mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-27 14:43:58 +08:00
6feef531f5
Since all bio_split calls refer the same single bio_split_pool, the bio_split function can use bio_split_pool directly instead of the mempool_t parameter; then the mempool_t parameter can be removed from bio_split param list, and bio_split_pool is only referred in fs/bio.c file, can be marked static. Signed-off-by: Denis ChengRq <crquan@gmail.com> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
1463 lines
34 KiB
C
1463 lines
34 KiB
C
/*
|
|
* Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public Licens
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
|
|
*
|
|
*/
|
|
#include <linux/mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mempool.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/blktrace_api.h>
|
|
#include <scsi/sg.h> /* for struct sg_iovec */
|
|
|
|
static struct kmem_cache *bio_slab __read_mostly;
|
|
|
|
static mempool_t *bio_split_pool __read_mostly;
|
|
|
|
/*
|
|
* if you change this list, also change bvec_alloc or things will
|
|
* break badly! cannot be bigger than what you can fit into an
|
|
* unsigned short
|
|
*/
|
|
|
|
#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
|
|
static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
|
|
BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
|
|
};
|
|
#undef BV
|
|
|
|
/*
|
|
* fs_bio_set is the bio_set containing bio and iovec memory pools used by
|
|
* IO code that does not need private memory pools.
|
|
*/
|
|
struct bio_set *fs_bio_set;
|
|
|
|
unsigned int bvec_nr_vecs(unsigned short idx)
|
|
{
|
|
return bvec_slabs[idx].nr_vecs;
|
|
}
|
|
|
|
struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, struct bio_set *bs)
|
|
{
|
|
struct bio_vec *bvl;
|
|
|
|
/*
|
|
* If 'bs' is given, lookup the pool and do the mempool alloc.
|
|
* If not, this is a bio_kmalloc() allocation and just do a
|
|
* kzalloc() for the exact number of vecs right away.
|
|
*/
|
|
if (bs) {
|
|
/*
|
|
* see comment near bvec_array define!
|
|
*/
|
|
switch (nr) {
|
|
case 1:
|
|
*idx = 0;
|
|
break;
|
|
case 2 ... 4:
|
|
*idx = 1;
|
|
break;
|
|
case 5 ... 16:
|
|
*idx = 2;
|
|
break;
|
|
case 17 ... 64:
|
|
*idx = 3;
|
|
break;
|
|
case 65 ... 128:
|
|
*idx = 4;
|
|
break;
|
|
case 129 ... BIO_MAX_PAGES:
|
|
*idx = 5;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* idx now points to the pool we want to allocate from
|
|
*/
|
|
bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask);
|
|
if (bvl)
|
|
memset(bvl, 0,
|
|
bvec_nr_vecs(*idx) * sizeof(struct bio_vec));
|
|
} else
|
|
bvl = kzalloc(nr * sizeof(struct bio_vec), gfp_mask);
|
|
|
|
return bvl;
|
|
}
|
|
|
|
void bio_free(struct bio *bio, struct bio_set *bio_set)
|
|
{
|
|
if (bio->bi_io_vec) {
|
|
const int pool_idx = BIO_POOL_IDX(bio);
|
|
|
|
BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
|
|
|
|
mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]);
|
|
}
|
|
|
|
if (bio_integrity(bio))
|
|
bio_integrity_free(bio, bio_set);
|
|
|
|
mempool_free(bio, bio_set->bio_pool);
|
|
}
|
|
|
|
/*
|
|
* default destructor for a bio allocated with bio_alloc_bioset()
|
|
*/
|
|
static void bio_fs_destructor(struct bio *bio)
|
|
{
|
|
bio_free(bio, fs_bio_set);
|
|
}
|
|
|
|
static void bio_kmalloc_destructor(struct bio *bio)
|
|
{
|
|
kfree(bio->bi_io_vec);
|
|
kfree(bio);
|
|
}
|
|
|
|
void bio_init(struct bio *bio)
|
|
{
|
|
memset(bio, 0, sizeof(*bio));
|
|
bio->bi_flags = 1 << BIO_UPTODATE;
|
|
bio->bi_comp_cpu = -1;
|
|
atomic_set(&bio->bi_cnt, 1);
|
|
}
|
|
|
|
/**
|
|
* bio_alloc_bioset - allocate a bio for I/O
|
|
* @gfp_mask: the GFP_ mask given to the slab allocator
|
|
* @nr_iovecs: number of iovecs to pre-allocate
|
|
* @bs: the bio_set to allocate from. If %NULL, just use kmalloc
|
|
*
|
|
* Description:
|
|
* bio_alloc_bioset will first try its own mempool to satisfy the allocation.
|
|
* If %__GFP_WAIT is set then we will block on the internal pool waiting
|
|
* for a &struct bio to become free. If a %NULL @bs is passed in, we will
|
|
* fall back to just using @kmalloc to allocate the required memory.
|
|
*
|
|
* allocate bio and iovecs from the memory pools specified by the
|
|
* bio_set structure, or @kmalloc if none given.
|
|
**/
|
|
struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
|
|
{
|
|
struct bio *bio;
|
|
|
|
if (bs)
|
|
bio = mempool_alloc(bs->bio_pool, gfp_mask);
|
|
else
|
|
bio = kmalloc(sizeof(*bio), gfp_mask);
|
|
|
|
if (likely(bio)) {
|
|
struct bio_vec *bvl = NULL;
|
|
|
|
bio_init(bio);
|
|
if (likely(nr_iovecs)) {
|
|
unsigned long uninitialized_var(idx);
|
|
|
|
bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
|
|
if (unlikely(!bvl)) {
|
|
if (bs)
|
|
mempool_free(bio, bs->bio_pool);
|
|
else
|
|
kfree(bio);
|
|
bio = NULL;
|
|
goto out;
|
|
}
|
|
bio->bi_flags |= idx << BIO_POOL_OFFSET;
|
|
bio->bi_max_vecs = bvec_nr_vecs(idx);
|
|
}
|
|
bio->bi_io_vec = bvl;
|
|
}
|
|
out:
|
|
return bio;
|
|
}
|
|
|
|
struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
|
|
{
|
|
struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
|
|
|
|
if (bio)
|
|
bio->bi_destructor = bio_fs_destructor;
|
|
|
|
return bio;
|
|
}
|
|
|
|
/*
|
|
* Like bio_alloc(), but doesn't use a mempool backing. This means that
|
|
* it CAN fail, but while bio_alloc() can only be used for allocations
|
|
* that have a short (finite) life span, bio_kmalloc() should be used
|
|
* for more permanent bio allocations (like allocating some bio's for
|
|
* initalization or setup purposes).
