2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-25 15:15:33 +08:00
linux-next/drivers/spi/spi-fsl-lpspi.c
Wang Li a036754979
spi: fsl-lpspi: Fix PM reference leak in lpspi_prepare_xfer_hardware()
pm_runtime_get_sync will increment pm usage counter even it failed.
Forgetting to putting operation will result in reference leak here.
Fix it by replacing it with pm_runtime_resume_and_get to keep usage
counter balanced.

Fixes: 944c01a889 ("spi: lpspi: enable runtime pm for lpspi")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Wang Li <wangli74@huawei.com>
Link: https://lore.kernel.org/r/20210409095430.29868-1-wangli74@huawei.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2021-04-09 13:43:59 +01:00

988 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0+
//
// Freescale i.MX7ULP LPSPI driver
//
// Copyright 2016 Freescale Semiconductor, Inc.
// Copyright 2018 NXP Semiconductors
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/platform_data/dma-imx.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
#include <linux/types.h>
#define DRIVER_NAME "fsl_lpspi"
#define FSL_LPSPI_RPM_TIMEOUT 50 /* 50ms */
/* The maximum bytes that edma can transfer once.*/
#define FSL_LPSPI_MAX_EDMA_BYTES ((1 << 15) - 1)
/* i.MX7ULP LPSPI registers */
#define IMX7ULP_VERID 0x0
#define IMX7ULP_PARAM 0x4
#define IMX7ULP_CR 0x10
#define IMX7ULP_SR 0x14
#define IMX7ULP_IER 0x18
#define IMX7ULP_DER 0x1c
#define IMX7ULP_CFGR0 0x20
#define IMX7ULP_CFGR1 0x24
#define IMX7ULP_DMR0 0x30
#define IMX7ULP_DMR1 0x34
#define IMX7ULP_CCR 0x40
#define IMX7ULP_FCR 0x58
#define IMX7ULP_FSR 0x5c
#define IMX7ULP_TCR 0x60
#define IMX7ULP_TDR 0x64
#define IMX7ULP_RSR 0x70
#define IMX7ULP_RDR 0x74
/* General control register field define */
#define CR_RRF BIT(9)
#define CR_RTF BIT(8)
#define CR_RST BIT(1)
#define CR_MEN BIT(0)
#define SR_MBF BIT(24)
#define SR_TCF BIT(10)
#define SR_FCF BIT(9)
#define SR_RDF BIT(1)
#define SR_TDF BIT(0)
#define IER_TCIE BIT(10)
#define IER_FCIE BIT(9)
#define IER_RDIE BIT(1)
#define IER_TDIE BIT(0)
#define DER_RDDE BIT(1)
#define DER_TDDE BIT(0)
#define CFGR1_PCSCFG BIT(27)
#define CFGR1_PINCFG (BIT(24)|BIT(25))
#define CFGR1_PCSPOL BIT(8)
#define CFGR1_NOSTALL BIT(3)
#define CFGR1_MASTER BIT(0)
#define FSR_TXCOUNT (0xFF)
#define RSR_RXEMPTY BIT(1)
#define TCR_CPOL BIT(31)
#define TCR_CPHA BIT(30)
#define TCR_CONT BIT(21)
#define TCR_CONTC BIT(20)
#define TCR_RXMSK BIT(19)
#define TCR_TXMSK BIT(18)
struct lpspi_config {
u8 bpw;
u8 chip_select;
u8 prescale;
u16 mode;
u32 speed_hz;
};
struct fsl_lpspi_data {
struct device *dev;
void __iomem *base;
unsigned long base_phys;
struct clk *clk_ipg;
struct clk *clk_per;
bool is_slave;
bool is_only_cs1;
bool is_first_byte;
void *rx_buf;
const void *tx_buf;
void (*tx)(struct fsl_lpspi_data *);
void (*rx)(struct fsl_lpspi_data *);
u32 remain;
u8 watermark;
u8 txfifosize;
u8 rxfifosize;
struct lpspi_config config;
struct completion xfer_done;
bool slave_aborted;
/* DMA */
bool usedma;
struct completion dma_rx_completion;
