer_len < 1031)) {
pQbuffer = &acb->rqbuffer[acb->rqbuf_firstindex];
memcpy(ptmpQbuffer, pQbuffer, 1);
acb->rqbuf_firstindex++;
acb->rqbuf_firstindex %= ARCMSR_MAX_QBUFFER;
ptmpQbuffer++;
allxfer_len++;
}
if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) {
struct QBUFFER __iomem *prbuffer;
uint8_t __iomem *iop_data;
int32_t iop_len;
acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW;
prbuffer = arcmsr_get_iop_rqbuffer(acb);
iop_data = prbuffer->data;
iop_len = readl(&prbuffer->data_len);
while (iop_len > 0) {
acb->rqbuffer[acb->rqbuf_lastindex] = readb(iop_data);
acb->rqbuf_lastindex++;
acb->rqbuf_lastindex %= ARCMSR_MAX_QBUFFER;
iop_data++;
iop_len--;
}
arcmsr_iop_message_read(acb);
}
memcpy(pcmdmessagefld->messagedatabuffer, ver_addr, allxfer_len);
pcmdmessagefld->cmdmessage.Length = allxfer_len;
if(acb->fw_flag == FW_DEADLOCK) {
pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
}else{
pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_OK;
}
kfree(ver_addr);
}
break;
case ARCMSR_MESSAGE_WRITE_WQBUFFER: {
unsigned char *ver_addr;
int32_t my_empty_len, user_len, wqbuf_firstindex, wqbuf_lastindex;
uint8_t *pQbuffer, *ptmpuserbuffer;
ver_addr = kmalloc(1032, GFP_ATOMIC);
if (!ver_addr) {
retvalue = ARCMSR_MESSAGE_FAIL;
goto message_out;
}
if(acb->fw_flag == FW_DEADLOCK) {
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
}else{
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
}
ptmpuserbuffer = ver_addr;
user_len = pcmdmessagefld->cmdmessage.Length;
memcpy(ptmpuserbuffer, pcmdmessagefld->messagedatabuffer, user_len);
wqbuf_lastindex = acb->wqbuf_lastindex;
wqbuf_firstindex = acb->wqbuf_firstindex;
if (wqbuf_lastindex != wqbuf_firstindex) {
struct SENSE_DATA *sensebuffer =
(struct SENSE_DATA *)cmd->sense_buffer;
arcmsr_post_ioctldata2iop(acb);
/* has error report sensedata */
sensebuffer->ErrorCode = 0x70;
sensebuffer->SenseKey = ILLEGAL_REQUEST;
sensebuffer->AdditionalSenseLength = 0x0A;
sensebuffer->AdditionalSenseCode = 0x20;
sensebuffer->Valid = 1;
retvalue = ARCMSR_MESSAGE_FAIL;
} else {
my_empty_len = (wqbuf_firstindex-wqbuf_lastindex - 1)
&(ARCMSR_MAX_QBUFFER - 1);
if (my_empty_len >= user_len) {
while (user_len > 0) {
pQbuffer =
&acb->wqbuffer[acb->wqbuf_lastindex];
memcpy(pQbuffer, ptmpuserbuffer, 1);
acb->wqbuf_lastindex++;
acb->wqbuf_lastindex %= ARCMSR_MAX_QBUFFER;
ptmpuserbuffer++;
user_len--;
}
if (acb->acb_flags & ACB_F_MESSAGE_WQBUFFER_CLEARED) {
acb->acb_flags &=
~ACB_F_MESSAGE_WQBUFFER_CLEARED;
arcmsr_post_ioctldata2iop(acb);
}
} else {
/* has error report sensedata */
struct SENSE_DATA *sensebuffer =
(struct SENSE_DATA *)cmd->sense_buffer;
sensebuffer->ErrorCode = 0x70;
sensebuffer->SenseKey = ILLEGAL_REQUEST;
sensebuffer->AdditionalSenseLength = 0x0A;
sensebuffer->AdditionalSenseCode = 0x20;
sensebuffer->Valid = 1;
retvalue = ARCMSR_MESSAGE_FAIL;
}
}
kfree(ver_addr);
}
break;
case ARCMSR_MESSAGE_CLEAR_RQBUFFER: {
uint8_t *pQbuffer = acb->rqbuffer;
if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) {
acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW;
arcmsr_iop_message_read(acb);
}
acb->acb_flags |= ACB_F_MESSAGE_RQBUFFER_CLEARED;
acb->rqbuf_firstindex = 0;
acb->rqbuf_lastindex = 0;
memset(pQbuffer, 0, ARCMSR_MAX_QBUFFER);
if(acb->fw_flag == FW_DEADLOCK) {
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
}else{
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
}
}
break;
case ARCMSR_MESSAGE_CLEAR_WQBUFFER: {
uint8_t *pQbuffer = acb->wqbuffer;
if(acb->fw_flag == FW_DEADLOCK) {
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
}else{
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
}
if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) {
acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW;
arcmsr_iop_message_read(acb);
}
acb->acb_flags |=
(ACB_F_MESSAGE_WQBUFFER_CLEARED |
ACB_F_MESSAGE_WQBUFFER_READED);
acb->wqbuf_firstindex = 0;
acb->wqbuf_lastindex = 0;
memset(pQbuffer, 0, ARCMSR_MAX_QBUFFER);
}
break;
case ARCMSR_MESSAGE_CLEAR_ALLQBUFFER: {
uint8_t *pQbuffer;
if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) {
acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW;
arcmsr_iop_message_read(acb);
}
acb->acb_flags |=
(ACB_F_MESSAGE_WQBUFFER_CLEARED
| ACB_F_MESSAGE_RQBUFFER_CLEARED
| ACB_F_MESSAGE_WQBUFFER_READED);
acb->rqbuf_firstindex = 0;
acb->rqbuf_lastindex = 0;
acb->wqbuf_firstindex = 0;
acb->wqbuf_lastindex = 0;
pQbuffer = acb->rqbuffer;
memset(pQbuffer, 0, sizeof(struct QBUFFER));
pQbuffer = acb->wqbuffer;
memset(pQbuffer, 0, sizeof(struct QBUFFER));
if(acb->fw_flag == FW_DEADLOCK) {
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
}else{
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
}
}
break;
case ARCMSR_MESSAGE_RETURN_CODE_3F: {
if(acb->fw_flag == FW_DEADLOCK) {
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
}else{
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_3F;
}
break;
}
case ARCMSR_MESSAGE_SAY_HELLO: {
int8_t *hello_string = "Hello! I am ARCMSR";
if(acb->fw_flag == FW_DEADLOCK) {
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
}else{