|
|
*/
|
|
struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
|
|
{
|
|
struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, NULL);
|
|
|
|
if (bio)
|
|
bio->bi_destructor = bio_kmalloc_destructor;
|
|
|
|
return bio;
|
|
}
|
|
|
|
void zero_fill_bio(struct bio *bio)
|
|
{
|
|
unsigned long flags;
|
|
struct bio_vec *bv;
|
|
int i;
|
|
|
|
bio_for_each_segment(bv, bio, i) {
|
|
char *data = bvec_kmap_irq(bv, &flags);
|
|
memset(data, 0, bv->bv_len);
|
|
flush_dcache_page(bv->bv_page);
|
|
bvec_kunmap_irq(data, &flags);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(zero_fill_bio);
|
|
|
|
/**
|
|
* bio_put - release a reference to a bio
|
|
* @bio: bio to release reference to
|
|
*
|
|
* Description:
|
|
* Put a reference to a &struct bio, either one you have gotten with
|
|
* bio_alloc or bio_get. The last put of a bio will free it.
|
|
**/
|
|
void bio_put(struct bio *bio)
|
|
{
|
|
BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
|
|
|
|
/*
|
|
* last put frees it
|
|
*/
|
|
if (atomic_dec_and_test(&bio->bi_cnt)) {
|
|
bio->bi_next = NULL;
|
|
bio->bi_destructor(bio);
|
|
}
|
|
}
|
|
|
|
inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
|
|
{
|
|
if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
|
|
blk_recount_segments(q, bio);
|
|
|
|
return bio->bi_phys_segments;
|
|
}
|
|
|
|
/**
|
|
* __bio_clone - clone a bio
|
|
* @bio: destination bio
|
|
* @bio_src: bio to clone
|
|
*
|
|
* Clone a &bio. Caller will own the returned bio, but not
|
|
* the actual data it points to. Reference count of returned
|
|
* bio will be one.
|
|
*/
|
|
void __bio_clone(struct bio *bio, struct bio *bio_src)
|
|
{
|
|
memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
|
|
bio_src->bi_max_vecs * sizeof(struct bio_vec));
|
|
|
|
/*
|
|
* most users will be overriding ->bi_bdev with a new target,
|
|
* so we don't set nor calculate new physical/hw segment counts here
|
|
*/
|
|
bio->bi_sector = bio_src->bi_sector;
|
|
bio->bi_bdev = bio_src->bi_bdev;
|
|
bio->bi_flags |= 1 << BIO_CLONED;
|
|
bio->bi_rw = bio_src->bi_rw;
|
|
bio->bi_vcnt = bio_src->bi_vcnt;
|
|
bio->bi_size = bio_src->bi_size;
|
|
bio->bi_idx = bio_src->bi_idx;
|
|
}
|
|
|
|
/**
|
|
* bio_clone - clone a bio
|
|
* @bio: bio to clone
|
|
* @gfp_mask: allocation priority
|
|
*
|
|
* Like __bio_clone, only also allocates the returned bio
|
|
*/
|
|
struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
|
|
{
|
|
struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
|
|
|
|
if (!b)
|
|
return NULL;
|
|
|
|
b->bi_destructor = bio_fs_destructor;
|
|
__bio_clone(b, bio);
|
|
|
|
if (bio_integrity(bio)) {
|
|
int ret;
|
|
|
|
ret = bio_integrity_clone(b, bio, fs_bio_set);
|
|
|
|
if (ret < 0)
|
|
return NULL;
|
|
}
|
|
|
|
return b;
|
|
}
|
|
|
|
/**
|
|
* bio_get_nr_vecs - return approx number of vecs
|
|
* @bdev: I/O target
|
|
*
|
|
* Return the approximate number of pages we can send to this target.
|
|
* There's no guarantee that you will be able to fit this number of pages
|
|
* into a bio, it does not account for dynamic restrictions that vary
|
|
* on offset.
|
|
*/
|
|
int bio_get_nr_vecs(struct block_device *bdev)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(bdev);
|
|
int nr_pages;
|
|
|
|
nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
if (nr_pages > q->max_phys_segments)
|
|
nr_pages = q->max_phys_segments;
|
|
if (nr_pages > q->max_hw_segments)
|
|
nr_pages = q->max_hw_segments;
|
|
|
|
return nr_pages;
|
|
}
|
|
|
|
static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
|
|
*page, unsigned int len, unsigned int offset,
|
|
unsigned short max_sectors)
|
|
{
|
|
int retried_segments = 0;
|
|
struct bio_vec *bvec;
|
|
|
|
/*
|
|
* cloned bio must not modify vec list
|
|
*/
|
|
if (unlikely(bio_flagged(bio, BIO_CLONED)))
|
|
return 0;
|
|
|
|
if (((bio->bi_size + len) >> 9) > max_sectors)
|
|
return 0;
|
|
|
|
/*
|
|
* For filesystems with a blocksize smaller than the pagesize
|
|
* we will often be called with the same page as last time and
|
|
* a consecutive offset. Optimize this special case.
