2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 12:14:01 +08:00
linux-next/drivers/net/s2io.c
Domen Puncer 1e7f0bd8c8 drivers/net/: Use the DMA_{64,32}BIT_MASK constants
Use the DMA_{64,32}BIT_MASK constants from dma-mapping.h when calling
pci_set_dma_mask() or pci_set_consistent_dma_mask()

This patch includes dma-mapping.h explicitly because it caused errors
on some architectures otherwise.

See http://marc.theaimsgroup.com/?t=108001993000001&r=1&w=2 for details

Signed-off-by: Tobias Klauser <tklauser@nuerscht.ch>
Signed-off-by: Domen Puncer <domen@coderock.org>
2005-06-26 18:22:14 -04:00

4952 lines
138 KiB
C

/************************************************************************
* s2io.c: A Linux PCI-X Ethernet driver for S2IO 10GbE Server NIC
* Copyright(c) 2002-2005 Neterion Inc.
* This software may be used and distributed according to the terms of
* the GNU General Public License (GPL), incorporated herein by reference.
* Drivers based on or derived from this code fall under the GPL and must
* retain the authorship, copyright and license notice. This file is not
* a complete program and may only be used when the entire operating
* system is licensed under the GPL.
* See the file COPYING in this distribution for more information.
*
* Credits:
* Jeff Garzik : For pointing out the improper error condition
* check in the s2io_xmit routine and also some
* issues in the Tx watch dog function. Also for
* patiently answering all those innumerable
* questions regaring the 2.6 porting issues.
* Stephen Hemminger : Providing proper 2.6 porting mechanism for some
* macros available only in 2.6 Kernel.
* Francois Romieu : For pointing out all code part that were
* deprecated and also styling related comments.
* Grant Grundler : For helping me get rid of some Architecture
* dependent code.
* Christopher Hellwig : Some more 2.6 specific issues in the driver.
*
* The module loadable parameters that are supported by the driver and a brief
* explaination of all the variables.
* rx_ring_num : This can be used to program the number of receive rings used
* in the driver.
* rx_ring_len: This defines the number of descriptors each ring can have. This
* is also an array of size 8.
* tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
* tx_fifo_len: This too is an array of 8. Each element defines the number of
* Tx descriptors that can be associated with each corresponding FIFO.
* in PCI Configuration space.
************************************************************************/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/stddef.h>
#include <linux/ioctl.h>
#include <linux/timex.h>
#include <linux/sched.h>
#include <linux/ethtool.h>
#include <linux/version.h>
#include <linux/workqueue.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/uaccess.h>
/* local include */
#include "s2io.h"
#include "s2io-regs.h"
/* S2io Driver name & version. */
static char s2io_driver_name[] = "s2io";
static char s2io_driver_version[] = "Version 1.7.7.1";
/*
* Cards with following subsystem_id have a link state indication
* problem, 600B, 600C, 600D, 640B, 640C and 640D.
* macro below identifies these cards given the subsystem_id.
*/
#define CARDS_WITH_FAULTY_LINK_INDICATORS(subid) \
(((subid >= 0x600B) && (subid <= 0x600D)) || \
((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0
#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
#define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
#define PANIC 1
#define LOW 2
static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
{
int level = 0;
if ((sp->pkt_cnt[ring] - rxb_size) > 16) {
level = LOW;
if ((sp->pkt_cnt[ring] - rxb_size) < MAX_RXDS_PER_BLOCK) {
level = PANIC;
}
}
return level;
}
/* Ethtool related variables and Macros. */
static char s2io_gstrings[][ETH_GSTRING_LEN] = {
"Register test\t(offline)",
"Eeprom test\t(offline)",
"Link test\t(online)",
"RLDRAM test\t(offline)",
"BIST Test\t(offline)"
};
static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
{"tmac_frms"},
{"tmac_data_octets"},
{"tmac_drop_frms"},
{"tmac_mcst_frms"},
{"tmac_bcst_frms"},
{"tmac_pause_ctrl_frms"},
{"tmac_any_err_frms"},
{"tmac_vld_ip_octets"},
{"tmac_vld_ip"},
{"tmac_drop_ip"},
{"tmac_icmp"},
{"tmac_rst_tcp"},
{"tmac_tcp"},
{"tmac_udp"},
{"rmac_vld_frms"},
{"rmac_data_octets"},
{"rmac_fcs_err_frms"},
{"rmac_drop_frms"},
{"rmac_vld_mcst_frms"},
{"rmac_vld_bcst_frms"},
{"rmac_in_rng_len_err_frms"},
{"rmac_long_frms"},
{"rmac_pause_ctrl_frms"},
{"rmac_discarded_frms"},
{"rmac_usized_frms"},
{"rmac_osized_frms"},
{"rmac_frag_frms"},
{"rmac_jabber_frms"},
{"rmac_ip"},
{"rmac_ip_octets"},
{"rmac_hdr_err_ip"},
{"rmac_drop_ip"},
{"rmac_icmp"},
{"rmac_tcp"},
{"rmac_udp"},
{"rmac_err_drp_udp"},
{"rmac_pause_cnt"},
{"rmac_accepted_ip"},
{"rmac_err_tcp"},
};
#define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
#define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
#define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
/*
* Constants to be programmed into the Xena's registers, to configure
* the XAUI.