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
}
memcpy(pcmdmessagefld->messagedatabuffer, hello_string
, (int16_t)strlen(hello_string));
}
break;
case ARCMSR_MESSAGE_SAY_GOODBYE:
if(acb->fw_flag == FW_DEADLOCK) {
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
}
arcmsr_iop_parking(acb);
break;
case ARCMSR_MESSAGE_FLUSH_ADAPTER_CACHE:
if(acb->fw_flag == FW_DEADLOCK) {
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_BUS_HANG_ON;
}
arcmsr_flush_adapter_cache(acb);
break;
default:
retvalue = ARCMSR_MESSAGE_FAIL;
}
message_out:
sg = scsi_sglist(cmd);
kunmap_atomic(buffer - sg->offset);
return retvalue;
}
static struct CommandControlBlock *arcmsr_get_freeccb(struct AdapterControlBlock *acb)
{
struct list_head *head = &acb->ccb_free_list;
struct CommandControlBlock *ccb = NULL;
unsigned long flags;
spin_lock_irqsave(&acb->ccblist_lock, flags);
if (!list_empty(head)) {
ccb = list_entry(head->next, struct CommandControlBlock, list);
list_del_init(&ccb->list);
}else{
spin_unlock_irqrestore(&acb->ccblist_lock, flags);
return 0;
}
spin_unlock_irqrestore(&acb->ccblist_lock, flags);
return ccb;
}
static void arcmsr_handle_virtual_command(struct AdapterControlBlock *acb,
struct scsi_cmnd *cmd)
{
switch (cmd->cmnd[0]) {
case INQUIRY: {
unsigned char inqdata[36];
char *buffer;
struct scatterlist *sg;
if (cmd->device->lun) {
cmd->result = (DID_TIME_OUT << 16);
cmd->scsi_done(cmd);
return;
}
inqdata[0] = TYPE_PROCESSOR;
/* Periph Qualifier & Periph Dev Type */
inqdata[1] = 0;
/* rem media bit & Dev Type Modifier */
inqdata[2] = 0;
/* ISO, ECMA, & ANSI versions */
inqdata[4] = 31;
/* length of additional data */
strncpy(&inqdata[8], "Areca ", 8);
/* Vendor Identification */
strncpy(&inqdata[16], "RAID controller ", 16);
/* Product Identification */
strncpy(&inqdata[32], "R001", 4); /* Product Revision */
sg = scsi_sglist(cmd);
buffer = kmap_atomic(sg_page(sg)) + sg->offset;
memcpy(buffer, inqdata, sizeof(inqdata));
sg = scsi_sglist(cmd);
kunmap_atomic(buffer - sg->offset);
cmd->scsi_done(cmd);
}
break;
case WRITE_BUFFER:
case READ_BUFFER: {
if (arcmsr_iop_message_xfer(acb, cmd))
cmd->result = (DID_ERROR << 16);
cmd->scsi_done(cmd);
}
break;
default:
cmd->scsi_done(cmd);
}
}
static int arcmsr_queue_command_lck(struct scsi_cmnd *cmd,
void (* done)(struct scsi_cmnd *))
{
struct Scsi_Host *host = cmd->device->host;
struct AdapterControlBlock *acb = (struct AdapterControlBlock *) host->hostdata;
struct CommandControlBlock *ccb;
int target = cmd->device->id;
int lun = cmd->device->lun;
uint8_t scsicmd = cmd->cmnd[0];
cmd->scsi_done = done;
cmd->host_scribble = NULL;
cmd->result = 0;
if ((scsicmd == SYNCHRONIZE_CACHE) ||(scsicmd == SEND_DIAGNOSTIC)){
if(acb->devstate[target][lun] == ARECA_RAID_GONE) {
cmd->result = (DID_NO_CONNECT << 16);
}
cmd->scsi_done(cmd);
return 0;
}
if (target == 16) {
/* virtual device for iop message transfer */
arcmsr_handle_virtual_command(acb, cmd);
return 0;
}
if (atomic_read(&acb->ccboutstandingcount) >=
ARCMSR_MAX_OUTSTANDING_CMD)
return SCSI_MLQUEUE_HOST_BUSY;
ccb = arcmsr_get_freeccb(acb);
if (!ccb)
return SCSI_MLQUEUE_HOST_BUSY;
if (arcmsr_build_ccb( acb, ccb, cmd ) == FAILED) {
cmd->result = (DID_ERROR << 16) | (RESERVATION_CONFLICT << 1);
cmd->scsi_done(cmd);
return 0;
}
arcmsr_post_ccb(acb, ccb);
return 0;
}
static DEF_SCSI_QCMD(arcmsr_queue_command)
static bool arcmsr_get_hba_config(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
char *acb_firm_model = acb->firm_model;
char *acb_firm_version = acb->firm_version;
char *acb_device_map = acb->device_map;
char __iomem *iop_firm_model = (char __iomem *)(&reg->message_rwbuffer[15]);
char __iomem *iop_firm_version = (char __iomem *)(&reg->message_rwbuffer[17]);
char __iomem *iop_device_map = (char __iomem *)(&reg->message_rwbuffer[21]);
int count;
writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, &reg->inbound_msgaddr0);
if (!arcmsr_hba_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: wait 'get adapter firmware \
miscellaneous data' timeout \n", acb->host->host_no);
return false;
}
count = 8;
while (count){
*acb_firm_model = readb(iop_firm_model);
acb_firm_model++;
iop_firm_model++;
count--;
}
count = 16;
while (count){
*acb_firm_version = readb(iop_firm_version);
acb_firm_version++;
iop_firm_version++;
count--;
}
count=16;
while(count){
*acb_device_map = readb(iop_device_map);
acb_device_map++;
iop_device_map++;
count--;
}
printk(KERN_NOTICE "Areca RAID Controller%d: F/W %s & Model %s\n",
acb->host->host_no,
acb->firm_version,
acb->firm_model);
acb->signature = readl(&reg->message_rwbuffer[0]);
acb->firm_request_len = readl(&reg->message_rwbuffer[1]);
acb->firm_numbers_queue = readl(&reg->message_rwbuffer[2]);
acb->firm_sdram_size = readl(&reg->message_rwbuffer[3]);
acb->firm_hd_channels = readl(&reg->message_rwbuffer[4]);
acb->firm_cfg_version = readl(&reg->message_rwbuffer[25]); /*firm_cfg_version,25,100-103*/
return true;
}
static bool arcmsr_get_hbb_config(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
struct pci_dev *pdev = acb->pdev;
void *dma_coherent;
