mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-18 18:43:59 +08:00
8874347066
The intermediate result of the old term (4UL * 1024 * 1024 * 1024) is 4 294 967 296 or 0x100000000 which is no problem on 64 bit systems. The patch does not change the later overall result of 0x100000 for MAX_DMA32_PFN (after it has been shifted by PAGE_SHIFT). The new calculation yields the same result, but does not require 64 bit arithmetic. On 32 bit systems the old calculation suffers from an arithmetic overflow in that intermediate term in braces: 4UL aka unsigned long int is 4 byte wide and an arithmetic overflow happens (the 0x100000000 does not fit in 4 bytes), the in braces result is truncated to zero, the following right shift does not alter that, so MAX_DMA32_PFN evaluates to 0 on 32 bit systems. That wrong value is a problem in a comparision against MAX_DMA32_PFN in the init code for swiotlb in pci_swiotlb_detect_4gb() to decide if swiotlb should be active. That comparison yields the opposite result, when compiling on 32 bit systems. This was not possible before1b7e03ef75
("x86, NUMA: Enable emulation on 32bit too") when that MAX_DMA32_PFN was first made visible to x86_32 (and which landed in v3.0). In practice this wasn't a problem, unless CONFIG_SWIOTLB is active on x86-32. However if one has set CONFIG_IOMMU_INTEL, sincec5a5dc4cbb
("iommu/vt-d: Don't switch off swiotlb if bounce page is used") there's a dependency on CONFIG_SWIOTLB, which was not necessarily active before. That landed in v5.4, where we noticed it in the fli4l Linux distribution. We have CONFIG_IOMMU_INTEL active on both 32 and 64 bit kernel configs there (I could not find out why, so let's just say historical reasons). The effect is at boot time 64 MiB (default size) were allocated for bounce buffers now, which is a noticeable amount of memory on small systems like pcengines ALIX 2D3 with 256 MiB memory, which are still frequently used as home routers. We noticed this effect when migrating from kernel v4.19 (LTS) to v5.4 (LTS) in fli4l and got that kernel messages for example: Linux version 5.4.22 (buildroot@buildroot) (gcc version 7.3.0 (Buildroot 2018.02.8)) #1 SMP Mon Nov 26 23:40:00 CET 2018 … Memory: 183484K/261756K available (4594K kernel code, 393K rwdata, 1660K rodata, 536K init, 456K bss , 78272K reserved, 0K cma-reserved, 0K highmem) … PCI-DMA: Using software bounce buffering for IO (SWIOTLB) software IO TLB: mapped [mem 0x0bb78000-0x0fb78000] (64MB) The initial analysis and the suggested fix was done by user 'sourcejedi' at stackoverflow and explicitly marked as GPLv2 for inclusion in the Linux kernel: https://unix.stackexchange.com/a/520525/50007 The new calculation, which does not suffer from that overflow, is the same as for arch/mips now as suggested by Robin Murphy. The fix was tested by fli4l users on round about two dozen different systems, including both 32 and 64 bit archs, bare metal and virtualized machines. [ bp: Massage commit message. ] Fixes:1b7e03ef75
("x86, NUMA: Enable emulation on 32bit too") Reported-by: Alan Jenkins <alan.christopher.jenkins@gmail.com> Suggested-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Alexander Dahl <post@lespocky.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: stable@vger.kernel.org Link: https://unix.stackexchange.com/q/520065/50007 Link: https://web.nettworks.org/bugs/browse/FFL-2560 Link: https://lkml.kernel.org/r/20200526175749.20742-1-post@lespocky.de
319 lines
9.6 KiB
C
319 lines
9.6 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* linux/include/asm/dma.h: Defines for using and allocating dma channels.
|
|
* Written by Hennus Bergman, 1992.
|
|
* High DMA channel support & info by Hannu Savolainen
|
|
* and John Boyd, Nov. 1992.
|
|
*/
|
|
|
|
#ifndef _ASM_X86_DMA_H
|
|
#define _ASM_X86_DMA_H
|
|
|
|
#include <linux/spinlock.h> /* And spinlocks */
|
|
#include <asm/io.h> /* need byte IO */
|
|
|
|
#ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
|
|
#define dma_outb outb_p
|
|
#else
|
|
#define dma_outb outb
|
|
#endif
|
|
|
|
#define dma_inb inb
|
|
|
|
/*
|
|
* NOTES about DMA transfers:
|
|
*
|
|
* controller 1: channels 0-3, byte operations, ports 00-1F
|
|
* controller 2: channels 4-7, word operations, ports C0-DF
|
|
*
|
|
* - ALL registers are 8 bits only, regardless of transfer size
|
|
* - channel 4 is not used - cascades 1 into 2.