|
|
*/
|
|
if (bio->bi_vcnt > 0) {
|
|
struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
|
|
|
|
if (page == prev->bv_page &&
|
|
offset == prev->bv_offset + prev->bv_len) {
|
|
prev->bv_len += len;
|
|
|
|
if (q->merge_bvec_fn) {
|
|
struct bvec_merge_data bvm = {
|
|
.bi_bdev = bio->bi_bdev,
|
|
.bi_sector = bio->bi_sector,
|
|
.bi_size = bio->bi_size,
|
|
.bi_rw = bio->bi_rw,
|
|
};
|
|
|
|
if (q->merge_bvec_fn(q, &bvm, prev) < len) {
|
|
prev->bv_len -= len;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
if (bio->bi_vcnt >= bio->bi_max_vecs)
|
|
return 0;
|
|
|
|
/*
|
|
* we might lose a segment or two here, but rather that than
|
|
* make this too complex.
|
|
*/
|
|
|
|
while (bio->bi_phys_segments >= q->max_phys_segments
|
|
|| bio->bi_phys_segments >= q->max_hw_segments) {
|
|
|
|
if (retried_segments)
|
|
return 0;
|
|
|
|
retried_segments = 1;
|
|
blk_recount_segments(q, bio);
|
|
}
|
|
|
|
/*
|
|
* setup the new entry, we might clear it again later if we
|
|
* cannot add the page
|
|
*/
|
|
bvec = &bio->bi_io_vec[bio->bi_vcnt];
|
|
bvec->bv_page = page;
|
|
bvec->bv_len = len;
|
|
bvec->bv_offset = offset;
|
|
|
|
/*
|
|
* if queue has other restrictions (eg varying max sector size
|
|
* depending on offset), it can specify a merge_bvec_fn in the
|
|
* queue to get further control
|
|
*/
|
|
if (q->merge_bvec_fn) {
|
|
struct bvec_merge_data bvm = {
|
|
.bi_bdev = bio->bi_bdev,
|
|
.bi_sector = bio->bi_sector,
|
|
.bi_size = bio->bi_size,
|
|
.bi_rw = bio->bi_rw,
|
|
};
|
|
|
|
/*
|
|
* merge_bvec_fn() returns number of bytes it can accept
|
|
* at this offset
|
|
*/
|
|
if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
|
|
bvec->bv_page = NULL;
|
|
bvec->bv_len = 0;
|
|
bvec->bv_offset = 0;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* If we may be able to merge these biovecs, force a recount */
|
|
if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
|
|
bio->bi_flags &= ~(1 << BIO_SEG_VALID);
|
|
|
|
bio->bi_vcnt++;
|
|
bio->bi_phys_segments++;
|
|
done:
|
|
bio->bi_size += len;
|
|
return len;
|
|
}
|
|
|
|
/**
|
|
* bio_add_pc_page - attempt to add page to bio
|
|
* @q: the target queue
|
|
* @bio: destination bio
|
|
* @page: page to add
|
|
* @len: vec entry length
|
|
* @offset: vec entry offset
|
|
*
|
|
* Attempt to add a page to the bio_vec maplist. This can fail for a
|
|
* number of reasons, such as the bio being full or target block
|
|
* device limitations. The target block device must allow bio's
|
|
* smaller than PAGE_SIZE, so it is always possible to add a single
|
|
* page to an empty bio. This should only be used by REQ_PC bios.
|
|
*/
|
|
int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
|
|
unsigned int len, unsigned int offset)
|
|
{
|
|
return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors);
|
|
}
|
|
|
|
/**
|
|
* bio_add_page - attempt to add page to bio
|
|
* @bio: destination bio
|
|
* @page: page to add
|
|
* @len: vec entry length
|
|
* @offset: vec entry offset
|
|
*
|
|
* Attempt to add a page to the bio_vec maplist. This can fail for a
|
|
* number of reasons, such as the bio being full or target block
|
|
* device limitations. The target block device must allow bio's
|
|
* smaller than PAGE_SIZE, so it is always possible to add a single
|
|
* page to an empty bio.
|
|
*/
|
|
int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
|
|
unsigned int offset)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(bio->bi_bdev);
|
|
return __bio_add_page(q, bio, page, len, offset, q->max_sectors);
|
|
}
|
|
|
|
struct bio_map_data {
|
|
struct bio_vec *iovecs;
|
|
struct sg_iovec *sgvecs;
|
|
int nr_sgvecs;
|
|
int is_our_pages;
|
|
};
|
|
|
|
static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
|
|
struct sg_iovec *iov, int iov_count,
|
|
int is_our_pages)
|
|
{
|
|
memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
|
|
memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
|
|
bmd->nr_sgvecs = iov_count;
|
|
bmd->is_our_pages = is_our_pages;
|
|
bio->bi_private = bmd;
|
|
}
|
|
|
|
static void bio_free_map_data(struct bio_map_data *bmd)
|
|
{
|
|
kfree(bmd->iovecs);
|
|
kfree(bmd->sgvecs);
|
|
kfree(bmd);
|
|
}
|
|
|
|
static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
|
|
gfp_t gfp_mask)
|
|
{
|
|
struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
|
|
|
|
if (!bmd)
|
|
return NULL;
|
|
|
|
bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
|
|
if (!bmd->iovecs) {
|
|
kfree(bmd);
|
|
return NULL;
|
|
}
|
|
|
|
bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
|
|
if (bmd->sgvecs)
|
|
return bmd;
|
|
|
|
kfree(bmd->iovecs);
|
|
kfree(bmd);
|
|
return NULL;
|
|
}
|
|
|
|
static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
|
|
struct sg_iovec *iov, int iov_count, int uncopy,
|
|
int do_free_page)
|
|
{
|
|
int ret = 0, i;
|
|
struct bio_vec *bvec;
|
|
int iov_idx = 0;
|
|
unsigned int iov_off = 0;
|
|
int read = bio_data_dir(bio) == READ;
|
|
|
|
__bio_for_each_segment(bvec, bio, i, 0) {
|
|
char *bv_addr = page_address(bvec->bv_page);
|
|
unsigned int bv_len = iovecs[i].bv_len;
|
|
|
|
while (bv_len && iov_idx < iov_count) {
|
|
unsigned int bytes;
|
|
char *iov_addr;
|
|
|
|
bytes = min_t(unsigned int,
|
|
iov[iov_idx].iov_len - iov_off, bv_len);
|
|
iov_addr = iov[iov_idx].iov_base + iov_off;
|
|
|
|
if (!ret) {
|
|
if (!read && !uncopy)
|
|
ret = copy_from_user(bv_addr, iov_addr,
|
|
bytes);
|
|
if (read && uncopy)
|
|
ret = copy_to_user(iov_addr, bv_addr,
|
|
bytes);
|
|
|
|
if (ret)
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
bv_len -= bytes;
|
|
bv_addr += bytes;
|
|
iov_addr += bytes;
|
|
iov_off += bytes;
|
|
|
|
if (iov[iov_idx].iov_len == iov_off) {
|
|
iov_idx++;
|
|
iov_off = 0;
|
|
}
|
|
}
|
|
|
|
if (do_free_page)
|
|
__free_page(bvec->bv_page);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* bio_uncopy_user - finish previously mapped bio
|
|
* @bio: bio being terminated
|
|
*
|
|
* Free pages allocated from bio_copy_user() and write back data
|
|
* to user space in case of a read.