dma_addr_t dma_coherent_handle;
char *acb_firm_model = acb->firm_model;
char *acb_firm_version = acb->firm_version;
char *acb_device_map = acb->device_map;
char __iomem *iop_firm_model;
/*firm_model,15,60-67*/
char __iomem *iop_firm_version;
/*firm_version,17,68-83*/
char __iomem *iop_device_map;
/*firm_version,21,84-99*/
int count;
dma_coherent = dma_alloc_coherent(&pdev->dev, sizeof(struct MessageUnit_B), &dma_coherent_handle, GFP_KERNEL);
if (!dma_coherent){
printk(KERN_NOTICE "arcmsr%d: dma_alloc_coherent got error for hbb mu\n", acb->host->host_no);
return false;
}
acb->dma_coherent_handle_hbb_mu = dma_coherent_handle;
reg = (struct MessageUnit_B *)dma_coherent;
acb->pmuB = reg;
reg->drv2iop_doorbell= (uint32_t __iomem *)((unsigned long)acb->mem_base0 + ARCMSR_DRV2IOP_DOORBELL);
reg->drv2iop_doorbell_mask = (uint32_t __iomem *)((unsigned long)acb->mem_base0 + ARCMSR_DRV2IOP_DOORBELL_MASK);
reg->iop2drv_doorbell = (uint32_t __iomem *)((unsigned long)acb->mem_base0 + ARCMSR_IOP2DRV_DOORBELL);
reg->iop2drv_doorbell_mask = (uint32_t __iomem *)((unsigned long)acb->mem_base0 + ARCMSR_IOP2DRV_DOORBELL_MASK);
reg->message_wbuffer = (uint32_t __iomem *)((unsigned long)acb->mem_base1 + ARCMSR_MESSAGE_WBUFFER);
reg->message_rbuffer = (uint32_t __iomem *)((unsigned long)acb->mem_base1 + ARCMSR_MESSAGE_RBUFFER);
reg->message_rwbuffer = (uint32_t __iomem *)((unsigned long)acb->mem_base1 + ARCMSR_MESSAGE_RWBUFFER);
iop_firm_model = (char __iomem *)(&reg->message_rwbuffer[15]); /*firm_model,15,60-67*/
iop_firm_version = (char __iomem *)(&reg->message_rwbuffer[17]); /*firm_version,17,68-83*/
iop_device_map = (char __iomem *)(&reg->message_rwbuffer[21]); /*firm_version,21,84-99*/
writel(ARCMSR_MESSAGE_GET_CONFIG, reg->drv2iop_doorbell);
if (!arcmsr_hbb_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: wait 'get adapter firmware \
miscellaneous data' timeout \n", acb->host->host_no);
return false;
}
count = 8;
while (count){
*acb_firm_model = readb(iop_firm_model);
acb_firm_model++;
iop_firm_model++;
count--;
}
count = 16;
while (count){
*acb_firm_version = readb(iop_firm_version);
acb_firm_version++;
iop_firm_version++;
count--;
}
count = 16;
while(count){
*acb_device_map = readb(iop_device_map);
acb_device_map++;
iop_device_map++;
count--;
}
printk(KERN_NOTICE "Areca RAID Controller%d: F/W %s & Model %s\n",
acb->host->host_no,
acb->firm_version,
acb->firm_model);
acb->signature = readl(&reg->message_rwbuffer[1]);
/*firm_signature,1,00-03*/
acb->firm_request_len = readl(&reg->message_rwbuffer[2]);
/*firm_request_len,1,04-07*/
acb->firm_numbers_queue = readl(&reg->message_rwbuffer[3]);
/*firm_numbers_queue,2,08-11*/
acb->firm_sdram_size = readl(&reg->message_rwbuffer[4]);
/*firm_sdram_size,3,12-15*/
acb->firm_hd_channels = readl(&reg->message_rwbuffer[5]);
/*firm_ide_channels,4,16-19*/
acb->firm_cfg_version = readl(&reg->message_rwbuffer[25]); /*firm_cfg_version,25,100-103*/
/*firm_ide_channels,4,16-19*/
return true;
}
static bool arcmsr_get_hbc_config(struct AdapterControlBlock *pACB)
{
uint32_t intmask_org, Index, firmware_state = 0;
struct MessageUnit_C *reg = pACB->pmuC;
char *acb_firm_model = pACB->firm_model;
char *acb_firm_version = pACB->firm_version;
char *iop_firm_model = (char *)(&reg->msgcode_rwbuffer[15]); /*firm_model,15,60-67*/
char *iop_firm_version = (char *)(&reg->msgcode_rwbuffer[17]); /*firm_version,17,68-83*/
int count;
/* disable all outbound interrupt */
intmask_org = readl(&reg->host_int_mask); /* disable outbound message0 int */
writel(intmask_org|ARCMSR_HBCMU_ALL_INTMASKENABLE, &reg->host_int_mask);
/* wait firmware ready */
do {
firmware_state = readl(&reg->outbound_msgaddr1);
} while ((firmware_state & ARCMSR_HBCMU_MESSAGE_FIRMWARE_OK) == 0);
/* post "get config" instruction */
writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, &reg->inbound_msgaddr0);
writel(ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE, &reg->inbound_doorbell);
/* wait message ready */
for (Index = 0; Index < 2000; Index++) {
if (readl(&reg->outbound_doorbell) & ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE) {
writel(ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE_DOORBELL_CLEAR, &reg->outbound_doorbell_clear);/*clear interrupt*/
break;
}
udelay(10);
} /*max 1 seconds*/
if (Index >= 2000) {
printk(KERN_NOTICE "arcmsr%d: wait 'get adapter firmware \
miscellaneous data' timeout \n", pACB->host->host_no);
return false;
}
count = 8;
while (count) {
*acb_firm_model = readb(iop_firm_model);
acb_firm_model++;
iop_firm_model++;
count--;
}
count = 16;
while (count) {
*acb_firm_version = readb(iop_firm_version);
acb_firm_version++;
iop_firm_version++;
count--;
}
printk(KERN_NOTICE "Areca RAID Controller%d: F/W %s & Model %s\n",
pACB->host->host_no,
pACB->firm_version,
pACB->firm_model);
pACB->firm_request_len = readl(&reg->msgcode_rwbuffer[1]); /*firm_request_len,1,04-07*/
pACB->firm_numbers_queue = readl(&reg->msgcode_rwbuffer[2]); /*firm_numbers_queue,2,08-11*/
pACB->firm_sdram_size = readl(&reg->msgcode_rwbuffer[3]); /*firm_sdram_size,3,12-15*/