struct completion dma_tx_completion;
};
static const struct of_device_id fsl_lpspi_dt_ids[] = {
{ .compatible = "fsl,imx7ulp-spi", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_lpspi_dt_ids);
#define LPSPI_BUF_RX(type) \
static void fsl_lpspi_buf_rx_##type(struct fsl_lpspi_data *fsl_lpspi) \
{ \
unsigned int val = readl(fsl_lpspi->base + IMX7ULP_RDR); \
\
if (fsl_lpspi->rx_buf) { \
*(type *)fsl_lpspi->rx_buf = val; \
fsl_lpspi->rx_buf += sizeof(type); \
} \
}
#define LPSPI_BUF_TX(type) \
static void fsl_lpspi_buf_tx_##type(struct fsl_lpspi_data *fsl_lpspi) \
{ \
type val = 0; \
\
if (fsl_lpspi->tx_buf) { \
val = *(type *)fsl_lpspi->tx_buf; \
fsl_lpspi->tx_buf += sizeof(type); \
} \
\
fsl_lpspi->remain -= sizeof(type); \
writel(val, fsl_lpspi->base + IMX7ULP_TDR); \
}
LPSPI_BUF_RX(u8)
LPSPI_BUF_TX(u8)
LPSPI_BUF_RX(u16)
LPSPI_BUF_TX(u16)
LPSPI_BUF_RX(u32)
LPSPI_BUF_TX(u32)
static void fsl_lpspi_intctrl(struct fsl_lpspi_data *fsl_lpspi,
unsigned int enable)
{
writel(enable, fsl_lpspi->base + IMX7ULP_IER);
}
static int fsl_lpspi_bytes_per_word(const int bpw)
{
return DIV_ROUND_UP(bpw, BITS_PER_BYTE);
}
static bool fsl_lpspi_can_dma(struct spi_controller *controller,
struct spi_device *spi,
struct spi_transfer *transfer)
{
unsigned int bytes_per_word;
if (!controller->dma_rx)
return false;
bytes_per_word = fsl_lpspi_bytes_per_word(transfer->bits_per_word);
switch (bytes_per_word) {
case 1:
case 2:
case 4:
break;
default:
return false;
}
return true;
}
static int lpspi_prepare_xfer_hardware(struct spi_controller *controller)
{
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
int ret;
ret = pm_runtime_resume_and_get(fsl_lpspi->dev);
if (ret < 0) {
dev_err(fsl_lpspi->dev, "failed to enable clock\n");
return ret;
}
return 0;
}
static int lpspi_unprepare_xfer_hardware(struct spi_controller *controller)
{
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
pm_runtime_mark_last_busy(fsl_lpspi->dev);
pm_runtime_put_autosuspend(fsl_lpspi->dev);
return 0;
}
static void fsl_lpspi_write_tx_fifo(struct fsl_lpspi_data *fsl_lpspi)
{
u8 txfifo_cnt;
u32 temp;
txfifo_cnt = readl(fsl_lpspi->base + IMX7ULP_FSR) & 0xff;
while (txfifo_cnt < fsl_lpspi->txfifosize) {
if (!fsl_lpspi->remain)
break;
fsl_lpspi->tx(fsl_lpspi);
txfifo_cnt++;
}
if (txfifo_cnt < fsl_lpspi->txfifosize) {
if (!fsl_lpspi->is_slave) {
temp = readl(fsl_lpspi->base + IMX7ULP_TCR);
temp &= ~TCR_CONTC;
writel(temp, fsl_lpspi->base + IMX7ULP_TCR);
}
fsl_lpspi_intctrl(fsl_lpspi, IER_FCIE);
} else
fsl_lpspi_intctrl(fsl_lpspi, IER_TDIE);
}
static void fsl_lpspi_read_rx_fifo(struct fsl_lpspi_data *fsl_lpspi)
{
while (!(readl(fsl_lpspi->base + IMX7ULP_RSR) & RSR_RXEMPTY))
fsl_lpspi->rx(fsl_lpspi);
}
static void fsl_lpspi_set_cmd(struct fsl_lpspi_data *fsl_lpspi)
{
u32 temp = 0;
temp |= fsl_lpspi->config.bpw - 1;
temp |= (fsl_lpspi->config.mode & 0x3) << 30;
temp |= (fsl_lpspi->config.chip_select & 0x3) << 24;
if (!fsl_lpspi->is_slave) {
temp |= fsl_lpspi->config.prescale << 27;
/*
* Set TCR_CONT will keep SS asserted after current transfer.