*/
#define SWITCH_SIGN 0xA5A5A5A5A5A5A5A5ULL
#define END_SIGN 0x0
static u64 default_mdio_cfg[] = {
/* Reset PMA PLL */
0xC001010000000000ULL, 0xC0010100000000E0ULL,
0xC0010100008000E4ULL,
/* Remove Reset from PMA PLL */
0xC001010000000000ULL, 0xC0010100000000E0ULL,
0xC0010100000000E4ULL,
END_SIGN
};
static u64 default_dtx_cfg[] = {
0x8000051500000000ULL, 0x80000515000000E0ULL,
0x80000515D93500E4ULL, 0x8001051500000000ULL,
0x80010515000000E0ULL, 0x80010515001E00E4ULL,
0x8002051500000000ULL, 0x80020515000000E0ULL,
0x80020515F21000E4ULL,
/* Set PADLOOPBACKN */
0x8002051500000000ULL, 0x80020515000000E0ULL,
0x80020515B20000E4ULL, 0x8003051500000000ULL,
0x80030515000000E0ULL, 0x80030515B20000E4ULL,
0x8004051500000000ULL, 0x80040515000000E0ULL,
0x80040515B20000E4ULL, 0x8005051500000000ULL,
0x80050515000000E0ULL, 0x80050515B20000E4ULL,
SWITCH_SIGN,
/* Remove PADLOOPBACKN */
0x8002051500000000ULL, 0x80020515000000E0ULL,
0x80020515F20000E4ULL, 0x8003051500000000ULL,
0x80030515000000E0ULL, 0x80030515F20000E4ULL,
0x8004051500000000ULL, 0x80040515000000E0ULL,
0x80040515F20000E4ULL, 0x8005051500000000ULL,
0x80050515000000E0ULL, 0x80050515F20000E4ULL,
END_SIGN
};
/*
* Constants for Fixing the MacAddress problem seen mostly on
* Alpha machines.
*/
static u64 fix_mac[] = {
0x0060000000000000ULL, 0x0060600000000000ULL,
0x0040600000000000ULL, 0x0000600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0060600000000000ULL,
0x0020600000000000ULL, 0x0000600000000000ULL,
0x0040600000000000ULL, 0x0060600000000000ULL,
END_SIGN
};
/* Module Loadable parameters. */
static unsigned int tx_fifo_num = 1;
static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
{[0 ...(MAX_TX_FIFOS - 1)] = 0 };
static unsigned int rx_ring_num = 1;
static unsigned int rx_ring_sz[MAX_RX_RINGS] =
{[0 ...(MAX_RX_RINGS - 1)] = 0 };
static unsigned int Stats_refresh_time = 4;
static unsigned int rmac_pause_time = 65535;
static unsigned int mc_pause_threshold_q0q3 = 187;
static unsigned int mc_pause_threshold_q4q7 = 187;
static unsigned int shared_splits;
static unsigned int tmac_util_period = 5;
static unsigned int rmac_util_period = 5;
#ifndef CONFIG_S2IO_NAPI
static unsigned int indicate_max_pkts;
#endif
/*
* S2IO device table.
* This table lists all the devices that this driver supports.
*/
static struct pci_device_id s2io_tbl[] __devinitdata = {
{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
PCI_ANY_ID, PCI_ANY_ID},
{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
PCI_ANY_ID, PCI_ANY_ID},
{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
PCI_ANY_ID, PCI_ANY_ID},
{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
PCI_ANY_ID, PCI_ANY_ID},
{0,}
};
MODULE_DEVICE_TABLE(pci, s2io_tbl);
static struct pci_driver s2io_driver = {
.name = "S2IO",
.id_table = s2io_tbl,
.probe = s2io_init_nic,
.remove = __devexit_p(s2io_rem_nic),
};
/* A simplifier macro used both by init and free shared_mem Fns(). */
#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
/**
* init_shared_mem - Allocation and Initialization of Memory
* @nic: Device private variable.
* Description: The function allocates all the memory areas shared
* between the NIC and the driver. This includes Tx descriptors,
* Rx descriptors and the statistics block.
*/
static int init_shared_mem(struct s2io_nic *nic)
{
u32 size;
void *tmp_v_addr, *tmp_v_addr_next;
dma_addr_t tmp_p_addr, tmp_p_addr_next;
RxD_block_t *pre_rxd_blk = NULL;
int i, j, blk_cnt;
int lst_size, lst_per_page;
struct net_device *dev = nic->dev;
#ifdef CONFIG_2BUFF_MODE
unsigned long tmp;
buffAdd_t *ba;
#endif
mac_info_t *mac_control;
struct config_param *config;
mac_control = &nic->mac_control;
config = &nic->config;
/* Allocation and initialization of TXDLs in FIOFs */
size = 0;
for (i = 0; i < config->tx_fifo_num; i++) {
size += config->tx_cfg[i].fifo_len;
}
if (size > MAX_AVAILABLE_TXDS) {
DBG_PRINT(ERR_DBG, "%s: Total number of Tx FIFOs ",
dev->name);
DBG_PRINT(ERR_DBG, "exceeds the maximum value ");
DBG_PRINT(ERR_DBG, "that can be used\n");
return FAILURE;
}
lst_size = (sizeof(TxD_t) * config->max_txds);
lst_per_page = PAGE_SIZE / lst_size;
for (i = 0; i < config->tx_fifo_num; i++) {
int fifo_len = config->tx_cfg[i].fifo_len;
int list_holder_size = fifo_len * sizeof(list_info_hold_t);
nic->list_info[i] = kmalloc(list_holder_size, GFP_KERNEL);
if (!nic->list_info[i]) {
DBG_PRINT(ERR_DBG,
"Malloc failed for list_info\n");
return -ENOMEM;
}
memset(nic->list_info[i], 0, list_holder_size);
}
for (i = 0; i < config->tx_fifo_num; i++) {
int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
lst_per_page);
mac_control->tx_curr_put_info[i].offset = 0;
mac_control->tx_curr_put_info[i].fifo_len =