pACB->firm_hd_channels = readl(&reg->msgcode_rwbuffer[4]); /*firm_ide_channels,4,16-19*/
pACB->firm_cfg_version = readl(&reg->msgcode_rwbuffer[25]); /*firm_cfg_version,25,100-103*/
/*all interrupt service will be enable at arcmsr_iop_init*/
return true;
}
static bool arcmsr_get_firmware_spec(struct AdapterControlBlock *acb)
{
if (acb->adapter_type == ACB_ADAPTER_TYPE_A)
return arcmsr_get_hba_config(acb);
else if (acb->adapter_type == ACB_ADAPTER_TYPE_B)
return arcmsr_get_hbb_config(acb);
else
return arcmsr_get_hbc_config(acb);
}
static int arcmsr_polling_hba_ccbdone(struct AdapterControlBlock *acb,
struct CommandControlBlock *poll_ccb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
struct CommandControlBlock *ccb;
struct ARCMSR_CDB *arcmsr_cdb;
uint32_t flag_ccb, outbound_intstatus, poll_ccb_done = 0, poll_count = 0;
int rtn;
bool error;
polling_hba_ccb_retry:
poll_count++;
outbound_intstatus = readl(&reg->outbound_intstatus) & acb->outbound_int_enable;
writel(outbound_intstatus, &reg->outbound_intstatus);/*clear interrupt*/
while (1) {
if ((flag_ccb = readl(&reg->outbound_queueport)) == 0xFFFFFFFF) {
if (poll_ccb_done){
rtn = SUCCESS;
break;
}else {
msleep(25);
if (poll_count > 100){
rtn = FAILED;
break;
}
goto polling_hba_ccb_retry;
}
}
arcmsr_cdb = (struct ARCMSR_CDB *)(acb->vir2phy_offset + (flag_ccb << 5));
ccb = container_of(arcmsr_cdb, struct CommandControlBlock, arcmsr_cdb);
poll_ccb_done = (ccb == poll_ccb) ? 1:0;
if ((ccb->acb != acb) || (ccb->startdone != ARCMSR_CCB_START)) {
if ((ccb->startdone == ARCMSR_CCB_ABORTED) || (ccb == poll_ccb)) {
printk(KERN_NOTICE "arcmsr%d: scsi id = %d lun = %d ccb = '0x%p'"
" poll command abort successfully \n"
, acb->host->host_no
, ccb->pcmd->device->id
, ccb->pcmd->device->lun
, ccb);
ccb->pcmd->result = DID_ABORT << 16;
arcmsr_ccb_complete(ccb);
continue;
}
printk(KERN_NOTICE "arcmsr%d: polling get an illegal ccb"
" command done ccb = '0x%p'"
"ccboutstandingcount = %d \n"
, acb->host->host_no
, ccb
, atomic_read(&acb->ccboutstandingcount));
continue;
}
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? true : false;
arcmsr_report_ccb_state(acb, ccb, error);
}
return rtn;
}
static int arcmsr_polling_hbb_ccbdone(struct AdapterControlBlock *acb,
struct CommandControlBlock *poll_ccb)
{
struct MessageUnit_B *reg = acb->pmuB;
struct ARCMSR_CDB *arcmsr_cdb;
struct CommandControlBlock *ccb;
uint32_t flag_ccb, poll_ccb_done = 0, poll_count = 0;
int index, rtn;
bool error;
polling_hbb_ccb_retry:
poll_count++;
/* clear doorbell interrupt */
writel(ARCMSR_DOORBELL_INT_CLEAR_PATTERN, reg->iop2drv_doorbell);
while(1){
index = reg->doneq_index;
if ((flag_ccb = readl(&reg->done_qbuffer[index])) == 0) {
if (poll_ccb_done){
rtn = SUCCESS;
break;
}else {
msleep(25);
if (poll_count > 100){
rtn = FAILED;
break;
}
goto polling_hbb_ccb_retry;
}
}
writel(0, &reg->done_qbuffer[index]);
index++;
/*if last index number set it to 0 */
index %= ARCMSR_MAX_HBB_POSTQUEUE;
reg->doneq_index = index;
/* check if command done with no error*/
arcmsr_cdb = (struct ARCMSR_CDB *)(acb->vir2phy_offset + (flag_ccb << 5));
ccb = container_of(arcmsr_cdb, struct CommandControlBlock, arcmsr_cdb);
poll_ccb_done = (ccb == poll_ccb) ? 1:0;
if ((ccb->acb != acb) || (ccb->startdone != ARCMSR_CCB_START)) {
if ((ccb->startdone == ARCMSR_CCB_ABORTED) || (ccb == poll_ccb)) {
printk(KERN_NOTICE "arcmsr%d: scsi id = %d lun = %d ccb = '0x%p'"
" poll command abort successfully \n"
,acb->host->host_no
,ccb->pcmd->device->id
,ccb->pcmd->device->lun
,ccb);
ccb->pcmd->result = DID_ABORT << 16;
arcmsr_ccb_complete(ccb);
continue;
}
printk(KERN_NOTICE "arcmsr%d: polling get an illegal ccb"
" command done ccb = '0x%p'"
"ccboutstandingcount = %d \n"
, acb->host->host_no
, ccb
, atomic_read(&acb->ccboutstandingcount));
continue;
}
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? true : false;
arcmsr_report_ccb_state(acb, ccb, error);
}
return rtn;
}
static int arcmsr_polling_hbc_ccbdone(struct AdapterControlBlock *acb, struct CommandControlBlock *poll_ccb)
{
struct MessageUnit_C *reg = (struct MessageUnit_C *)acb->pmuC;
uint32_t flag_ccb, ccb_cdb_phy;
struct ARCMSR_CDB *arcmsr_cdb;
bool error;
struct CommandControlBlock *pCCB;
uint32_t poll_ccb_done = 0, poll_count = 0;
int rtn;
polling_hbc_ccb_retry:
poll_count++;
while (1) {
if ((readl(&reg->host_int_status) & ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR) == 0) {
if (poll_ccb_done) {
rtn = SUCCESS;
break;
} else {
msleep(25);
if (poll_count > 100) {
rtn = FAILED;
break;
}
goto polling_hbc_ccb_retry;
}
}
flag_ccb = readl(&reg->outbound_queueport_low);
ccb_cdb_phy = (flag_ccb & 0xFFFFFFF0);
arcmsr_cdb = (struct ARCMSR_CDB *)(acb->vir2phy_offset + ccb_cdb_phy);/*frame must be 32 bytes aligned*/
pCCB = container_of(arcmsr_cdb, struct CommandControlBlock, arcmsr_cdb);
poll_ccb_done = (pCCB == poll_ccb) ? 1 : 0;
/* check ifcommand done with no error*/
if ((pCCB->acb != acb) || (pCCB->startdone != ARCMSR_CCB_START)) {
if (pCCB->startdone == ARCMSR_CCB_ABORTED) {
printk(KERN_NOTICE "arcmsr%d: scsi id = %d lun = %d ccb = '0x%p'"