* For the first transfer, clear TCR_CONTC to assert SS.
* For subsequent transfer, set TCR_CONTC to keep SS asserted.
*/
if (!fsl_lpspi->usedma) {
temp |= TCR_CONT;
if (fsl_lpspi->is_first_byte)
temp &= ~TCR_CONTC;
else
temp |= TCR_CONTC;
}
}
writel(temp, fsl_lpspi->base + IMX7ULP_TCR);
dev_dbg(fsl_lpspi->dev, "TCR=0x%x\n", temp);
}
static void fsl_lpspi_set_watermark(struct fsl_lpspi_data *fsl_lpspi)
{
u32 temp;
if (!fsl_lpspi->usedma)
temp = fsl_lpspi->watermark >> 1 |
(fsl_lpspi->watermark >> 1) << 16;
else
temp = fsl_lpspi->watermark >> 1;
writel(temp, fsl_lpspi->base + IMX7ULP_FCR);
dev_dbg(fsl_lpspi->dev, "FCR=0x%x\n", temp);
}
static int fsl_lpspi_set_bitrate(struct fsl_lpspi_data *fsl_lpspi)
{
struct lpspi_config config = fsl_lpspi->config;
unsigned int perclk_rate, scldiv;
u8 prescale;
perclk_rate = clk_get_rate(fsl_lpspi->clk_per);
if (config.speed_hz > perclk_rate / 2) {
dev_err(fsl_lpspi->dev,
"per-clk should be at least two times of transfer speed");
return -EINVAL;
}
for (prescale = 0; prescale < 8; prescale++) {
scldiv = perclk_rate / config.speed_hz / (1 << prescale) - 2;
if (scldiv < 256) {
fsl_lpspi->config.prescale = prescale;
break;
}
}
if (scldiv >= 256)
return -EINVAL;
writel(scldiv | (scldiv << 8) | ((scldiv >> 1) << 16),
fsl_lpspi->base + IMX7ULP_CCR);
dev_dbg(fsl_lpspi->dev, "perclk=%d, speed=%d, prescale=%d, scldiv=%d\n",
perclk_rate, config.speed_hz, prescale, scldiv);
return 0;
}
static int fsl_lpspi_dma_configure(struct spi_controller *controller)
{
int ret;
enum dma_slave_buswidth buswidth;
struct dma_slave_config rx = {}, tx = {};
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
switch (fsl_lpspi_bytes_per_word(fsl_lpspi->config.bpw)) {
case 4:
buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
break;
case 2:
buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
break;
case 1:
buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
break;
default:
return -EINVAL;
}
tx.direction = DMA_MEM_TO_DEV;
tx.dst_addr = fsl_lpspi->base_phys + IMX7ULP_TDR;
tx.dst_addr_width = buswidth;
tx.dst_maxburst = 1;
ret = dmaengine_slave_config(controller->dma_tx, &tx);
if (ret) {
dev_err(fsl_lpspi->dev, "TX dma configuration failed with %d\n",
ret);
return ret;
}
rx.direction = DMA_DEV_TO_MEM;
rx.src_addr = fsl_lpspi->base_phys + IMX7ULP_RDR;
rx.src_addr_width = buswidth;
rx.src_maxburst = 1;
ret = dmaengine_slave_config(controller->dma_rx, &rx);
if (ret) {
dev_err(fsl_lpspi->dev, "RX dma configuration failed with %d\n",
ret);
return ret;
}
return 0;
}
static int fsl_lpspi_config(struct fsl_lpspi_data *fsl_lpspi)
{
u32 temp;
int ret;
if (!fsl_lpspi->is_slave) {
ret = fsl_lpspi_set_bitrate(fsl_lpspi);
if (ret)
return ret;
}
fsl_lpspi_set_watermark(fsl_lpspi);
if (!fsl_lpspi->is_slave)
temp = CFGR1_MASTER;
else
temp = CFGR1_PINCFG;
if (fsl_lpspi->config.mode & SPI_CS_HIGH)