config->tx_cfg[i].fifo_len - 1;
mac_control->tx_curr_get_info[i].offset = 0;
mac_control->tx_curr_get_info[i].fifo_len =
config->tx_cfg[i].fifo_len - 1;
for (j = 0; j < page_num; j++) {
int k = 0;
dma_addr_t tmp_p;
void *tmp_v;
tmp_v = pci_alloc_consistent(nic->pdev,
PAGE_SIZE, &tmp_p);
if (!tmp_v) {
DBG_PRINT(ERR_DBG,
"pci_alloc_consistent ");
DBG_PRINT(ERR_DBG, "failed for TxDL\n");
return -ENOMEM;
}
while (k < lst_per_page) {
int l = (j * lst_per_page) + k;
if (l == config->tx_cfg[i].fifo_len)
goto end_txd_alloc;
nic->list_info[i][l].list_virt_addr =
tmp_v + (k * lst_size);
nic->list_info[i][l].list_phy_addr =
tmp_p + (k * lst_size);
k++;
}
}
}
end_txd_alloc:
/* Allocation and initialization of RXDs in Rings */
size = 0;
for (i = 0; i < config->rx_ring_num; i++) {
if (config->rx_cfg[i].num_rxd % (MAX_RXDS_PER_BLOCK + 1)) {
DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
i);
DBG_PRINT(ERR_DBG, "RxDs per Block");
return FAILURE;
}
size += config->rx_cfg[i].num_rxd;
nic->block_count[i] =
config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
nic->pkt_cnt[i] =
config->rx_cfg[i].num_rxd - nic->block_count[i];
}
for (i = 0; i < config->rx_ring_num; i++) {
mac_control->rx_curr_get_info[i].block_index = 0;
mac_control->rx_curr_get_info[i].offset = 0;
mac_control->rx_curr_get_info[i].ring_len =
config->rx_cfg[i].num_rxd - 1;
mac_control->rx_curr_put_info[i].block_index = 0;
mac_control->rx_curr_put_info[i].offset = 0;
mac_control->rx_curr_put_info[i].ring_len =
config->rx_cfg[i].num_rxd - 1;
blk_cnt =
config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
/* Allocating all the Rx blocks */
for (j = 0; j < blk_cnt; j++) {
#ifndef CONFIG_2BUFF_MODE
size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t));
#else
size = SIZE_OF_BLOCK;
#endif
tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
&tmp_p_addr);
if (tmp_v_addr == NULL) {
/*
* In case of failure, free_shared_mem()
* is called, which should free any
* memory that was alloced till the
* failure happened.
*/
nic->rx_blocks[i][j].block_virt_addr =
tmp_v_addr;
return -ENOMEM;
}
memset(tmp_v_addr, 0, size);
nic->rx_blocks[i][j].block_virt_addr = tmp_v_addr;
nic->rx_blocks[i][j].block_dma_addr = tmp_p_addr;
}
/* Interlinking all Rx Blocks */
for (j = 0; j < blk_cnt; j++) {
tmp_v_addr = nic->rx_blocks[i][j].block_virt_addr;
tmp_v_addr_next =
nic->rx_blocks[i][(j + 1) %
blk_cnt].block_virt_addr;
tmp_p_addr = nic->rx_blocks[i][j].block_dma_addr;
tmp_p_addr_next =
nic->rx_blocks[i][(j + 1) %
blk_cnt].block_dma_addr;
pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
pre_rxd_blk->reserved_1 = END_OF_BLOCK; /* last RxD
* marker.
*/
#ifndef CONFIG_2BUFF_MODE
pre_rxd_blk->reserved_2_pNext_RxD_block =
(unsigned long) tmp_v_addr_next;
#endif
pre_rxd_blk->pNext_RxD_Blk_physical =
(u64) tmp_p_addr_next;
}
}
#ifdef CONFIG_2BUFF_MODE
/*
* Allocation of Storages for buffer addresses in 2BUFF mode
* and the buffers as well.
*/
for (i = 0; i < config->rx_ring_num; i++) {
blk_cnt =
config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
nic->ba[i] = kmalloc((sizeof(buffAdd_t *) * blk_cnt),
GFP_KERNEL);
if (!nic->ba[i])
return -ENOMEM;
for (j = 0; j < blk_cnt; j++) {
int k = 0;
nic->ba[i][j] = kmalloc((sizeof(buffAdd_t) *
(MAX_RXDS_PER_BLOCK + 1)),
GFP_KERNEL);
if (!nic->ba[i][j])
return -ENOMEM;
while (k != MAX_RXDS_PER_BLOCK) {
ba = &nic->ba[i][j][k];
ba->ba_0_org = kmalloc
(BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
if (!ba->ba_0_org)
return -ENOMEM;
tmp = (unsigned long) ba->ba_0_org;
tmp += ALIGN_SIZE;
tmp &= ~((unsigned long) ALIGN_SIZE);
ba->ba_0 = (void *) tmp;
ba->ba_1_org = kmalloc
(BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
if (!ba->ba_1_org)
return -ENOMEM;
tmp = (unsigned long) ba->ba_1_org;
tmp += ALIGN_SIZE;
tmp &= ~((unsigned long) ALIGN_SIZE);
ba->ba_1 = (void *) tmp;
k++;
}
}
}
#endif
/* Allocation and initialization of Statistics block */
size = sizeof(StatInfo_t);
mac_control->stats_mem = pci_alloc_consistent
(nic->pdev, size, &mac_control->stats_mem_phy);
if (!mac_control->stats_mem) {
/*
* In case of failure, free_shared_mem() is called, which
* should free any memory that was alloced till the
* failure happened.
*/
return -ENOMEM;
}
mac_control->stats_mem_sz = size;
tmp_v_addr = mac_control->stats_mem;
mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
memset(tmp_v_addr, 0, size);
DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
(unsigned long long) tmp_p_addr);
return SUCCESS;
}
/**
* free_shared_mem - Free the allocated Memory
* @nic: Device private variable.
* Description: This function is to free all memory locations allocated by
* the init_shared_mem() function and return it to the kernel.