" poll command abort successfully \n"
, acb->host->host_no
, pCCB->pcmd->device->id
, pCCB->pcmd->device->lun
, pCCB);
pCCB->pcmd->result = DID_ABORT << 16;
arcmsr_ccb_complete(pCCB);
continue;
}
printk(KERN_NOTICE "arcmsr%d: polling get an illegal ccb"
" command done ccb = '0x%p'"
"ccboutstandingcount = %d \n"
, acb->host->host_no
, pCCB
, atomic_read(&acb->ccboutstandingcount));
continue;
}
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE1) ? true : false;
arcmsr_report_ccb_state(acb, pCCB, error);
}
return rtn;
}
static int arcmsr_polling_ccbdone(struct AdapterControlBlock *acb,
struct CommandControlBlock *poll_ccb)
{
int rtn = 0;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
rtn = arcmsr_polling_hba_ccbdone(acb, poll_ccb);
}
break;
case ACB_ADAPTER_TYPE_B: {
rtn = arcmsr_polling_hbb_ccbdone(acb, poll_ccb);
}
break;
case ACB_ADAPTER_TYPE_C: {
rtn = arcmsr_polling_hbc_ccbdone(acb, poll_ccb);
}
}
return rtn;
}
static int arcmsr_iop_confirm(struct AdapterControlBlock *acb)
{
uint32_t cdb_phyaddr, cdb_phyaddr_hi32;
dma_addr_t dma_coherent_handle;
/*
********************************************************************
** here we need to tell iop 331 our freeccb.HighPart
** if freeccb.HighPart is not zero
********************************************************************
*/
dma_coherent_handle = acb->dma_coherent_handle;
cdb_phyaddr = (uint32_t)(dma_coherent_handle);
cdb_phyaddr_hi32 = (uint32_t)((cdb_phyaddr >> 16) >> 16);
acb->cdb_phyaddr_hi32 = cdb_phyaddr_hi32;
/*
***********************************************************************
** if adapter type B, set window of "post command Q"
***********************************************************************
*/
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
if (cdb_phyaddr_hi32 != 0) {
struct MessageUnit_A __iomem *reg = acb->pmuA;
uint32_t intmask_org;
intmask_org = arcmsr_disable_outbound_ints(acb);
writel(ARCMSR_SIGNATURE_SET_CONFIG, \
&reg->message_rwbuffer[0]);
writel(cdb_phyaddr_hi32, &reg->message_rwbuffer[1]);
writel(ARCMSR_INBOUND_MESG0_SET_CONFIG, \
&reg->inbound_msgaddr0);
if (!arcmsr_hba_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: ""set ccb high \
part physical address timeout\n",
acb->host->host_no);
return 1;
}
arcmsr_enable_outbound_ints(acb, intmask_org);
}
}
break;
case ACB_ADAPTER_TYPE_B: {
unsigned long post_queue_phyaddr;
uint32_t __iomem *rwbuffer;
struct MessageUnit_B *reg = acb->pmuB;
uint32_t intmask_org;
intmask_org = arcmsr_disable_outbound_ints(acb);
reg->postq_index = 0;
reg->doneq_index = 0;
writel(ARCMSR_MESSAGE_SET_POST_WINDOW, reg->drv2iop_doorbell);
if (!arcmsr_hbb_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d:can not set diver mode\n", \
acb->host->host_no);
return 1;
}
post_queue_phyaddr = acb->dma_coherent_handle_hbb_mu;
rwbuffer = reg->message_rwbuffer;
/* driver "set config" signature */
writel(ARCMSR_SIGNATURE_SET_CONFIG, rwbuffer++);
/* normal should be zero */
writel(cdb_phyaddr_hi32, rwbuffer++);
/* postQ size (256 + 8)*4 */
writel(post_queue_phyaddr, rwbuffer++);
/* doneQ size (256 + 8)*4 */
writel(post_queue_phyaddr + 1056, rwbuffer++);
/* ccb maxQ size must be --> [(256 + 8)*4]*/
writel(1056, rwbuffer);
writel(ARCMSR_MESSAGE_SET_CONFIG, reg->drv2iop_doorbell);
if (!arcmsr_hbb_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: 'set command Q window' \
timeout \n",acb->host->host_no);
return 1;
}
arcmsr_hbb_enable_driver_mode(acb);
arcmsr_enable_outbound_ints(acb, intmask_org);
}
break;
case ACB_ADAPTER_TYPE_C: {
if (cdb_phyaddr_hi32 != 0) {
struct MessageUnit_C *reg = (struct MessageUnit_C *)acb->pmuC;
printk(KERN_NOTICE "arcmsr%d: cdb_phyaddr_hi32=0x%x\n",
acb->adapter_index, cdb_phyaddr_hi32);
writel(ARCMSR_SIGNATURE_SET_CONFIG, &reg->msgcode_rwbuffer[0]);
writel(cdb_phyaddr_hi32, &reg->msgcode_rwbuffer[1]);
writel(ARCMSR_INBOUND_MESG0_SET_CONFIG, &reg->inbound_msgaddr0);
writel(ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE, &reg->inbound_doorbell);
if (!arcmsr_hbc_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: 'set command Q window' \
timeout \n", acb->host->host_no);
return 1;
}
}
}
}
return 0;
}
static void arcmsr_wait_firmware_ready(struct AdapterControlBlock *acb)
{
uint32_t firmware_state = 0;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
do {
firmware_state = readl(&reg->outbound_msgaddr1);
} while ((firmware_state & ARCMSR_OUTBOUND_MESG1_FIRMWARE_OK) == 0);
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
do {
firmware_state = readl(reg->iop2drv_doorbell);
} while ((firmware_state & ARCMSR_MESSAGE_FIRMWARE_OK) == 0);
writel(ARCMSR_DRV2IOP_END_OF_INTERRUPT, reg->drv2iop_doorbell);
}
break;
case ACB_ADAPTER_TYPE_C: {
struct MessageUnit_C *reg = (struct MessageUnit_C *)acb->pmuC;
do {
firmware_state = readl(&reg->outbound_msgaddr1);
} while ((firmware_state & ARCMSR_HBCMU_MESSAGE_FIRMWARE_OK) == 0);
}
}
}
static void arcmsr_request_hba_device_map(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
if (unlikely(atomic_read(&acb->rq_map_token) == 0) || ((acb->acb_flags & ACB_F_BUS_RESET) != 0 ) || ((acb->acb_flags & ACB_F_ABORT) != 0 )){