temp |= CFGR1_PCSPOL;
writel(temp, fsl_lpspi->base + IMX7ULP_CFGR1);
temp = readl(fsl_lpspi->base + IMX7ULP_CR);
temp |= CR_RRF | CR_RTF | CR_MEN;
writel(temp, fsl_lpspi->base + IMX7ULP_CR);
temp = 0;
if (fsl_lpspi->usedma)
temp = DER_TDDE | DER_RDDE;
writel(temp, fsl_lpspi->base + IMX7ULP_DER);
return 0;
}
static int fsl_lpspi_setup_transfer(struct spi_controller *controller,
struct spi_device *spi,
struct spi_transfer *t)
{
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(spi->controller);
if (t == NULL)
return -EINVAL;
fsl_lpspi->config.mode = spi->mode;
fsl_lpspi->config.bpw = t->bits_per_word;
fsl_lpspi->config.speed_hz = t->speed_hz;
if (fsl_lpspi->is_only_cs1)
fsl_lpspi->config.chip_select = 1;
else
fsl_lpspi->config.chip_select = spi->chip_select;
if (!fsl_lpspi->config.speed_hz)
fsl_lpspi->config.speed_hz = spi->max_speed_hz;
if (!fsl_lpspi->config.bpw)
fsl_lpspi->config.bpw = spi->bits_per_word;
/* Initialize the functions for transfer */
if (fsl_lpspi->config.bpw <= 8) {
fsl_lpspi->rx = fsl_lpspi_buf_rx_u8;
fsl_lpspi->tx = fsl_lpspi_buf_tx_u8;
} else if (fsl_lpspi->config.bpw <= 16) {
fsl_lpspi->rx = fsl_lpspi_buf_rx_u16;
fsl_lpspi->tx = fsl_lpspi_buf_tx_u16;
} else {
fsl_lpspi->rx = fsl_lpspi_buf_rx_u32;
fsl_lpspi->tx = fsl_lpspi_buf_tx_u32;
}
if (t->len <= fsl_lpspi->txfifosize)
fsl_lpspi->watermark = t->len;
else
fsl_lpspi->watermark = fsl_lpspi->txfifosize;
if (fsl_lpspi_can_dma(controller, spi, t))
fsl_lpspi->usedma = true;
else
fsl_lpspi->usedma = false;
return fsl_lpspi_config(fsl_lpspi);
}
static int fsl_lpspi_slave_abort(struct spi_controller *controller)
{
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
fsl_lpspi->slave_aborted = true;
if (!fsl_lpspi->usedma)
complete(&fsl_lpspi->xfer_done);
else {
complete(&fsl_lpspi->dma_tx_completion);
complete(&fsl_lpspi->dma_rx_completion);
}
return 0;
}
static int fsl_lpspi_wait_for_completion(struct spi_controller *controller)
{
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
if (fsl_lpspi->is_slave) {
if (wait_for_completion_interruptible(&fsl_lpspi->xfer_done) ||
fsl_lpspi->slave_aborted) {
dev_dbg(fsl_lpspi->dev, "interrupted\n");
return -EINTR;
}
} else {
if (!wait_for_completion_timeout(&fsl_lpspi->xfer_done, HZ)) {
dev_dbg(fsl_lpspi->dev, "wait for completion timeout\n");
return -ETIMEDOUT;
}
}
return 0;
}
static int fsl_lpspi_reset(struct fsl_lpspi_data *fsl_lpspi)
{
u32 temp;
if (!fsl_lpspi->usedma) {
/* Disable all interrupt */
fsl_lpspi_intctrl(fsl_lpspi, 0);
}
/* W1C for all flags in SR */
temp = 0x3F << 8;
writel(temp, fsl_lpspi->base + IMX7ULP_SR);
/* Clear FIFO and disable module */
temp = CR_RRF | CR_RTF;
writel(temp, fsl_lpspi->base + IMX7ULP_CR);
return 0;
}
static void fsl_lpspi_dma_rx_callback(void *cookie)
{
struct fsl_lpspi_data *fsl_lpspi = (struct fsl_lpspi_data *)cookie;