|
|
*/
|
|
int bio_uncopy_user(struct bio *bio)
|
|
{
|
|
struct bio_map_data *bmd = bio->bi_private;
|
|
int ret = 0;
|
|
|
|
if (!bio_flagged(bio, BIO_NULL_MAPPED))
|
|
ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
|
|
bmd->nr_sgvecs, 1, bmd->is_our_pages);
|
|
bio_free_map_data(bmd);
|
|
bio_put(bio);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* bio_copy_user_iov - copy user data to bio
|
|
* @q: destination block queue
|
|
* @map_data: pointer to the rq_map_data holding pages (if necessary)
|
|
* @iov: the iovec.
|
|
* @iov_count: number of elements in the iovec
|
|
* @write_to_vm: bool indicating writing to pages or not
|
|
* @gfp_mask: memory allocation flags
|
|
*
|
|
* Prepares and returns a bio for indirect user io, bouncing data
|
|
* to/from kernel pages as necessary. Must be paired with
|
|
* call bio_uncopy_user() on io completion.
|
|
*/
|
|
struct bio *bio_copy_user_iov(struct request_queue *q,
|
|
struct rq_map_data *map_data,
|
|
struct sg_iovec *iov, int iov_count,
|
|
int write_to_vm, gfp_t gfp_mask)
|
|
{
|
|
struct bio_map_data *bmd;
|
|
struct bio_vec *bvec;
|
|
struct page *page;
|
|
struct bio *bio;
|
|
int i, ret;
|
|
int nr_pages = 0;
|
|
unsigned int len = 0;
|
|
|
|
for (i = 0; i < iov_count; i++) {
|
|
unsigned long uaddr;
|
|
unsigned long end;
|
|
unsigned long start;
|
|
|
|
uaddr = (unsigned long)iov[i].iov_base;
|
|
end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
start = uaddr >> PAGE_SHIFT;
|
|
|
|
nr_pages += end - start;
|
|
len += iov[i].iov_len;
|
|
}
|
|
|
|
bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
|
|
if (!bmd)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ret = -ENOMEM;
|
|
bio = bio_alloc(gfp_mask, nr_pages);
|
|
if (!bio)
|
|
goto out_bmd;
|
|
|
|
bio->bi_rw |= (!write_to_vm << BIO_RW);
|
|
|
|
ret = 0;
|
|
i = 0;
|
|
while (len) {
|
|
unsigned int bytes;
|
|
|
|
if (map_data)
|
|
bytes = 1U << (PAGE_SHIFT + map_data->page_order);
|
|
else
|
|
bytes = PAGE_SIZE;
|
|
|
|
if (bytes > len)
|
|
bytes = len;
|
|
|
|
if (map_data) {
|
|
if (i == map_data->nr_entries) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
page = map_data->pages[i++];
|
|
} else
|
|
page = alloc_page(q->bounce_gfp | gfp_mask);
|
|
if (!page) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
|
|
break;
|
|
|
|
len -= bytes;
|
|
}
|
|
|
|
if (ret)
|
|
goto cleanup;
|
|
|
|
/*
|
|
* success
|
|
*/
|
|
if (!write_to_vm) {
|
|
ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 0);
|
|
if (ret)
|
|
goto cleanup;
|
|
}
|
|
|
|
bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
|
|
return bio;
|
|
cleanup:
|
|
if (!map_data)
|
|
bio_for_each_segment(bvec, bio, i)
|
|
__free_page(bvec->bv_page);
|
|
|
|
bio_put(bio);
|
|
out_bmd:
|
|
bio_free_map_data(bmd);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
/**
|
|
* bio_copy_user - copy user data to bio
|
|
* @q: destination block queue
|
|
* @map_data: pointer to the rq_map_data holding pages (if necessary)
|
|
* @uaddr: start of user address
|
|
* @len: length in bytes
|
|
* @write_to_vm: bool indicating writing to pages or not
|
|
* @gfp_mask: memory allocation flags
|
|
*
|
|
* Prepares and returns a bio for indirect user io, bouncing data
|
|
* to/from kernel pages as necessary. Must be paired with
|
|
* call bio_uncopy_user() on io completion.