mod_timer(&acb->eternal_timer, jiffies + msecs_to_jiffies(6 * HZ));
return;
} else {
acb->fw_flag = FW_NORMAL;
if (atomic_read(&acb->ante_token_value) == atomic_read(&acb->rq_map_token)){
atomic_set(&acb->rq_map_token, 16);
}
atomic_set(&acb->ante_token_value, atomic_read(&acb->rq_map_token));
if (atomic_dec_and_test(&acb->rq_map_token)) {
mod_timer(&acb->eternal_timer, jiffies + msecs_to_jiffies(6 * HZ));
return;
}
writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, &reg->inbound_msgaddr0);
mod_timer(&acb->eternal_timer, jiffies + msecs_to_jiffies(6 * HZ));
}
return;
}
static void arcmsr_request_hbb_device_map(struct AdapterControlBlock *acb)
{
struct MessageUnit_B __iomem *reg = acb->pmuB;
if (unlikely(atomic_read(&acb->rq_map_token) == 0) || ((acb->acb_flags & ACB_F_BUS_RESET) != 0 ) || ((acb->acb_flags & ACB_F_ABORT) != 0 )){
mod_timer(&acb->eternal_timer, jiffies + msecs_to_jiffies(6 * HZ));
return;
} else {
acb->fw_flag = FW_NORMAL;
if (atomic_read(&acb->ante_token_value) == atomic_read(&acb->rq_map_token)) {
atomic_set(&acb->rq_map_token, 16);
}
atomic_set(&acb->ante_token_value, atomic_read(&acb->rq_map_token));
if (atomic_dec_and_test(&acb->rq_map_token)) {
mod_timer(&acb->eternal_timer, jiffies + msecs_to_jiffies(6 * HZ));
return;
}
writel(ARCMSR_MESSAGE_GET_CONFIG, reg->drv2iop_doorbell);
mod_timer(&acb->eternal_timer, jiffies + msecs_to_jiffies(6 * HZ));
}
return;
}
static void arcmsr_request_hbc_device_map(struct AdapterControlBlock *acb)
{
struct MessageUnit_C __iomem *reg = acb->pmuC;
if (unlikely(atomic_read(&acb->rq_map_token) == 0) || ((acb->acb_flags & ACB_F_BUS_RESET) != 0) || ((acb->acb_flags & ACB_F_ABORT) != 0)) {
mod_timer(&acb->eternal_timer, jiffies + msecs_to_jiffies(6 * HZ));
return;
} else {
acb->fw_flag = FW_NORMAL;
if (atomic_read(&acb->ante_token_value) == atomic_read(&acb->rq_map_token)) {
atomic_set(&acb->rq_map_token, 16);
}
atomic_set(&acb->ante_token_value, atomic_read(&acb->rq_map_token));
if (atomic_dec_and_test(&acb->rq_map_token)) {
mod_timer(&acb->eternal_timer, jiffies + msecs_to_jiffies(6 * HZ));
return;
}
writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, &reg->inbound_msgaddr0);
writel(ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE, &reg->inbound_doorbell);
mod_timer(&acb->eternal_timer, jiffies + msecs_to_jiffies(6 * HZ));
}
return;
}
static void arcmsr_request_device_map(unsigned long pacb)
{
struct AdapterControlBlock *acb = (struct AdapterControlBlock *)pacb;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
arcmsr_request_hba_device_map(acb);
}
break;
case ACB_ADAPTER_TYPE_B: {
arcmsr_request_hbb_device_map(acb);
}
break;
case ACB_ADAPTER_TYPE_C: {
arcmsr_request_hbc_device_map(acb);
}
}
}
static void arcmsr_start_hba_bgrb(struct AdapterControlBlock *acb)
{
struct MessageUnit_A __iomem *reg = acb->pmuA;
acb->acb_flags |= ACB_F_MSG_START_BGRB;
writel(ARCMSR_INBOUND_MESG0_START_BGRB, &reg->inbound_msgaddr0);
if (!arcmsr_hba_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: wait 'start adapter background \
rebulid' timeout \n", acb->host->host_no);
}
}
static void arcmsr_start_hbb_bgrb(struct AdapterControlBlock *acb)
{
struct MessageUnit_B *reg = acb->pmuB;
acb->acb_flags |= ACB_F_MSG_START_BGRB;
writel(ARCMSR_MESSAGE_START_BGRB, reg->drv2iop_doorbell);
if (!arcmsr_hbb_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "arcmsr%d: wait 'start adapter background \
rebulid' timeout \n",acb->host->host_no);
}
}
static void arcmsr_start_hbc_bgrb(struct AdapterControlBlock *pACB)
{
struct MessageUnit_C *phbcmu = (struct MessageUnit_C *)pACB->pmuC;
pACB->acb_flags |= ACB_F_MSG_START_BGRB;
writel(ARCMSR_INBOUND_MESG0_START_BGRB, &phbcmu->inbound_msgaddr0);
writel(ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE, &phbcmu->inbound_doorbell);
if (!arcmsr_hbc_wait_msgint_ready(pACB)) {
printk(KERN_NOTICE "arcmsr%d: wait 'start adapter background \
rebulid' timeout \n", pACB->host->host_no);
}
return;
}
static void arcmsr_start_adapter_bgrb(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
arcmsr_start_hba_bgrb(acb);
break;
case ACB_ADAPTER_TYPE_B:
arcmsr_start_hbb_bgrb(acb);
break;
case ACB_ADAPTER_TYPE_C:
arcmsr_start_hbc_bgrb(acb);
}
}
static void arcmsr_clear_doorbell_queue_buffer(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct MessageUnit_A __iomem *reg = acb->pmuA;
uint32_t outbound_doorbell;
/* empty doorbell Qbuffer if door bell ringed */
outbound_doorbell = readl(&reg->outbound_doorbell);
/*clear doorbell interrupt */
writel(outbound_doorbell, &reg->outbound_doorbell);
writel(ARCMSR_INBOUND_DRIVER_DATA_READ_OK, &reg->inbound_doorbell);
}
break;
case ACB_ADAPTER_TYPE_B: {
struct MessageUnit_B *reg = acb->pmuB;
/*clear interrupt and message state*/
writel(ARCMSR_MESSAGE_INT_CLEAR_PATTERN, reg->iop2drv_doorbell);
writel(ARCMSR_DRV2IOP_DATA_READ_OK, reg->drv2iop_doorbell);
/* let IOP know data has been read */
}
break;
case ACB_ADAPTER_TYPE_C: {
struct MessageUnit_C *reg = (struct MessageUnit_C *)acb->pmuC;
uint32_t outbound_doorbell;