complete(&fsl_lpspi->dma_rx_completion);
}
static void fsl_lpspi_dma_tx_callback(void *cookie)
{
struct fsl_lpspi_data *fsl_lpspi = (struct fsl_lpspi_data *)cookie;
complete(&fsl_lpspi->dma_tx_completion);
}
static int fsl_lpspi_calculate_timeout(struct fsl_lpspi_data *fsl_lpspi,
int size)
{
unsigned long timeout = 0;
/* Time with actual data transfer and CS change delay related to HW */
timeout = (8 + 4) * size / fsl_lpspi->config.speed_hz;
/* Add extra second for scheduler related activities */
timeout += 1;
/* Double calculated timeout */
return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC);
}
static int fsl_lpspi_dma_transfer(struct spi_controller *controller,
struct fsl_lpspi_data *fsl_lpspi,
struct spi_transfer *transfer)
{
struct dma_async_tx_descriptor *desc_tx, *desc_rx;
unsigned long transfer_timeout;
unsigned long timeout;
struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
int ret;
ret = fsl_lpspi_dma_configure(controller);
if (ret)
return ret;
desc_rx = dmaengine_prep_slave_sg(controller->dma_rx,
rx->sgl, rx->nents, DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc_rx)
return -EINVAL;
desc_rx->callback = fsl_lpspi_dma_rx_callback;
desc_rx->callback_param = (void *)fsl_lpspi;
dmaengine_submit(desc_rx);
reinit_completion(&fsl_lpspi->dma_rx_completion);
dma_async_issue_pending(controller->dma_rx);
desc_tx = dmaengine_prep_slave_sg(controller->dma_tx,
tx->sgl, tx->nents, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc_tx) {
dmaengine_terminate_all(controller->dma_tx);
return -EINVAL;
}
desc_tx->callback = fsl_lpspi_dma_tx_callback;
desc_tx->callback_param = (void *)fsl_lpspi;
dmaengine_submit(desc_tx);
reinit_completion(&fsl_lpspi->dma_tx_completion);
dma_async_issue_pending(controller->dma_tx);
fsl_lpspi->slave_aborted = false;
if (!fsl_lpspi->is_slave) {
transfer_timeout = fsl_lpspi_calculate_timeout(fsl_lpspi,
transfer->len);
/* Wait eDMA to finish the data transfer.*/
timeout = wait_for_completion_timeout(&fsl_lpspi->dma_tx_completion,
transfer_timeout);
if (!timeout) {
dev_err(fsl_lpspi->dev, "I/O Error in DMA TX\n");
dmaengine_terminate_all(controller->dma_tx);
dmaengine_terminate_all(controller->dma_rx);
fsl_lpspi_reset(fsl_lpspi);
return -ETIMEDOUT;
}
timeout = wait_for_completion_timeout(&fsl_lpspi->dma_rx_completion,
transfer_timeout);
if (!timeout) {
dev_err(fsl_lpspi->dev, "I/O Error in DMA RX\n");
dmaengine_terminate_all(controller->dma_tx);
dmaengine_terminate_all(controller->dma_rx);
fsl_lpspi_reset(fsl_lpspi);
return -ETIMEDOUT;
}
} else {
if (wait_for_completion_interruptible(&fsl_lpspi->dma_tx_completion) ||
fsl_lpspi->slave_aborted) {
dev_dbg(fsl_lpspi->dev,
"I/O Error in DMA TX interrupted\n");
dmaengine_terminate_all(controller->dma_tx);
dmaengine_terminate_all(controller->dma_rx);
fsl_lpspi_reset(fsl_lpspi);
return -EINTR;