|
|
* - channels 0-3 are byte - addresses/counts are for physical bytes
|
|
* - channels 5-7 are word - addresses/counts are for physical words
|
|
* - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
|
|
* - transfer count loaded to registers is 1 less than actual count
|
|
* - controller 2 offsets are all even (2x offsets for controller 1)
|
|
* - page registers for 5-7 don't use data bit 0, represent 128K pages
|
|
* - page registers for 0-3 use bit 0, represent 64K pages
|
|
*
|
|
* DMA transfers are limited to the lower 16MB of _physical_ memory.
|
|
* Note that addresses loaded into registers must be _physical_ addresses,
|
|
* not logical addresses (which may differ if paging is active).
|
|
*
|
|
* Address mapping for channels 0-3:
|
|
*
|
|
* A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses)
|
|
* | ... | | ... | | ... |
|
|
* | ... | | ... | | ... |
|
|
* | ... | | ... | | ... |
|
|
* P7 ... P0 A7 ... A0 A7 ... A0
|
|
* | Page | Addr MSB | Addr LSB | (DMA registers)
|
|
*
|
|
* Address mapping for channels 5-7:
|
|
*
|
|
* A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses)
|
|
* | ... | \ \ ... \ \ \ ... \ \
|
|
* | ... | \ \ ... \ \ \ ... \ (not used)
|
|
* | ... | \ \ ... \ \ \ ... \
|
|
* P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0
|
|
* | Page | Addr MSB | Addr LSB | (DMA registers)
|
|
*
|
|
* Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
|
|
* and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
|
|
* the hardware level, so odd-byte transfers aren't possible).
|
|
*
|
|
* Transfer count (_not # bytes_) is limited to 64K, represented as actual
|
|
* count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more,
|
|
* and up to 128K bytes may be transferred on channels 5-7 in one operation.
|
|
*
|
|
*/
|
|
|
|
#define MAX_DMA_CHANNELS 8
|
|
|
|
/* 16MB ISA DMA zone */
|
|
#define MAX_DMA_PFN ((16UL * 1024 * 1024) >> PAGE_SHIFT)
|
|
|
|
/* 4GB broken PCI/AGP hardware bus master zone */
|
|
#define MAX_DMA32_PFN (1UL << (32 - PAGE_SHIFT))
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/* The maximum address that we can perform a DMA transfer to on this platform */
|
|
#define MAX_DMA_ADDRESS (PAGE_OFFSET + 0x1000000)
|
|
#else
|
|
/* Compat define for old dma zone */
|
|
#define MAX_DMA_ADDRESS ((unsigned long)__va(MAX_DMA_PFN << PAGE_SHIFT))
|
|
#endif
|
|
|
|
/* 8237 DMA controllers */
|
|
#define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */
|
|
#define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */
|
|
|
|
/* DMA controller registers */
|
|
#define DMA1_CMD_REG 0x08 /* command register (w) */
|
|
#define DMA1_STAT_REG 0x08 /* status register (r) */
|
|
#define DMA1_REQ_REG 0x09 /* request register (w) */
|
|
#define DMA1_MASK_REG 0x0A /* single-channel mask (w) */
|
|
#define DMA1_MODE_REG 0x0B /* mode register (w) */
|
|
#define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */
|
|
#define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */
|
|
#define DMA1_RESET_REG 0x0D /* Master Clear (w) */
|
|
#define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */
|
|
#define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */
|
|
|
|
#define DMA2_CMD_REG 0xD0 /* command register (w) */
|
|
#define DMA2_STAT_REG 0xD0 /* status register (r) */
|
|