/* empty doorbell Qbuffer if door bell ringed */
outbound_doorbell = readl(&reg->outbound_doorbell);
writel(outbound_doorbell, &reg->outbound_doorbell_clear);
writel(ARCMSR_HBCMU_DRV2IOP_DATA_READ_OK, &reg->inbound_doorbell);
}
}
}
static void arcmsr_enable_eoi_mode(struct AdapterControlBlock *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
return;
case ACB_ADAPTER_TYPE_B:
{
struct MessageUnit_B *reg = acb->pmuB;
writel(ARCMSR_MESSAGE_ACTIVE_EOI_MODE, reg->drv2iop_doorbell);
if (!arcmsr_hbb_wait_msgint_ready(acb)) {
printk(KERN_NOTICE "ARCMSR IOP enables EOI_MODE TIMEOUT");
return;
}
}
break;
case ACB_ADAPTER_TYPE_C:
return;
}
return;
}
static void arcmsr_hardware_reset(struct AdapterControlBlock *acb)
{
uint8_t value[64];
int i, count = 0;
struct MessageUnit_A __iomem *pmuA = acb->pmuA;
struct MessageUnit_C __iomem *pmuC = acb->pmuC;
/* backup pci config data */
printk(KERN_NOTICE "arcmsr%d: executing hw bus reset .....\n", acb->host->host_no);
for (i = 0; i < 64; i++) {
pci_read_config_byte(acb->pdev, i, &value[i]);
}
/* hardware reset signal */
if ((acb->dev_id == 0x1680)) {
writel(ARCMSR_ARC1680_BUS_RESET, &pmuA->reserved1[0]);
} else if ((acb->dev_id == 0x1880)) {
do {
count++;
writel(0xF, &pmuC->write_sequence);
writel(0x4, &pmuC->write_sequence);
writel(0xB, &pmuC->write_sequence);
writel(0x2, &pmuC->write_sequence);
writel(0x7, &pmuC->write_sequence);
writel(0xD, &pmuC->write_sequence);
} while (((readl(&pmuC->host_diagnostic) & ARCMSR_ARC1880_DiagWrite_ENABLE) == 0) && (count < 5));
writel(ARCMSR_ARC1880_RESET_ADAPTER, &pmuC->host_diagnostic);
} else {
pci_write_config_byte(acb->pdev, 0x84, 0x20);
}
msleep(2000);
/* write back pci config data */
for (i = 0; i < 64; i++) {
pci_write_config_byte(acb->pdev, i, value[i]);
}
msleep(1000);
return;
}
static void arcmsr_iop_init(struct AdapterControlBlock *acb)
{
uint32_t intmask_org;
/* disable all outbound interrupt */
intmask_org = arcmsr_disable_outbound_ints(acb);
arcmsr_wait_firmware_ready(acb);
arcmsr_iop_confirm(acb);
/*start background rebuild*/
arcmsr_start_adapter_bgrb(acb);
/* empty doorbell Qbuffer if door bell ringed */
arcmsr_clear_doorbell_queue_buffer(acb);
arcmsr_enable_eoi_mode(acb);
/* enable outbound Post Queue,outbound doorbell Interrupt */
arcmsr_enable_outbound_ints(acb, intmask_org);
acb->acb_flags |= ACB_F_IOP_INITED;
}
static uint8_t arcmsr_iop_reset(struct AdapterControlBlock *acb)
{
struct CommandControlBlock *ccb;
uint32_t intmask_org;
uint8_t rtnval = 0x00;
int i = 0;
unsigned long flags;
if (atomic_read(&acb->ccboutstandingcount) != 0) {
/* disable all outbound interrupt */
intmask_org = arcmsr_disable_outbound_ints(acb);
/* talk to iop 331 outstanding command aborted */
rtnval = arcmsr_abort_allcmd(acb);
/* clear all outbound posted Q */
arcmsr_done4abort_postqueue(acb);
for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) {
ccb = acb->pccb_pool[i];
if (ccb->startdone == ARCMSR_CCB_START) {
scsi_dma_unmap(ccb->pcmd);
ccb->startdone = ARCMSR_CCB_DONE;
ccb->ccb_flags = 0;
spin_lock_irqsave(&acb->ccblist_lock, flags);
list_add_tail(&ccb->list, &acb->ccb_free_list);
spin_unlock_irqrestore(&acb->ccblist_lock, flags);
}
}
atomic_set(&acb->ccboutstandingcount, 0);
/* enable all outbound interrupt */
arcmsr_enable_outbound_ints(acb, intmask_org);
return rtnval;
}
return rtnval;
}
static int arcmsr_bus_reset(struct scsi_cmnd *cmd)
{
struct AdapterControlBlock *acb;
uint32_t intmask_org, outbound_doorbell;
int retry_count = 0;
int rtn = FAILED;
acb = (struct AdapterControlBlock *) cmd->device->host->hostdata;
printk(KERN_ERR "arcmsr: executing bus reset eh.....num_resets = %d, num_aborts = %d \n", acb->num_resets, acb->num_aborts);
acb->num_resets++;
switch(acb->adapter_type){
case ACB_ADAPTER_TYPE_A:{
if (acb->acb_flags & ACB_F_BUS_RESET){
long timeout;
printk(KERN_ERR "arcmsr: there is an bus reset eh proceeding.......\n");
timeout = wait_event_timeout(wait_q, (acb->acb_flags & ACB_F_BUS_RESET) == 0, 220*HZ);
if (timeout) {
return SUCCESS;
}
}
acb->acb_flags |= ACB_F_BUS_RESET;
if (!arcmsr_iop_reset(acb)) {
struct MessageUnit_A __iomem *reg;
reg = acb->pmuA;
arcmsr_hardware_reset(acb);
acb->acb_flags &= ~ACB_F_IOP_INITED;
sleep_again:
ssleep(ARCMSR_SLEEPTIME);
if ((readl(&reg->outbound_msgaddr1) & ARCMSR_OUTBOUND_MESG1_FIRMWARE_OK) == 0) {
printk(KERN_ERR "arcmsr%d: waiting for hw bus reset return, retry=%d\n", acb->host->host_no, retry_count);
if (retry_count > ARCMSR_RETRYCOUNT) {
acb->fw_flag = FW_DEADLOCK;
printk(KERN_ERR "arcmsr%d: waiting for hw bus reset return, RETRY TERMINATED!!\n", acb->host->host_no);
return FAILED;
}
retry_count++;
goto sleep_again;
}
acb->acb_flags |= ACB_F_IOP_INITED;
/* disable all outbound interrupt */
intmask_org = arcmsr_disable_outbound_ints(acb);
arcmsr_get_firmware_spec(acb);
arcmsr_start_adapter_bgrb(acb);
/* clear Qbuffer if door bell ringed */
outbound_doorbell = readl(&reg->outbound_doorbell);
writel(outbound_doorbell, &reg->outbound_doorbell); /*clear interrupt */
writel(ARCMSR_INBOUND_DRIVER_DATA_READ_OK, &reg->inbound_doorbell);