}
if (wait_for_completion_interruptible(&fsl_lpspi->dma_rx_completion) ||
fsl_lpspi->slave_aborted) {
dev_dbg(fsl_lpspi->dev,
"I/O Error in DMA RX interrupted\n");
dmaengine_terminate_all(controller->dma_tx);
dmaengine_terminate_all(controller->dma_rx);
fsl_lpspi_reset(fsl_lpspi);
return -EINTR;
}
}
fsl_lpspi_reset(fsl_lpspi);
return 0;
}
static void fsl_lpspi_dma_exit(struct spi_controller *controller)
{
if (controller->dma_rx) {
dma_release_channel(controller->dma_rx);
controller->dma_rx = NULL;
}
if (controller->dma_tx) {
dma_release_channel(controller->dma_tx);
controller->dma_tx = NULL;
}
}
static int fsl_lpspi_dma_init(struct device *dev,
struct fsl_lpspi_data *fsl_lpspi,
struct spi_controller *controller)
{
int ret;
/* Prepare for TX DMA: */
controller->dma_tx = dma_request_chan(dev, "tx");
if (IS_ERR(controller->dma_tx)) {
ret = PTR_ERR(controller->dma_tx);
dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret);
controller->dma_tx = NULL;
goto err;
}
/* Prepare for RX DMA: */
controller->dma_rx = dma_request_chan(dev, "rx");
if (IS_ERR(controller->dma_rx)) {
ret = PTR_ERR(controller->dma_rx);
dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret);
controller->dma_rx = NULL;
goto err;
}
init_completion(&fsl_lpspi->dma_rx_completion);
init_completion(&fsl_lpspi->dma_tx_completion);
controller->can_dma = fsl_lpspi_can_dma;
controller->max_dma_len = FSL_LPSPI_MAX_EDMA_BYTES;
return 0;
err:
fsl_lpspi_dma_exit(controller);
return ret;
}
static int fsl_lpspi_pio_transfer(struct spi_controller *controller,
struct spi_transfer *t)
{
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
int ret;
fsl_lpspi->tx_buf = t->tx_buf;
fsl_lpspi->rx_buf = t->rx_buf;
fsl_lpspi->remain = t->len;
reinit_completion(&fsl_lpspi->xfer_done);
fsl_lpspi->slave_aborted = false;
fsl_lpspi_write_tx_fifo(fsl_lpspi);
ret = fsl_lpspi_wait_for_completion(controller);
if (ret)
return ret;
fsl_lpspi_reset(fsl_lpspi);
return 0;
}
static int fsl_lpspi_transfer_one(struct spi_controller *controller,
struct spi_device *spi,
struct spi_transfer *t)
{
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
int ret;
fsl_lpspi->is_first_byte = true;
ret = fsl_lpspi_setup_transfer(controller, spi, t);
if (ret < 0)
return ret;
fsl_lpspi_set_cmd(fsl_lpspi);
fsl_lpspi->is_first_byte = false;
if (fsl_lpspi->usedma)
ret = fsl_lpspi_dma_transfer(controller, fsl_lpspi, t);
else
ret = fsl_lpspi_pio_transfer(controller, t);
if (ret < 0)
return ret;
return 0;
}
static irqreturn_t fsl_lpspi_isr(int irq, void *dev_id)
{
u32 temp_SR, temp_IER;
struct fsl_lpspi_data *fsl_lpspi = dev_id;
temp_IER = readl(fsl_lpspi->base + IMX7ULP_IER);
fsl_lpspi_intctrl(fsl_lpspi, 0);
temp_SR = readl(fsl_lpspi->base + IMX7ULP_SR);
fsl_lpspi_read_rx_fifo(fsl_lpspi);
if ((temp_SR & SR_TDF) && (temp_IER & IER_TDIE)) {
fsl_lpspi_write_tx_fifo(fsl_lpspi);