#define DMA2_REQ_REG 0xD2 /* request register (w) */
|
|
#define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */
|
|
#define DMA2_MODE_REG 0xD6 /* mode register (w) */
|
|
#define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */
|
|
#define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */
|
|
#define DMA2_RESET_REG 0xDA /* Master Clear (w) */
|
|
#define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */
|
|
#define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */
|
|
|
|
#define DMA_ADDR_0 0x00 /* DMA address registers */
|
|
#define DMA_ADDR_1 0x02
|
|
#define DMA_ADDR_2 0x04
|
|
#define DMA_ADDR_3 0x06
|
|
#define DMA_ADDR_4 0xC0
|
|
#define DMA_ADDR_5 0xC4
|
|
#define DMA_ADDR_6 0xC8
|
|
#define DMA_ADDR_7 0xCC
|
|
|
|
#define DMA_CNT_0 0x01 /* DMA count registers */
|
|
#define DMA_CNT_1 0x03
|
|
#define DMA_CNT_2 0x05
|
|
#define DMA_CNT_3 0x07
|
|
#define DMA_CNT_4 0xC2
|
|
#define DMA_CNT_5 0xC6
|
|
#define DMA_CNT_6 0xCA
|
|
#define DMA_CNT_7 0xCE
|
|
|
|
#define DMA_PAGE_0 0x87 /* DMA page registers */
|
|
#define DMA_PAGE_1 0x83
|
|
#define DMA_PAGE_2 0x81
|
|
#define DMA_PAGE_3 0x82
|
|
#define DMA_PAGE_5 0x8B
|
|
#define DMA_PAGE_6 0x89
|
|
#define DMA_PAGE_7 0x8A
|
|
|
|
/* I/O to memory, no autoinit, increment, single mode */
|
|
#define DMA_MODE_READ 0x44
|
|
/* memory to I/O, no autoinit, increment, single mode */
|
|
#define DMA_MODE_WRITE 0x48
|
|
/* pass thru DREQ->HRQ, DACK<-HLDA only */
|
|
#define DMA_MODE_CASCADE 0xC0
|
|
|
|
#define DMA_AUTOINIT 0x10
|
|
|
|
|
|
#ifdef CONFIG_ISA_DMA_API
|
|
extern spinlock_t dma_spin_lock;
|
|
|
|
static inline unsigned long claim_dma_lock(void)
|
|
{
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&dma_spin_lock, flags);
|
|
return flags;
|
|
}
|
|
|
|
static inline void release_dma_lock(unsigned long flags)
|
|
{
|
|
spin_unlock_irqrestore(&dma_spin_lock, flags);
|
|
}
|
|
#endif /* CONFIG_ISA_DMA_API */
|
|
|
|
/* enable/disable a specific DMA channel */
|
|
static inline void enable_dma(unsigned int dmanr)
|
|
{
|
|
if (dmanr <= 3)
|
|
dma_outb(dmanr, DMA1_MASK_REG);
|
|
else
|
|
dma_outb(dmanr & 3, DMA2_MASK_REG);
|
|
}
|
|
|
|
static inline void disable_dma(unsigned int dmanr)
|
|
{
|
|
if (dmanr <= 3)
|
|
dma_outb(dmanr | 4, DMA1_MASK_REG);
|
|
else
|
|
dma_outb((dmanr & 3) | 4, DMA2_MASK_REG);
|
|
}
|
|
|
|
/* Clear the 'DMA Pointer Flip Flop'.
|
|
* Write 0 for LSB/MSB, 1 for MSB/LSB access.
|
|
* Use this once to initialize the FF to a known state.
|
|
* After that, keep track of it. :-)
|
|
* --- In order to do that, the DMA routines below should ---
|
|
* --- only be used while holding the DMA lock ! ---
|
|
*/
|
|
static inline void clear_dma_ff(unsigned int dmanr)
|
|
{
|
|
if (dmanr <= 3)
|
|
dma_outb(0, DMA1_CLEAR_FF_REG);
|
|
else
|
|
dma_outb(0, DMA2_CLEAR_FF_REG);
|
|
}
|
|
|
|
/* set mode (above) for a specific DMA channel */
|
|
static inline void set_dma_mode(unsigned int dmanr, char mode)
|
|
{
|
|
if (dmanr <= 3)
|
|
dma_outb(mode | dmanr, DMA1_MODE_REG);
|
|
else
|
|
dma_outb(mode | (dmanr & 3), DMA2_MODE_REG);
|
|
}
|
|
|
|
/* Set only the page register bits of the transfer address.
|
|
* This is used for successive transfers when we know the contents of
|
|
* the lower 16 bits of the DMA current address register, but a 64k boundary
|
|
* may have been crossed.