*/
static void free_shared_mem(struct s2io_nic *nic)
{
int i, j, blk_cnt, size;
void *tmp_v_addr;
dma_addr_t tmp_p_addr;
mac_info_t *mac_control;
struct config_param *config;
int lst_size, lst_per_page;
if (!nic)
return;
mac_control = &nic->mac_control;
config = &nic->config;
lst_size = (sizeof(TxD_t) * config->max_txds);
lst_per_page = PAGE_SIZE / lst_size;
for (i = 0; i < config->tx_fifo_num; i++) {
int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
lst_per_page);
for (j = 0; j < page_num; j++) {
int mem_blks = (j * lst_per_page);
if (!nic->list_info[i][mem_blks].list_virt_addr)
break;
pci_free_consistent(nic->pdev, PAGE_SIZE,
nic->list_info[i][mem_blks].
list_virt_addr,
nic->list_info[i][mem_blks].
list_phy_addr);
}
kfree(nic->list_info[i]);
}
#ifndef CONFIG_2BUFF_MODE
size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t));
#else
size = SIZE_OF_BLOCK;
#endif
for (i = 0; i < config->rx_ring_num; i++) {
blk_cnt = nic->block_count[i];
for (j = 0; j < blk_cnt; j++) {
tmp_v_addr = nic->rx_blocks[i][j].block_virt_addr;
tmp_p_addr = nic->rx_blocks[i][j].block_dma_addr;
if (tmp_v_addr == NULL)
break;
pci_free_consistent(nic->pdev, size,
tmp_v_addr, tmp_p_addr);
}
}
#ifdef CONFIG_2BUFF_MODE
/* Freeing buffer storage addresses in 2BUFF mode. */
for (i = 0; i < config->rx_ring_num; i++) {
blk_cnt =
config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
if (!nic->ba[i])
goto end_free;
for (j = 0; j < blk_cnt; j++) {
int k = 0;
if (!nic->ba[i][j]) {
kfree(nic->ba[i]);
goto end_free;
}
while (k != MAX_RXDS_PER_BLOCK) {
buffAdd_t *ba = &nic->ba[i][j][k];
if (!ba || !ba->ba_0_org || !ba->ba_1_org)
{
kfree(nic->ba[i]);
kfree(nic->ba[i][j]);
if(ba->ba_0_org)
kfree(ba->ba_0_org);
if(ba->ba_1_org)
kfree(ba->ba_1_org);
goto end_free;
}
kfree(ba->ba_0_org);
kfree(ba->ba_1_org);
k++;
}
kfree(nic->ba[i][j]);
}
kfree(nic->ba[i]);
}
end_free:
#endif
if (mac_control->stats_mem) {
pci_free_consistent(nic->pdev,
mac_control->stats_mem_sz,
mac_control->stats_mem,
mac_control->stats_mem_phy);
}
}
/**
* init_nic - Initialization of hardware
* @nic: device peivate variable
* Description: The function sequentially configures every block
* of the H/W from their reset values.
* Return Value: SUCCESS on success and
* '-1' on failure (endian settings incorrect).
*/
static int init_nic(struct s2io_nic *nic)
{
XENA_dev_config_t __iomem *bar0 = nic->bar0;
struct net_device *dev = nic->dev;
register u64 val64 = 0;
void __iomem *add;
u32 time;
int i, j;
mac_info_t *mac_control;
struct config_param *config;
int mdio_cnt = 0, dtx_cnt = 0;
unsigned long long mem_share;
mac_control = &nic->mac_control;
config = &nic->config;
/* Initialize swapper control register */
if (s2io_set_swapper(nic)) {
DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
return -1;
}
/* Remove XGXS from reset state */
val64 = 0;
writeq(val64, &bar0->sw_reset);
val64 = readq(&bar0->sw_reset);
msleep(500);
/* Enable Receiving broadcasts */
add = &bar0->mac_cfg;
val64 = readq(&bar0->mac_cfg);
val64 |= MAC_RMAC_BCAST_ENABLE;
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) val64, add);
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) (val64 >> 32), (add + 4));
/* Read registers in all blocks */
val64 = readq(&bar0->mac_int_mask);
val64 = readq(&bar0->mc_int_mask);
val64 = readq(&bar0->xgxs_int_mask);
/* Set MTU */
val64 = dev->mtu;
writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
/*
* Configuring the XAUI Interface of Xena.
* ***************************************
* To Configure the Xena's XAUI, one has to write a series
* of 64 bit values into two registers in a particular
* sequence. Hence a macro 'SWITCH_SIGN' has been defined
* which will be defined in the array of configuration values
* (default_dtx_cfg & default_mdio_cfg) at appropriate places
* to switch writing from one regsiter to another. We continue
* writing these values until we encounter the 'END_SIGN' macro.
* For example, After making a series of 21 writes into
* dtx_control register the 'SWITCH_SIGN' appears and hence we
* start writing into mdio_control until we encounter END_SIGN.