|
|
*/
|
|
struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
|
|
unsigned long uaddr, unsigned int len,
|
|
int write_to_vm, gfp_t gfp_mask)
|
|
{
|
|
struct sg_iovec iov;
|
|
|
|
iov.iov_base = (void __user *)uaddr;
|
|
iov.iov_len = len;
|
|
|
|
return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
|
|
}
|
|
|
|
static struct bio *__bio_map_user_iov(struct request_queue *q,
|
|
struct block_device *bdev,
|
|
struct sg_iovec *iov, int iov_count,
|
|
int write_to_vm, gfp_t gfp_mask)
|
|
{
|
|
int i, j;
|
|
int nr_pages = 0;
|
|
struct page **pages;
|
|
struct bio *bio;
|
|
int cur_page = 0;
|
|
int ret, offset;
|
|
|
|
for (i = 0; i < iov_count; i++) {
|
|
unsigned long uaddr = (unsigned long)iov[i].iov_base;
|
|
unsigned long len = iov[i].iov_len;
|
|
unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
unsigned long start = uaddr >> PAGE_SHIFT;
|
|
|
|
nr_pages += end - start;
|
|
/*
|
|
* buffer must be aligned to at least hardsector size for now
|
|
*/
|
|
if (uaddr & queue_dma_alignment(q))
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
if (!nr_pages)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
bio = bio_alloc(gfp_mask, nr_pages);
|
|
if (!bio)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ret = -ENOMEM;
|
|
pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
|
|
if (!pages)
|
|
goto out;
|
|
|
|
for (i = 0; i < iov_count; i++) {
|
|
unsigned long uaddr = (unsigned long)iov[i].iov_base;
|
|
unsigned long len = iov[i].iov_len;
|
|
unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
unsigned long start = uaddr >> PAGE_SHIFT;
|
|
const int local_nr_pages = end - start;
|
|
const int page_limit = cur_page + local_nr_pages;
|
|
|
|
ret = get_user_pages_fast(uaddr, local_nr_pages,
|
|
write_to_vm, &pages[cur_page]);
|
|
if (ret < local_nr_pages) {
|
|
ret = -EFAULT;
|
|
goto out_unmap;
|
|
}
|
|
|
|
offset = uaddr & ~PAGE_MASK;
|
|
for (j = cur_page; j < page_limit; j++) {
|
|
unsigned int bytes = PAGE_SIZE - offset;
|
|
|
|
if (len <= 0)
|
|
break;
|
|
|
|
if (bytes > len)
|
|
bytes = len;
|
|
|
|
/*
|
|
* sorry...
|
|
*/
|
|
if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
|
|
bytes)
|
|
break;
|
|
|
|
len -= bytes;
|
|
offset = 0;
|
|
}
|
|
|
|
cur_page = j;
|
|
/*
|
|
* release the pages we didn't map into the bio, if any
|
|
*/
|
|
while (j < page_limit)
|
|
page_cache_release(pages[j++]);
|
|
}
|
|
|
|
kfree(pages);
|
|
|
|
/*
|
|
* set data direction, and check if mapped pages need bouncing
|
|
*/
|
|
if (!write_to_vm)
|
|
bio->bi_rw |= (1 << BIO_RW);
|
|
|
|
bio->bi_bdev = bdev;
|
|
bio->bi_flags |= (1 << BIO_USER_MAPPED);
|
|
return bio;
|
|
|
|
out_unmap:
|
|
for (i = 0; i < nr_pages; i++) {
|
|
if(!pages[i])
|
|
break;
|
|
page_cache_release(pages[i]);
|
|
}
|
|
out:
|
|
kfree(pages);
|
|
bio_put(bio);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
/**
|
|
* bio_map_user - map user address into bio
|
|
* @q: the struct request_queue for the bio
|
|
* @bdev: destination block device
|
|
* @uaddr: start of user address
|
|
* @len: length in bytes
|
|
* @write_to_vm: bool indicating writing to pages or not
|
|
* @gfp_mask: memory allocation flags
|
|
*
|
|
* Map the user space address into a bio suitable for io to a block
|
|
* device. Returns an error pointer in case of error.
|
|
*/
|
|
struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
|
|
unsigned long uaddr, unsigned int len, int write_to_vm,
|
|
gfp_t gfp_mask)
|
|
{
|
|
struct sg_iovec iov;
|
|
|
|
iov.iov_base = (void __user *)uaddr;
|
|
iov.iov_len = len;
|
|
|
|
return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
|
|
}
|
|
|
|
/**
|
|
* bio_map_user_iov - map user sg_iovec table into bio
|
|
* @q: the struct request_queue for the bio
|
|
* @bdev: destination block device
|
|
* @iov: the iovec.
|
|
* @iov_count: number of elements in the iovec
|
|
* @write_to_vm: bool indicating writing to pages or not
|
|
* @gfp_mask: memory allocation flags
|
|
*
|
|
* Map the user space address into a bio suitable for io to a block
|
|
* device. Returns an error pointer in case of error.
|
|
*/
|
|
struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
|
|
struct sg_iovec *iov, int iov_count,
|
|
int write_to_vm, gfp_t gfp_mask)
|
|
{
|
|
struct bio *bio;
|
|
|
|
bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
|
|
gfp_mask);
|
|
if (IS_ERR(bio))
|
|
return bio;
|
|
|
|
/*
|
|
* subtle -- if __bio_map_user() ended up bouncing a bio,
|
|
* it would normally disappear when its bi_end_io is run.
|
|
* however, we need it for the unmap, so grab an extra
|
|
* reference to it
|
|
*/
|
|
bio_get(bio);
|
|
|
|
return bio;
|
|
}
|
|
|
|
static void __bio_unmap_user(struct bio *bio)
|
|
{
|
|
struct bio_vec *bvec;
|
|
int i;
|
|
|
|
/*
|
|
* make sure we dirty pages we wrote to
|
|
*/
|
|
__bio_for_each_segment(bvec, bio, i, 0) {
|
|
if (bio_data_dir(bio) == READ)
|
|
set_page_dirty_lock(bvec->bv_page);
|
|
|
|
page_cache_release(bvec->bv_page);
|
|
}
|
|
|
|
bio_put(bio);
|
|
}
|
|
|
|
/**
|
|
* bio_unmap_user - unmap a bio
|
|
* @bio: the bio being unmapped
|
|
*
|
|
* Unmap a bio previously mapped by bio_map_user(). Must be called with
|
|
* a process context.
|
|
*
|
|
* bio_unmap_user() may sleep.