return IRQ_HANDLED;
}
if (temp_SR & SR_MBF ||
readl(fsl_lpspi->base + IMX7ULP_FSR) & FSR_TXCOUNT) {
writel(SR_FCF, fsl_lpspi->base + IMX7ULP_SR);
fsl_lpspi_intctrl(fsl_lpspi, IER_FCIE);
return IRQ_HANDLED;
}
if (temp_SR & SR_FCF && (temp_IER & IER_FCIE)) {
writel(SR_FCF, fsl_lpspi->base + IMX7ULP_SR);
complete(&fsl_lpspi->xfer_done);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
#ifdef CONFIG_PM
static int fsl_lpspi_runtime_resume(struct device *dev)
{
struct spi_controller *controller = dev_get_drvdata(dev);
struct fsl_lpspi_data *fsl_lpspi;
int ret;
fsl_lpspi = spi_controller_get_devdata(controller);
ret = clk_prepare_enable(fsl_lpspi->clk_per);
if (ret)
return ret;
ret = clk_prepare_enable(fsl_lpspi->clk_ipg);
if (ret) {
clk_disable_unprepare(fsl_lpspi->clk_per);
return ret;
}
return 0;
}
static int fsl_lpspi_runtime_suspend(struct device *dev)
{
struct spi_controller *controller = dev_get_drvdata(dev);
struct fsl_lpspi_data *fsl_lpspi;
fsl_lpspi = spi_controller_get_devdata(controller);
clk_disable_unprepare(fsl_lpspi->clk_per);
clk_disable_unprepare(fsl_lpspi->clk_ipg);
return 0;
}
#endif
static int fsl_lpspi_init_rpm(struct fsl_lpspi_data *fsl_lpspi)
{
struct device *dev = fsl_lpspi->dev;
pm_runtime_enable(dev);
pm_runtime_set_autosuspend_delay(dev, FSL_LPSPI_RPM_TIMEOUT);
pm_runtime_use_autosuspend(dev);
return 0;
}
static int fsl_lpspi_probe(struct platform_device *pdev)
{
struct fsl_lpspi_data *fsl_lpspi;
struct spi_controller *controller;
struct resource *res;
int ret, irq;
u32 temp;
bool is_slave;
is_slave = of_property_read_bool((&pdev->dev)->of_node, "spi-slave");
if (is_slave)
controller = spi_alloc_slave(&pdev->dev,
sizeof(struct fsl_lpspi_data));
else
controller = spi_alloc_master(&pdev->dev,
sizeof(struct fsl_lpspi_data));
if (!controller)
return -ENOMEM;
platform_set_drvdata(pdev, controller);
fsl_lpspi = spi_controller_get_devdata(controller);
fsl_lpspi->dev = &pdev->dev;
fsl_lpspi->is_slave = is_slave;
fsl_lpspi->is_only_cs1 = of_property_read_bool((&pdev->dev)->of_node,
"fsl,spi-only-use-cs1-sel");
controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
controller->transfer_one = fsl_lpspi_transfer_one;
controller->prepare_transfer_hardware = lpspi_prepare_xfer_hardware;
controller->unprepare_transfer_hardware = lpspi_unprepare_xfer_hardware;
controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
controller->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
controller->dev.of_node = pdev->dev.of_node;
controller->bus_num = pdev->id;
controller->slave_abort = fsl_lpspi_slave_abort;
if (!fsl_lpspi->is_slave)
controller->use_gpio_descriptors = true;
init_completion(&fsl_lpspi->xfer_done);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
fsl_lpspi->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(fsl_lpspi->base)) {