*/
while (1) {
dtx_cfg:
while (default_dtx_cfg[dtx_cnt] != END_SIGN) {
if (default_dtx_cfg[dtx_cnt] == SWITCH_SIGN) {
dtx_cnt++;
goto mdio_cfg;
}
SPECIAL_REG_WRITE(default_dtx_cfg[dtx_cnt],
&bar0->dtx_control, UF);
val64 = readq(&bar0->dtx_control);
dtx_cnt++;
}
mdio_cfg:
while (default_mdio_cfg[mdio_cnt] != END_SIGN) {
if (default_mdio_cfg[mdio_cnt] == SWITCH_SIGN) {
mdio_cnt++;
goto dtx_cfg;
}
SPECIAL_REG_WRITE(default_mdio_cfg[mdio_cnt],
&bar0->mdio_control, UF);
val64 = readq(&bar0->mdio_control);
mdio_cnt++;
}
if ((default_dtx_cfg[dtx_cnt] == END_SIGN) &&
(default_mdio_cfg[mdio_cnt] == END_SIGN)) {
break;
} else {
goto dtx_cfg;
}
}
/* Tx DMA Initialization */
val64 = 0;
writeq(val64, &bar0->tx_fifo_partition_0);
writeq(val64, &bar0->tx_fifo_partition_1);
writeq(val64, &bar0->tx_fifo_partition_2);
writeq(val64, &bar0->tx_fifo_partition_3);
for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
val64 |=
vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
13) | vBIT(config->tx_cfg[i].fifo_priority,
((i * 32) + 5), 3);
if (i == (config->tx_fifo_num - 1)) {
if (i % 2 == 0)
i++;
}
switch (i) {
case 1:
writeq(val64, &bar0->tx_fifo_partition_0);
val64 = 0;
break;
case 3:
writeq(val64, &bar0->tx_fifo_partition_1);
val64 = 0;
break;
case 5:
writeq(val64, &bar0->tx_fifo_partition_2);
val64 = 0;
break;
case 7:
writeq(val64, &bar0->tx_fifo_partition_3);
break;
}
}
/* Enable Tx FIFO partition 0. */
val64 = readq(&bar0->tx_fifo_partition_0);
val64 |= BIT(0); /* To enable the FIFO partition. */
writeq(val64, &bar0->tx_fifo_partition_0);
val64 = readq(&bar0->tx_fifo_partition_0);
DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
&bar0->tx_fifo_partition_0, (unsigned long long) val64);
/*
* Initialization of Tx_PA_CONFIG register to ignore packet
* integrity checking.
*/
val64 = readq(&bar0->tx_pa_cfg);
val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
writeq(val64, &bar0->tx_pa_cfg);
/* Rx DMA intialization. */
val64 = 0;
for (i = 0; i < config->rx_ring_num; i++) {
val64 |=
vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
3);
}
writeq(val64, &bar0->rx_queue_priority);
/*
* Allocating equal share of memory to all the
* configured Rings.
*/
val64 = 0;
for (i = 0; i < config->rx_ring_num; i++) {
switch (i) {
case 0:
mem_share = (64 / config->rx_ring_num +
64 % config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
continue;
case 1:
mem_share = (64 / config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
continue;
case 2:
mem_share = (64 / config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
continue;
case 3:
mem_share = (64 / config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
continue;
case 4:
mem_share = (64 / config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
continue;
case 5:
mem_share = (64 / config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
continue;
case 6:
mem_share = (64 / config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
continue;
case 7:
mem_share = (64 / config->rx_ring_num);
val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
continue;
}
}
writeq(val64, &bar0->rx_queue_cfg);
/*
* Initializing the Tx round robin registers to 0.
* Filling Tx and Rx round robin registers as per the
* number of FIFOs and Rings is still TODO.
*/
writeq(0, &bar0->tx_w_round_robin_0);
writeq(0, &bar0->tx_w_round_robin_1);
writeq(0, &bar0->tx_w_round_robin_2);
writeq(0, &bar0->tx_w_round_robin_3);
writeq(0, &bar0->tx_w_round_robin_4);
/*
* TODO
* Disable Rx steering. Hard coding all packets be steered to
* Queue 0 for now.
*/
val64 = 0x8080808080808080ULL;
writeq(val64, &bar0->rts_qos_steering);
/* UDP Fix */
val64 = 0;
for (i = 1; i < 8; i++)
writeq(val64, &bar0->rts_frm_len_n[i]);
/* Set rts_frm_len register for fifo 0 */
writeq(MAC_RTS_FRM_LEN_SET(dev->mtu + 22),
&bar0->rts_frm_len_n[0]);
/* Enable statistics */
writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
val64 = SET_UPDT_PERIOD(Stats_refresh_time) |
STAT_CFG_STAT_RO | STAT_CFG_STAT_EN;
writeq(val64, &bar0->stat_cfg);
/*
* Initializing the sampling rate for the device to calculate the
* bandwidth utilization.
*/
val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
MAC_RX_LINK_UTIL_VAL(rmac_util_period);
writeq(val64, &bar0->mac_link_util);
/*
* Initializing the Transmit and Receive Traffic Interrupt
* Scheme.
*/
/* TTI Initialization. Default Tx timer gets us about
* 250 interrupts per sec. Continuous interrupts are enabled
* by default.
*/
val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078) |
TTI_DATA1_MEM_TX_URNG_A(0xA) |
TTI_DATA1_MEM_TX_URNG_B(0x10) |
TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN |
TTI_DATA1_MEM_TX_TIMER_CI_EN;
writeq(val64, &bar0->tti_data1_mem);
val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
TTI_DATA2_MEM_TX_UFC_B(0x20) |
TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
writeq(val64, &bar0->tti_data2_mem);
val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
writeq(val64, &bar0->tti_command_mem);
/*
* Once the operation completes, the Strobe bit of the command
* register will be reset. We poll for this particular condition
* We wait for a maximum of 500ms for the operation to complete,
* if it's not complete by then we return error.
*/
time = 0;
while (TRUE) {
val64 = readq(&bar0->tti_command_mem);
if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
break;
}
if (time > 10) {
DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
dev->name);
return -1;
}
msleep(50);
time++;
}
/* RTI Initialization */
val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF) |
RTI_DATA1_MEM_RX_URNG_A(0xA) |
RTI_DATA1_MEM_RX_URNG_B(0x10) |
RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
writeq(val64, &bar0->rti_data1_mem);
val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
RTI_DATA2_MEM_RX_UFC_B(0x2) |
RTI_DATA2_MEM_RX_UFC_C(0x40) | RTI_DATA2_MEM_RX_UFC_D(0x80);
writeq(val64, &bar0->rti_data2_mem);
val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD;
writeq(val64, &bar0->rti_command_mem);
/*
* Once the operation completes, the Strobe bit of the command
* register will be reset. We poll for this particular condition
* We wait for a maximum of 500ms for the operation to complete,
* if it's not complete by then we return error.
*/
time = 0;
while (TRUE) {
val64 = readq(&bar0->rti_command_mem);
if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
break;
}
if (time > 10) {
DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
dev->name);
return -1;
}
time++;
msleep(50);
}
/*
* Initializing proper values as Pause threshold into all
* the 8 Queues on Rx side.