|
|
*/
|
|
void bio_unmap_user(struct bio *bio)
|
|
{
|
|
__bio_unmap_user(bio);
|
|
bio_put(bio);
|
|
}
|
|
|
|
static void bio_map_kern_endio(struct bio *bio, int err)
|
|
{
|
|
bio_put(bio);
|
|
}
|
|
|
|
|
|
static struct bio *__bio_map_kern(struct request_queue *q, void *data,
|
|
unsigned int len, gfp_t gfp_mask)
|
|
{
|
|
unsigned long kaddr = (unsigned long)data;
|
|
unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
unsigned long start = kaddr >> PAGE_SHIFT;
|
|
const int nr_pages = end - start;
|
|
int offset, i;
|
|
struct bio *bio;
|
|
|
|
bio = bio_alloc(gfp_mask, nr_pages);
|
|
if (!bio)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
offset = offset_in_page(kaddr);
|
|
for (i = 0; i < nr_pages; i++) {
|
|
unsigned int bytes = PAGE_SIZE - offset;
|
|
|
|
if (len <= 0)
|
|
break;
|
|
|
|
if (bytes > len)
|
|
bytes = len;
|
|
|
|
if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
|
|
offset) < bytes)
|
|
break;
|
|
|
|
data += bytes;
|
|
len -= bytes;
|
|
offset = 0;
|
|
}
|
|
|
|
bio->bi_end_io = bio_map_kern_endio;
|
|
return bio;
|
|
}
|
|
|
|
/**
|
|
* bio_map_kern - map kernel address into bio
|
|
* @q: the struct request_queue for the bio
|
|
* @data: pointer to buffer to map
|
|
* @len: length in bytes
|
|
* @gfp_mask: allocation flags for bio allocation
|
|
*
|
|
* Map the kernel address into a bio suitable for io to a block
|
|
* device. Returns an error pointer in case of error.
|
|
*/
|
|
struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
|
|
gfp_t gfp_mask)
|
|
{
|
|
struct bio *bio;
|
|
|
|
bio = __bio_map_kern(q, data, len, gfp_mask);
|
|
if (IS_ERR(bio))
|
|
return bio;
|
|
|
|
if (bio->bi_size == len)
|
|
return bio;
|
|
|
|
/*
|
|
* Don't support partial mappings.
|
|
*/
|
|
bio_put(bio);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
static void bio_copy_kern_endio(struct bio *bio, int err)
|
|
{
|
|
struct bio_vec *bvec;
|
|
const int read = bio_data_dir(bio) == READ;
|
|
struct bio_map_data *bmd = bio->bi_private;
|
|
int i;
|
|
char *p = bmd->sgvecs[0].iov_base;
|
|
|
|
__bio_for_each_segment(bvec, bio, i, 0) {
|
|
char *addr = page_address(bvec->bv_page);
|
|
int len = bmd->iovecs[i].bv_len;
|
|
|
|
if (read && !err)
|
|
memcpy(p, addr, len);
|
|
|
|
__free_page(bvec->bv_page);
|
|
p += len;
|
|
}
|
|
|
|
bio_free_map_data(bmd);
|
|
bio_put(bio);
|
|
}
|
|
|
|
/**
|
|
* bio_copy_kern - copy kernel address into bio
|
|
* @q: the struct request_queue for the bio
|
|
* @data: pointer to buffer to copy
|
|
* @len: length in bytes
|
|
* @gfp_mask: allocation flags for bio and page allocation
|
|
* @reading: data direction is READ
|
|
*
|
|
* copy the kernel address into a bio suitable for io to a block
|
|
* device. Returns an error pointer in case of error.
|
|
*/
|
|
struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
|
|
gfp_t gfp_mask, int reading)
|
|
{
|
|
struct bio *bio;
|
|
struct bio_vec *bvec;
|
|
int i;
|
|
|
|
bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
|
|
if (IS_ERR(bio))
|
|
return bio;
|
|
|
|
if (!reading) {
|
|
void *p = data;
|
|
|
|
bio_for_each_segment(bvec, bio, i) {
|
|
char *addr = page_address(bvec->bv_page);
|
|
|
|
memcpy(addr, p, bvec->bv_len);
|
|
p += bvec->bv_len;
|
|
}
|
|
}
|
|
|
|
bio->bi_end_io = bio_copy_kern_endio;
|
|
|
|
return bio;
|
|
}
|
|
|
|
/*
|
|
* bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
|
|
* for performing direct-IO in BIOs.
|
|
*
|
|
* The problem is that we cannot run set_page_dirty() from interrupt context
|
|
* because the required locks are not interrupt-safe. So what we can do is to
|
|
* mark the pages dirty _before_ performing IO. And in interrupt context,
|
|
* check that the pages are still dirty. If so, fine. If not, redirty them
|
|
* in process context.
|
|
*
|
|
* We special-case compound pages here: normally this means reads into hugetlb
|
|
* pages. The logic in here doesn't really work right for compound pages
|
|
* because the VM does not uniformly chase down the head page in all cases.
|
|
* But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
|
|
* handle them at all. So we skip compound pages here at an early stage.
|
|
*
|
|
* Note that this code is very hard to test under normal circumstances because
|
|
* direct-io pins the pages with get_user_pages(). This makes
|
|
* is_page_cache_freeable return false, and the VM will not clean the pages.
|
|
* But other code (eg, pdflush) could clean the pages if they are mapped
|
|
* pagecache.
|
|
*
|
|
* Simply disabling the call to bio_set_pages_dirty() is a good way to test the
|
|
* deferred bio dirtying paths.
|
|
*/
|
|
|
|
/*
|
|
* bio_set_pages_dirty() will mark all the bio's pages as dirty.
|
|
*/
|
|
void bio_set_pages_dirty(struct bio *bio)
|
|
{
|
|
struct bio_vec *bvec = bio->bi_io_vec;
|
|
int i;
|
|
|
|
for (i = 0; i < bio->bi_vcnt; i++) {
|
|
struct page *page = bvec[i].bv_page;
|
|
|
|
if (page && !PageCompound(page))
|
|
set_page_dirty_lock(page);
|
|
}
|
|
}
|
|
|
|
static void bio_release_pages(struct bio *bio)
|
|
{
|
|
struct bio_vec *bvec = bio->bi_io_vec;
|
|
int i;
|
|
|
|
for (i = 0; i < bio->bi_vcnt; i++) {
|
|
struct page *page = bvec[i].bv_page;
|
|
|
|
if (page)
|
|
put_page(page);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
|
|
* If they are, then fine. If, however, some pages are clean then they must
|
|
* have been written out during the direct-IO read. So we take another ref on
|
|
* the BIO and the offending pages and re-dirty the pages in process context.