ret = PTR_ERR(fsl_lpspi->base);
goto out_controller_put;
}
fsl_lpspi->base_phys = res->start;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = irq;
goto out_controller_put;
}
ret = devm_request_irq(&pdev->dev, irq, fsl_lpspi_isr, 0,
dev_name(&pdev->dev), fsl_lpspi);
if (ret) {
dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
goto out_controller_put;
}
fsl_lpspi->clk_per = devm_clk_get(&pdev->dev, "per");
if (IS_ERR(fsl_lpspi->clk_per)) {
ret = PTR_ERR(fsl_lpspi->clk_per);
goto out_controller_put;
}
fsl_lpspi->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
if (IS_ERR(fsl_lpspi->clk_ipg)) {
ret = PTR_ERR(fsl_lpspi->clk_ipg);
goto out_controller_put;
}
/* enable the clock */
ret = fsl_lpspi_init_rpm(fsl_lpspi);
if (ret)
goto out_controller_put;
ret = pm_runtime_get_sync(fsl_lpspi->dev);
if (ret < 0) {
dev_err(fsl_lpspi->dev, "failed to enable clock\n");
goto out_pm_get;
}
temp = readl(fsl_lpspi->base + IMX7ULP_PARAM);
fsl_lpspi->txfifosize = 1 << (temp & 0x0f);
fsl_lpspi->rxfifosize = 1 << ((temp >> 8) & 0x0f);
ret = fsl_lpspi_dma_init(&pdev->dev, fsl_lpspi, controller);
if (ret == -EPROBE_DEFER)
goto out_pm_get;
if (ret < 0)
dev_err(&pdev->dev, "dma setup error %d, use pio\n", ret);
ret = devm_spi_register_controller(&pdev->dev, controller);
if (ret < 0) {
dev_err(&pdev->dev, "spi_register_controller error.\n");
goto out_pm_get;
}
pm_runtime_mark_last_busy(fsl_lpspi->dev);
pm_runtime_put_autosuspend(fsl_lpspi->dev);
return 0;
out_pm_get:
pm_runtime_dont_use_autosuspend(fsl_lpspi->dev);
pm_runtime_put_sync(fsl_lpspi->dev);
pm_runtime_disable(fsl_lpspi->dev);
out_controller_put:
spi_controller_put(controller);
return ret;
}
static int fsl_lpspi_remove(struct platform_device *pdev)
{
struct spi_controller *controller = platform_get_drvdata(pdev);
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
pm_runtime_disable(fsl_lpspi->dev);
return 0;
}
static int __maybe_unused fsl_lpspi_suspend(struct device *dev)
{
int ret;
pinctrl_pm_select_sleep_state(dev);
ret = pm_runtime_force_suspend(dev);
return ret;
}
static int __maybe_unused fsl_lpspi_resume(struct device *dev)
{
int ret;
ret = pm_runtime_force_resume(dev);
if (ret) {
dev_err(dev, "Error in resume: %d\n", ret);
return ret;
}
pinctrl_pm_select_default_state(dev);
return 0;
}
static const struct dev_pm_ops fsl_lpspi_pm_ops = {
SET_RUNTIME_PM_OPS(fsl_lpspi_runtime_suspend,
fsl_lpspi_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(fsl_lpspi_suspend, fsl_lpspi_resume)
};
static struct platform_driver fsl_lpspi_driver = {
.driver = {
.name = DRIVER_NAME,
.of_match_table = fsl_lpspi_dt_ids,
.pm = &fsl_lpspi_pm_ops,
},
.probe = fsl_lpspi_probe,
.remove = fsl_lpspi_remove,
};
module_platform_driver(fsl_lpspi_driver);
MODULE_DESCRIPTION("LPSPI Controller driver");
MODULE_AUTHOR("Gao Pan <pandy.gao@nxp.com>");
MODULE_LICENSE("GPL");