*/
writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
/* Disable RMAC PAD STRIPPING */
add = &bar0->mac_cfg;
val64 = readq(&bar0->mac_cfg);
val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) (val64), add);
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) (val64 >> 32), (add + 4));
val64 = readq(&bar0->mac_cfg);
/*
* Set the time value to be inserted in the pause frame
* generated by xena.
*/
val64 = readq(&bar0->rmac_pause_cfg);
val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
writeq(val64, &bar0->rmac_pause_cfg);
/*
* Set the Threshold Limit for Generating the pause frame
* If the amount of data in any Queue exceeds ratio of
* (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
* pause frame is generated
*/
val64 = 0;
for (i = 0; i < 4; i++) {
val64 |=
(((u64) 0xFF00 | nic->mac_control.
mc_pause_threshold_q0q3)
<< (i * 2 * 8));
}
writeq(val64, &bar0->mc_pause_thresh_q0q3);
val64 = 0;
for (i = 0; i < 4; i++) {
val64 |=
(((u64) 0xFF00 | nic->mac_control.
mc_pause_threshold_q4q7)
<< (i * 2 * 8));
}
writeq(val64, &bar0->mc_pause_thresh_q4q7);
/*
* TxDMA will stop Read request if the number of read split has
* exceeded the limit pointed by shared_splits
*/
val64 = readq(&bar0->pic_control);
val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
writeq(val64, &bar0->pic_control);
return SUCCESS;
}
/**
* en_dis_able_nic_intrs - Enable or Disable the interrupts
* @nic: device private variable,
* @mask: A mask indicating which Intr block must be modified and,
* @flag: A flag indicating whether to enable or disable the Intrs.
* Description: This function will either disable or enable the interrupts
* depending on the flag argument. The mask argument can be used to
* enable/disable any Intr block.
* Return Value: NONE.
*/
static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
{
XENA_dev_config_t __iomem *bar0 = nic->bar0;
register u64 val64 = 0, temp64 = 0;
/* Top level interrupt classification */
/* PIC Interrupts */
if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
/* Enable PIC Intrs in the general intr mask register */
val64 = TXPIC_INT_M | PIC_RX_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
/*
* Disabled all PCIX, Flash, MDIO, IIC and GPIO
* interrupts for now.
* TODO
*/
writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
/*
* No MSI Support is available presently, so TTI and
* RTI interrupts are also disabled.
*/
} else if (flag == DISABLE_INTRS) {
/*
* Disable PIC Intrs in the general
* intr mask register
*/
writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
/* DMA Interrupts */
/* Enabling/Disabling Tx DMA interrupts */
if (mask & TX_DMA_INTR) {
/* Enable TxDMA Intrs in the general intr mask register */
val64 = TXDMA_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
/*
* Keep all interrupts other than PFC interrupt
* and PCC interrupt disabled in DMA level.
*/
val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
TXDMA_PCC_INT_M);
writeq(val64, &bar0->txdma_int_mask);
/*
* Enable only the MISC error 1 interrupt in PFC block
*/
val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
writeq(val64, &bar0->pfc_err_mask);
/*
* Enable only the FB_ECC error interrupt in PCC block
*/
val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
writeq(val64, &bar0->pcc_err_mask);
} else if (flag == DISABLE_INTRS) {
/*
* Disable TxDMA Intrs in the general intr mask
* register
*/
writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
/* Enabling/Disabling Rx DMA interrupts */
if (mask & RX_DMA_INTR) {
/* Enable RxDMA Intrs in the general intr mask register */
val64 = RXDMA_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
/*
* All RxDMA block interrupts are disabled for now
* TODO
*/
writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
} else if (flag == DISABLE_INTRS) {
/*
* Disable RxDMA Intrs in the general intr mask
* register
*/
writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
/* MAC Interrupts */
/* Enabling/Disabling MAC interrupts */
if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
val64 = TXMAC_INT_M | RXMAC_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
/*
* All MAC block error interrupts are disabled for now
* except the link status change interrupt.
* TODO
*/
val64 = MAC_INT_STATUS_RMAC_INT;
temp64 = readq(&bar0->mac_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->mac_int_mask);
val64 = readq(&bar0->mac_rmac_err_mask);
val64 &= ~((u64) RMAC_LINK_STATE_CHANGE_INT);
writeq(val64, &bar0->mac_rmac_err_mask);
} else if (flag == DISABLE_INTRS) {
/*
* Disable MAC Intrs in the general intr mask register
*/
writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
writeq(DISABLE_ALL_INTRS,
&bar0->mac_rmac_err_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
/* XGXS Interrupts */
if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
val64 = TXXGXS_INT_M | RXXGXS_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
/*
* All XGXS block error interrupts are disabled for now
* TODO
*/
writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
} else if (flag == DISABLE_INTRS) {
/*
* Disable MC Intrs in the general intr mask register
*/
writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
/* Memory Controller(MC) interrupts */
if (mask & MC_INTR) {
val64 = MC_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
/*
* All MC block error interrupts are disabled for now
* TODO
*/
writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
} else if (flag == DISABLE_INTRS) {
/*
* Disable MC Intrs in the general intr mask register
*/
writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
/* Tx traffic interrupts */
if (mask & TX_TRAFFIC_INTR) {
val64 = TXTRAFFIC_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
/*
* Enable all the Tx side interrupts
* writing 0 Enables all 64 TX interrupt levels
*/
writeq(0x0, &bar0->tx_traffic_mask);
} else if (flag == DISABLE_INTRS) {
/*
* Disable Tx Traffic Intrs in the general intr mask
* register.