|
|
*
|
|
* It is expected that bio_check_pages_dirty() will wholly own the BIO from
|
|
* here on. It will run one page_cache_release() against each page and will
|
|
* run one bio_put() against the BIO.
|
|
*/
|
|
|
|
static void bio_dirty_fn(struct work_struct *work);
|
|
|
|
static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
|
|
static DEFINE_SPINLOCK(bio_dirty_lock);
|
|
static struct bio *bio_dirty_list;
|
|
|
|
/*
|
|
* This runs in process context
|
|
*/
|
|
static void bio_dirty_fn(struct work_struct *work)
|
|
{
|
|
unsigned long flags;
|
|
struct bio *bio;
|
|
|
|
spin_lock_irqsave(&bio_dirty_lock, flags);
|
|
bio = bio_dirty_list;
|
|
bio_dirty_list = NULL;
|
|
spin_unlock_irqrestore(&bio_dirty_lock, flags);
|
|
|
|
while (bio) {
|
|
struct bio *next = bio->bi_private;
|
|
|
|
bio_set_pages_dirty(bio);
|
|
bio_release_pages(bio);
|
|
bio_put(bio);
|
|
bio = next;
|
|
}
|
|
}
|
|
|
|
void bio_check_pages_dirty(struct bio *bio)
|
|
{
|
|
struct bio_vec *bvec = bio->bi_io_vec;
|
|
int nr_clean_pages = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < bio->bi_vcnt; i++) {
|
|
struct page *page = bvec[i].bv_page;
|
|
|
|
if (PageDirty(page) || PageCompound(page)) {
|
|
page_cache_release(page);
|
|
bvec[i].bv_page = NULL;
|
|
} else {
|
|
nr_clean_pages++;
|
|
}
|
|
}
|
|
|
|
if (nr_clean_pages) {
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&bio_dirty_lock, flags);
|
|
bio->bi_private = bio_dirty_list;
|
|
bio_dirty_list = bio;
|
|
spin_unlock_irqrestore(&bio_dirty_lock, flags);
|
|
schedule_work(&bio_dirty_work);
|
|
} else {
|
|
bio_put(bio);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* bio_endio - end I/O on a bio
|
|
* @bio: bio
|
|
* @error: error, if any
|
|
*
|
|
* Description:
|
|
* bio_endio() will end I/O on the whole bio. bio_endio() is the
|
|
* preferred way to end I/O on a bio, it takes care of clearing
|
|
* BIO_UPTODATE on error. @error is 0 on success, and and one of the
|
|
* established -Exxxx (-EIO, for instance) error values in case
|
|
* something went wrong. Noone should call bi_end_io() directly on a
|
|
* bio unless they own it and thus know that it has an end_io
|
|
* function.
|
|
**/
|
|
void bio_endio(struct bio *bio, int error)
|
|
{
|
|
if (error)
|
|
clear_bit(BIO_UPTODATE, &bio->bi_flags);
|
|
else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
|
|
error = -EIO;
|
|
|
|
if (bio->bi_end_io)
|
|
bio->bi_end_io(bio, error);
|
|
}
|
|
|
|
void bio_pair_release(struct bio_pair *bp)
|
|
{
|
|
if (atomic_dec_and_test(&bp->cnt)) {
|
|
struct bio *master = bp->bio1.bi_private;
|
|
|
|
bio_endio(master, bp->error);
|
|
mempool_free(bp, bp->bio2.bi_private);
|
|
}
|
|
}
|
|
|
|
static void bio_pair_end_1(struct bio *bi, int err)
|
|
{
|
|
struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
|
|
|
|
if (err)
|
|
bp->error = err;
|
|
|
|
bio_pair_release(bp);
|
|
}
|
|
|
|
static void bio_pair_end_2(struct bio *bi, int err)
|
|
{
|
|
struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
|
|
|
|
if (err)
|
|
bp->error = err;
|
|
|
|
bio_pair_release(bp);
|
|
}
|
|
|
|
/*
|
|
* split a bio - only worry about a bio with a single page
|
|
* in it's iovec
|
|
*/
|
|
struct bio_pair *bio_split(struct bio *bi, int first_sectors)
|
|
{
|
|
struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
|
|
|
|
if (!bp)
|
|
return bp;
|
|
|
|
blk_add_trace_pdu_int(bdev_get_queue(bi->bi_bdev), BLK_TA_SPLIT, bi,
|
|
bi->bi_sector + first_sectors);
|
|
|
|
BUG_ON(bi->bi_vcnt != 1);
|
|
BUG_ON(bi->bi_idx != 0);
|
|
atomic_set(&bp->cnt, 3);
|
|
bp->error = 0;
|
|
bp->bio1 = *bi;
|
|
bp->bio2 = *bi;
|
|
bp->bio2.bi_sector += first_sectors;
|
|
bp->bio2.bi_size -= first_sectors << 9;
|
|
bp->bio1.bi_size = first_sectors << 9;
|
|
|
|
bp->bv1 = bi->bi_io_vec[0];
|
|
bp->bv2 = bi->bi_io_vec[0];
|
|
bp->bv2.bv_offset += first_sectors << 9;
|
|
bp->bv2.bv_len -= first_sectors << 9;
|
|
bp->bv1.bv_len = first_sectors << 9;
|
|
|
|
bp->bio1.bi_io_vec = &bp->bv1;
|
|
bp->bio2.bi_io_vec = &bp->bv2;
|
|
|
|
bp->bio1.bi_max_vecs = 1;
|
|
bp->bio2.bi_max_vecs = 1;
|
|
|
|
bp->bio1.bi_end_io = bio_pair_end_1;
|
|
bp->bio2.bi_end_io = bio_pair_end_2;
|
|
|
|
bp->bio1.bi_private = bi;
|
|
bp->bio2.bi_private = bio_split_pool;
|
|
|
|
if (bio_integrity(bi))
|
|
bio_integrity_split(bi, bp, first_sectors);
|
|
|
|
return bp;
|
|
}
|
|
|
|
/**
|
|
* bio_sector_offset - Find hardware sector offset in bio
|
|
* @bio: bio to inspect
|
|
* @index: bio_vec index
|
|
* @offset: offset in bv_page
|
|
*
|
|
* Return the number of hardware sectors between beginning of bio
|
|
* and an end point indicated by a bio_vec index and an offset
|
|
* within that vector's page.