|
|
*/
|
|
static inline void set_dma_page(unsigned int dmanr, char pagenr)
|
|
{
|
|
switch (dmanr) {
|
|
case 0:
|
|
dma_outb(pagenr, DMA_PAGE_0);
|
|
break;
|
|
case 1:
|
|
dma_outb(pagenr, DMA_PAGE_1);
|
|
break;
|
|
case 2:
|
|
dma_outb(pagenr, DMA_PAGE_2);
|
|
break;
|
|
case 3:
|
|
dma_outb(pagenr, DMA_PAGE_3);
|
|
break;
|
|
case 5:
|
|
dma_outb(pagenr & 0xfe, DMA_PAGE_5);
|
|
break;
|
|
case 6:
|
|
dma_outb(pagenr & 0xfe, DMA_PAGE_6);
|
|
break;
|
|
case 7:
|
|
dma_outb(pagenr & 0xfe, DMA_PAGE_7);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/* Set transfer address & page bits for specific DMA channel.
|
|
* Assumes dma flipflop is clear.
|
|
*/
|
|
static inline void set_dma_addr(unsigned int dmanr, unsigned int a)
|
|
{
|
|
set_dma_page(dmanr, a>>16);
|
|
if (dmanr <= 3) {
|
|
dma_outb(a & 0xff, ((dmanr & 3) << 1) + IO_DMA1_BASE);
|
|
dma_outb((a >> 8) & 0xff, ((dmanr & 3) << 1) + IO_DMA1_BASE);
|
|
} else {
|
|
dma_outb((a >> 1) & 0xff, ((dmanr & 3) << 2) + IO_DMA2_BASE);
|
|
dma_outb((a >> 9) & 0xff, ((dmanr & 3) << 2) + IO_DMA2_BASE);
|
|
}
|
|
}
|
|
|
|
|
|
/* Set transfer size (max 64k for DMA0..3, 128k for DMA5..7) for
|
|
* a specific DMA channel.
|
|
* You must ensure the parameters are valid.
|
|
* NOTE: from a manual: "the number of transfers is one more
|
|
* than the initial word count"! This is taken into account.
|
|
* Assumes dma flip-flop is clear.
|
|
* NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
|
|
*/
|
|
static inline void set_dma_count(unsigned int dmanr, unsigned int count)
|
|
{
|
|
count--;
|
|
if (dmanr <= 3) {
|
|
dma_outb(count & 0xff, ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE);
|
|
dma_outb((count >> 8) & 0xff,
|
|
((dmanr & 3) << 1) + 1 + IO_DMA1_BASE);
|
|
} else {
|
|
dma_outb((count >> 1) & 0xff,
|
|
((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
|
|
dma_outb((count >> 9) & 0xff,
|
|
((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
|
|
}
|
|
}
|
|
|
|
|
|
/* Get DMA residue count. After a DMA transfer, this
|
|
* should return zero. Reading this while a DMA transfer is
|
|
* still in progress will return unpredictable results.
|
|
* If called before the channel has been used, it may return 1.
|
|
* Otherwise, it returns the number of _bytes_ left to transfer.
|
|
*
|
|
* Assumes DMA flip-flop is clear.
|
|
*/
|
|
static inline int get_dma_residue(unsigned int dmanr)
|
|
{
|
|
unsigned int io_port;
|
|
/* using short to get 16-bit wrap around */
|
|
unsigned short count;
|
|
|
|
io_port = (dmanr <= 3) ? ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE
|
|
: ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE;
|
|
|
|
count = 1 + dma_inb(io_port);
|
|
count += dma_inb(io_port) << 8;
|
|
|
|
return (dmanr <= 3) ? count : (count << 1);
|
|
}
|
|
|
|
|
|
/* These are in kernel/dma.c because x86 uses CONFIG_GENERIC_ISA_DMA */
|
|
#ifdef CONFIG_ISA_DMA_API
|
|
extern int request_dma(unsigned int dmanr, const char *device_id);
|
|
extern void free_dma(unsigned int dmanr);
|
|
#endif
|
|
|
|
/* From PCI */
|
|
|
|
#ifdef CONFIG_PCI
|
|
extern int isa_dma_bridge_buggy;
|
|
#else
|
|
#define isa_dma_bridge_buggy (0)
|
|
#endif
|
|
|
|
#endif /* _ASM_X86_DMA_H */
|