*/
writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
/* Rx traffic interrupts */
if (mask & RX_TRAFFIC_INTR) {
val64 = RXTRAFFIC_INT_M;
if (flag == ENABLE_INTRS) {
temp64 = readq(&bar0->general_int_mask);
temp64 &= ~((u64) val64);
writeq(temp64, &bar0->general_int_mask);
/* writing 0 Enables all 8 RX interrupt levels */
writeq(0x0, &bar0->rx_traffic_mask);
} else if (flag == DISABLE_INTRS) {
/*
* Disable Rx Traffic Intrs in the general intr mask
* register.
*/
writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
temp64 = readq(&bar0->general_int_mask);
val64 |= temp64;
writeq(val64, &bar0->general_int_mask);
}
}
}
/**
* verify_xena_quiescence - Checks whether the H/W is ready
* @val64 : Value read from adapter status register.
* @flag : indicates if the adapter enable bit was ever written once
* before.
* Description: Returns whether the H/W is ready to go or not. Depending
* on whether adapter enable bit was written or not the comparison
* differs and the calling function passes the input argument flag to
* indicate this.
* Return: 1 If xena is quiescence
* 0 If Xena is not quiescence
*/
static int verify_xena_quiescence(u64 val64, int flag)
{
int ret = 0;
u64 tmp64 = ~((u64) val64);
if (!
(tmp64 &
(ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
ADAPTER_STATUS_P_PLL_LOCK))) {
if (flag == FALSE) {
if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
ret = 1;
}
} else {
if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
ADAPTER_STATUS_RMAC_PCC_IDLE) &&
(!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
ret = 1;
}
}
}
return ret;
}
/**
* fix_mac_address - Fix for Mac addr problem on Alpha platforms
* @sp: Pointer to device specifc structure
* Description :
* New procedure to clear mac address reading problems on Alpha platforms
*
*/
static void fix_mac_address(nic_t * sp)
{
XENA_dev_config_t __iomem *bar0 = sp->bar0;
u64 val64;
int i = 0;
while (fix_mac[i] != END_SIGN) {
writeq(fix_mac[i++], &bar0->gpio_control);
val64 = readq(&bar0->gpio_control);
}
}
/**
* start_nic - Turns the device on
* @nic : device private variable.
* Description:
* This function actually turns the device on. Before this function is
* called,all Registers are configured from their reset states
* and shared memory is allocated but the NIC is still quiescent. On
* calling this function, the device interrupts are cleared and the NIC is
* literally switched on by writing into the adapter control register.
* Return Value:
* SUCCESS on success and -1 on failure.
*/
static int start_nic(struct s2io_nic *nic)
{
XENA_dev_config_t __iomem *bar0 = nic->bar0;
struct net_device *dev = nic->dev;
register u64 val64 = 0;
u16 interruptible, i;
u16 subid;
mac_info_t *mac_control;
struct config_param *config;
mac_control = &nic->mac_control;
config = &nic->config;
/* PRC Initialization and configuration */
for (i = 0; i < config->rx_ring_num; i++) {
writeq((u64) nic->rx_blocks[i][0].block_dma_addr,
&bar0->prc_rxd0_n[i]);
val64 = readq(&bar0->prc_ctrl_n[i]);
#ifndef CONFIG_2BUFF_MODE
val64 |= PRC_CTRL_RC_ENABLED;
#else
val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
#endif
writeq(val64, &bar0->prc_ctrl_n[i]);
}
#ifdef CONFIG_2BUFF_MODE
/* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
val64 = readq(&bar0->rx_pa_cfg);
val64 |= RX_PA_CFG_IGNORE_L2_ERR;
writeq(val64, &bar0->rx_pa_cfg);
#endif
/*
* Enabling MC-RLDRAM. After enabling the device, we timeout
* for around 100ms, which is approximately the time required
* for the device to be ready for operation.
*/
val64 = readq(&bar0->mc_rldram_mrs);
val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
val64 = readq(&bar0->mc_rldram_mrs);
msleep(100); /* Delay by around 100 ms. */
/* Enabling ECC Protection. */
val64 = readq(&bar0->adapter_control);
val64 &= ~ADAPTER_ECC_EN;
writeq(val64, &bar0->adapter_control);
/*
* Clearing any possible Link state change interrupts that
* could have popped up just before Enabling the card.
*/
val64 = readq(&bar0->mac_rmac_err_reg);
if (val64)
writeq(val64, &bar0->mac_rmac_err_reg);
/*
* Verify if the device is ready to be enabled, if so enable
* it.
*/
val64 = readq(&bar0->adapter_status);
if (!verify_xena_quiescence(val64, nic->device_enabled_once)) {
DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
(unsigned long long) val64);
return FAILURE;
}
/* Enable select interrupts */
interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | TX_MAC_INTR |
RX_MAC_INTR;
en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS);
/*
* With some switches, link might be already up at this point.
* Because of this weird behavior, when we enable laser,
* we may not get link. We need to handle this. We cannot
* figure out which switch is misbehaving. So we are forced to
* make a global change.
*/
/* Enabling Laser. */
val64 = readq(&bar0->adapter_control);
val64 |= ADAPTER_EOI_TX_ON;
writeq(val64, &bar0->adapter_control);
/* SXE-002: Initialize link and activity LED */
subid = nic->pdev->subsystem_device;
if ((subid & 0xFF) >= 0x07) {
val64 = readq(&bar0->gpio_control);
val64 |= 0x0000800000000000ULL;
writeq(val64, &bar0->gpio_control);
val64 = 0x0411040400000000ULL;
writeq(val64, (void __iomem *) bar0 + 0x2700);
}
/*
* Don't see link state interrupts on certain switches, so
* directly scheduling a link state task from here.