|
|
*/
|
|
sector_t bio_sector_offset(struct bio *bio, unsigned short index,
|
|
unsigned int offset)
|
|
{
|
|
unsigned int sector_sz = queue_hardsect_size(bio->bi_bdev->bd_disk->queue);
|
|
struct bio_vec *bv;
|
|
sector_t sectors;
|
|
int i;
|
|
|
|
sectors = 0;
|
|
|
|
if (index >= bio->bi_idx)
|
|
index = bio->bi_vcnt - 1;
|
|
|
|
__bio_for_each_segment(bv, bio, i, 0) {
|
|
if (i == index) {
|
|
if (offset > bv->bv_offset)
|
|
sectors += (offset - bv->bv_offset) / sector_sz;
|
|
break;
|
|
}
|
|
|
|
sectors += bv->bv_len / sector_sz;
|
|
}
|
|
|
|
return sectors;
|
|
}
|
|
EXPORT_SYMBOL(bio_sector_offset);
|
|
|
|
/*
|
|
* create memory pools for biovec's in a bio_set.
|
|
* use the global biovec slabs created for general use.
|
|
*/
|
|
static int biovec_create_pools(struct bio_set *bs, int pool_entries)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BIOVEC_NR_POOLS; i++) {
|
|
struct biovec_slab *bp = bvec_slabs + i;
|
|
mempool_t **bvp = bs->bvec_pools + i;
|
|
|
|
*bvp = mempool_create_slab_pool(pool_entries, bp->slab);
|
|
if (!*bvp)
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void biovec_free_pools(struct bio_set *bs)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BIOVEC_NR_POOLS; i++) {
|
|
mempool_t *bvp = bs->bvec_pools[i];
|
|
|
|
if (bvp)
|
|
mempool_destroy(bvp);
|
|
}
|
|
|
|
}
|
|
|
|
void bioset_free(struct bio_set *bs)
|
|
{
|
|
if (bs->bio_pool)
|
|
mempool_destroy(bs->bio_pool);
|
|
|
|
bioset_integrity_free(bs);
|
|
biovec_free_pools(bs);
|
|
|
|
kfree(bs);
|
|
}
|
|
|
|
struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size)
|
|
{
|
|
struct bio_set *bs = kzalloc(sizeof(*bs), GFP_KERNEL);
|
|
|
|
if (!bs)
|
|
return NULL;
|
|
|
|
bs->bio_pool = mempool_create_slab_pool(bio_pool_size, bio_slab);
|
|
if (!bs->bio_pool)
|
|
goto bad;
|
|
|
|
if (bioset_integrity_create(bs, bio_pool_size))
|
|
goto bad;
|
|
|
|
if (!biovec_create_pools(bs, bvec_pool_size))
|
|
return bs;
|
|
|
|
bad:
|
|
bioset_free(bs);
|
|
return NULL;
|
|
}
|
|
|
|
static void __init biovec_init_slabs(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BIOVEC_NR_POOLS; i++) {
|
|
int size;
|
|
struct biovec_slab *bvs = bvec_slabs + i;
|
|
|
|
size = bvs->nr_vecs * sizeof(struct bio_vec);
|
|
bvs->slab = kmem_cache_create(bvs->name, size, 0,
|
|
SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
|
|
}
|
|
}
|
|
|
|
static int __init init_bio(void)
|
|
{
|
|
bio_slab = KMEM_CACHE(bio, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
|
|
|
|
bio_integrity_init_slab();
|
|
biovec_init_slabs();
|
|
|
|
fs_bio_set = bioset_create(BIO_POOL_SIZE, 2);
|
|
if (!fs_bio_set)
|
|
panic("bio: can't allocate bios\n");
|
|
|
|
bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
|
|
sizeof(struct bio_pair));
|
|
if (!bio_split_pool)
|
|
panic("bio: can't create split pool\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
subsys_initcall(init_bio);
|
|
|
|
EXPORT_SYMBOL(bio_alloc);
|
|
EXPORT_SYMBOL(bio_kmalloc);
|
|
EXPORT_SYMBOL(bio_put);
|
|
EXPORT_SYMBOL(bio_free);
|
|
EXPORT_SYMBOL(bio_endio);
|
|
EXPORT_SYMBOL(bio_init);
|
|
EXPORT_SYMBOL(__bio_clone);
|
|
EXPORT_SYMBOL(bio_clone);
|
|
EXPORT_SYMBOL(bio_phys_segments);
|
|
EXPORT_SYMBOL(bio_add_page);
|
|
EXPORT_SYMBOL(bio_add_pc_page);
|
|
EXPORT_SYMBOL(bio_get_nr_vecs);
|
|
EXPORT_SYMBOL(bio_map_user);
|
|
EXPORT_SYMBOL(bio_unmap_user);
|
|
EXPORT_SYMBOL(bio_map_kern);
|
|
EXPORT_SYMBOL(bio_copy_kern);
|
|
EXPORT_SYMBOL(bio_pair_release);
|
|
EXPORT_SYMBOL(bio_split);
|
|
EXPORT_SYMBOL(bio_copy_user);
|
|
EXPORT_SYMBOL(bio_uncopy_user);
|
|
EXPORT_SYMBOL(bioset_create);
|
|
EXPORT_SYMBOL(bioset_free);
|
|
EXPORT_SYMBOL(bio_alloc_bioset);
|