/* enable outbound Post Queue,outbound doorbell Interrupt */
arcmsr_enable_outbound_ints(acb, intmask_org);
atomic_set(&acb->rq_map_token, 16);
atomic_set(&acb->ante_token_value, 16);
acb->fw_flag = FW_NORMAL;
mod_timer(&acb->eternal_timer, jiffies + msecs_to_jiffies(6 * HZ));
acb->acb_flags &= ~ACB_F_BUS_RESET;
rtn = SUCCESS;
printk(KERN_ERR "arcmsr: scsi bus reset eh returns with success\n");
} else {
acb->acb_flags &= ~ACB_F_BUS_RESET;
atomic_set(&acb->rq_map_token, 16);
atomic_set(&acb->ante_token_value, 16);
acb->fw_flag = FW_NORMAL;
mod_timer(&acb->eternal_timer, jiffies + msecs_to_jiffies(6*HZ));
rtn = SUCCESS;
}
break;
}
case ACB_ADAPTER_TYPE_B:{
acb->acb_flags |= ACB_F_BUS_RESET;
if (!arcmsr_iop_reset(acb)) {
acb->acb_flags &= ~ACB_F_BUS_RESET;
rtn = FAILED;
} else {
acb->acb_flags &= ~ACB_F_BUS_RESET;
atomic_set(&acb->rq_map_token, 16);
atomic_set(&acb->ante_token_value, 16);
acb->fw_flag = FW_NORMAL;
mod_timer(&acb->eternal_timer, jiffies + msecs_to_jiffies(6 * HZ));
rtn = SUCCESS;
}
break;
}
case ACB_ADAPTER_TYPE_C:{
if (acb->acb_flags & ACB_F_BUS_RESET) {
long timeout;
printk(KERN_ERR "arcmsr: there is an bus reset eh proceeding.......\n");
timeout = wait_event_timeout(wait_q, (acb->acb_flags & ACB_F_BUS_RESET) == 0, 220*HZ);
if (timeout) {
return SUCCESS;
}
}
acb->acb_flags |= ACB_F_BUS_RESET;
if (!arcmsr_iop_reset(acb)) {
struct MessageUnit_C __iomem *reg;
reg = acb->pmuC;
arcmsr_hardware_reset(acb);
acb->acb_flags &= ~ACB_F_IOP_INITED;
sleep:
ssleep(ARCMSR_SLEEPTIME);
if ((readl(&reg->host_diagnostic) & 0x04) != 0) {
printk(KERN_ERR "arcmsr%d: waiting for hw bus reset return, retry=%d\n", acb->host->host_no, retry_count);
if (retry_count > ARCMSR_RETRYCOUNT) {
acb->fw_flag = FW_DEADLOCK;
printk(KERN_ERR "arcmsr%d: waiting for hw bus reset return, RETRY TERMINATED!!\n", acb->host->host_no);
return FAILED;
}
retry_count++;
goto sleep;
}
acb->acb_flags |= ACB_F_IOP_INITED;
/* disable all outbound interrupt */
intmask_org = arcmsr_disable_outbound_ints(acb);
arcmsr_get_firmware_spec(acb);
arcmsr_start_adapter_bgrb(acb);
/* clear Qbuffer if door bell ringed */
outbound_doorbell = readl(&reg->outbound_doorbell);
writel(outbound_doorbell, &reg->outbound_doorbell_clear); /*clear interrupt */
writel(ARCMSR_HBCMU_DRV2IOP_DATA_READ_OK, &reg->inbound_doorbell);
/* enable outbound Post Queue,outbound doorbell Interrupt */
arcmsr_enable_outbound_ints(acb, intmask_org);
atomic_set(&acb->rq_map_token, 16);
atomic_set(&acb->ante_token_value, 16);
acb->fw_flag = FW_NORMAL;
mod_timer(&acb->eternal_timer, jiffies + msecs_to_jiffies(6 * HZ));
acb->acb_flags &= ~ACB_F_BUS_RESET;
rtn = SUCCESS;
printk(KERN_ERR "arcmsr: scsi bus reset eh returns with success\n");
} else {
acb->acb_flags &= ~ACB_F_BUS_RESET;
atomic_set(&acb->rq_map_token, 16);
atomic_set(&acb->ante_token_value, 16);
acb->fw_flag = FW_NORMAL;
mod_timer(&acb->eternal_timer, jiffies + msecs_to_jiffies(6*HZ));
rtn = SUCCESS;
}
break;
}
}
return rtn;
}
static int arcmsr_abort_one_cmd(struct AdapterControlBlock *acb,
struct CommandControlBlock *ccb)
{
int rtn;
rtn = arcmsr_polling_ccbdone(acb, ccb);
return rtn;
}
static int arcmsr_abort(struct scsi_cmnd *cmd)
{
struct AdapterControlBlock *acb =
(struct AdapterControlBlock *)cmd->device->host->hostdata;
int i = 0;
int rtn = FAILED;
printk(KERN_NOTICE
"arcmsr%d: abort device command of scsi id = %d lun = %d \n",
acb->host->host_no, cmd->device->id, cmd->device->lun);
acb->acb_flags |= ACB_F_ABORT;
acb->num_aborts++;
/*
************************************************
** the all interrupt service routine is locked
** we need to handle it as soon as possible and exit
************************************************
*/
if (!atomic_read(&acb->ccboutstandingcount))
return rtn;
for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) {
struct CommandControlBlock *ccb = acb->pccb_pool[i];
if (ccb->startdone == ARCMSR_CCB_START && ccb->pcmd == cmd) {
ccb->startdone = ARCMSR_CCB_ABORTED;
rtn = arcmsr_abort_one_cmd(acb, ccb);
break;
}
}
acb->acb_flags &= ~ACB_F_ABORT;
return rtn;
}
static const char *arcmsr_info(struct Scsi_Host *host)
{
struct AdapterControlBlock *acb =
(struct AdapterControlBlock *) host->hostdata;
static char buf[256];
char *type;
int raid6 = 1;
switch (acb->pdev->device) {
case PCI_DEVICE_ID_ARECA_1110:
case PCI_DEVICE_ID_ARECA_1200:
case PCI_DEVICE_ID_ARECA_1202:
case PCI_DEVICE_ID_ARECA_1210:
raid6 = 0;
/*FALLTHRU*/
case PCI_DEVICE_ID_ARECA_1120:
case PCI_DEVICE_ID_ARECA_1130:
case PCI_DEVICE_ID_ARECA_1160:
case PCI_DEVICE_ID_ARECA_1170:
case PCI_DEVICE_ID_ARECA_1201:
case PCI_DEVICE_ID_ARECA_1220:
case PCI_DEVICE_ID_ARECA_1230:
case PCI_DEVICE_ID_ARECA_1260:
case PCI_DEVICE_ID_ARECA_1270:
case PCI_DEVICE_ID_ARECA_1280:
type = "SATA";
break;
case PCI_DEVICE_ID_ARECA_1380:
case PCI_DEVICE_ID_ARECA_1381:
case PCI_DEVICE_ID_ARECA_1680:
case PCI_DEVICE_ID_ARECA_1681:
case PCI_DEVICE_ID_ARECA_1880:
type = "SAS";
break;
default:
type = "X-TYPE";
break;
}
sprintf(buf, "Areca %s Host Adapter RAID Controller%s\n %s",
type, raid6 ? "( RAID6 capable)" : "",
ARCMSR_DRIVER_VERSION);
return buf;
}