*/
schedule_work(&nic->set_link_task);
/*
* Here we are performing soft reset on XGXS to
* force link down. Since link is already up, we will get
* link state change interrupt after this reset
*/
SPECIAL_REG_WRITE(0x80010515001E0000ULL, &bar0->dtx_control, UF);
val64 = readq(&bar0->dtx_control);
udelay(50);
SPECIAL_REG_WRITE(0x80010515001E00E0ULL, &bar0->dtx_control, UF);
val64 = readq(&bar0->dtx_control);
udelay(50);
SPECIAL_REG_WRITE(0x80070515001F00E4ULL, &bar0->dtx_control, UF);
val64 = readq(&bar0->dtx_control);
udelay(50);
return SUCCESS;
}
/**
* free_tx_buffers - Free all queued Tx buffers
* @nic : device private variable.
* Description:
* Free all queued Tx buffers.
* Return Value: void
*/
static void free_tx_buffers(struct s2io_nic *nic)
{
struct net_device *dev = nic->dev;
struct sk_buff *skb;
TxD_t *txdp;
int i, j;
mac_info_t *mac_control;
struct config_param *config;
int cnt = 0;
mac_control = &nic->mac_control;
config = &nic->config;
for (i = 0; i < config->tx_fifo_num; i++) {
for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
txdp = (TxD_t *) nic->list_info[i][j].
list_virt_addr;
skb =
(struct sk_buff *) ((unsigned long) txdp->
Host_Control);
if (skb == NULL) {
memset(txdp, 0, sizeof(TxD_t));
continue;
}
dev_kfree_skb(skb);
memset(txdp, 0, sizeof(TxD_t));
cnt++;
}
DBG_PRINT(INTR_DBG,
"%s:forcibly freeing %d skbs on FIFO%d\n",
dev->name, cnt, i);
mac_control->tx_curr_get_info[i].offset = 0;
mac_control->tx_curr_put_info[i].offset = 0;
}
}
/**
* stop_nic - To stop the nic
* @nic ; device private variable.
* Description:
* This function does exactly the opposite of what the start_nic()
* function does. This function is called to stop the device.
* Return Value:
* void.
*/
static void stop_nic(struct s2io_nic *nic)
{
XENA_dev_config_t __iomem *bar0 = nic->bar0;
register u64 val64 = 0;
u16 interruptible, i;
mac_info_t *mac_control;
struct config_param *config;
mac_control = &nic->mac_control;
config = &nic->config;
/* Disable all interrupts */
interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | TX_MAC_INTR |
RX_MAC_INTR;
en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
/* Disable PRCs */
for (i = 0; i < config->rx_ring_num; i++) {
val64 = readq(&bar0->prc_ctrl_n[i]);
val64 &= ~((u64) PRC_CTRL_RC_ENABLED);
writeq(val64, &bar0->prc_ctrl_n[i]);
}
}
/**
* fill_rx_buffers - Allocates the Rx side skbs
* @nic: device private variable
* @ring_no: ring number
* Description:
* The function allocates Rx side skbs and puts the physical
* address of these buffers into the RxD buffer pointers, so that the NIC
* can DMA the received frame into these locations.
* The NIC supports 3 receive modes, viz
* 1. single buffer,
* 2. three buffer and
* 3. Five buffer modes.
* Each mode defines how many fragments the received frame will be split
* up into by the NIC. The frame is split into L3 header, L4 Header,
* L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
* is split into 3 fragments. As of now only single buffer mode is
* supported.
* Return Value:
* SUCCESS on success or an appropriate -ve value on failure.
*/
static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
{
struct net_device *dev = nic->dev;
struct sk_buff *skb;
RxD_t *rxdp;
int off, off1, size, block_no, block_no1;
int offset, offset1;
u32 alloc_tab = 0;
u32 alloc_cnt = nic->pkt_cnt[ring_no] -
atomic_read(&nic->rx_bufs_left[ring_no]);
mac_info_t *mac_control;
struct config_param *config;
#ifdef CONFIG_2BUFF_MODE
RxD_t *rxdpnext;
int nextblk;
unsigned long tmp;
buffAdd_t *ba;
dma_addr_t rxdpphys;
#endif
#ifndef CONFIG_S2IO_NAPI
unsigned long flags;
#endif
mac_control = &nic->mac_control;
config = &nic->config;
size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
while (alloc_tab < alloc_cnt) {
block_no = mac_control->rx_curr_put_info[ring_no].
block_index;
block_no1 = mac_control->rx_curr_get_info[ring_no].
block_index;
off = mac_control->rx_curr_put_info[ring_no].offset;
off1 = mac_control->rx_curr_get_info[ring_no].offset;
#ifndef CONFIG_2BUFF_MODE
offset = block_no * (MAX_RXDS_PER_BLOCK + 1) + off;
offset1 = block_no1 * (MAX_RXDS_PER_BLOCK + 1) + off1;
#else
offset = block_no * (MAX_RXDS_PER_BLOCK) + off;
offset1 = block_no1 * (MAX_RXDS_PER_BLOCK) + off1;
#endif
rxdp = nic->rx_blocks[ring_no][block_no].
block_virt_addr + off;
if ((offset == offset1) && (rxdp->Host_Control)) {
DBG_PRINT(INTR_DBG, "%s: Get and Put", dev->name);
DBG_PRINT(INTR_DBG, " info equated\n");
goto end;
}
#ifndef CONFIG_2BUFF_MODE
if (rxdp->Control_1 == END_OF_BLOCK) {
mac_control->rx_curr_put_info[ring_no].
block_index++;
mac_control->rx_curr_put_info[ring_no].
block_index %= nic->block_count[ring_no];
block_no = mac_control->rx_curr_put_info
[ring_no].block_index;
off++;
off %= (MAX_RXDS_PER_BLOCK + 1);
mac_control->rx_curr_put_info[ring_no].offset =
off;
rxdp = (RxD_t *) ((unsigned long) rxdp->Control_2);
DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
dev->name, rxdp);
}
#ifndef CONFIG_S2IO_NAPI
spin_lock_irqsave(&nic->put_lock, flags);
nic->put_pos[ring_no] =
(block_no * (MAX_RXDS_PER_BLOCK + 1)) + off;
spin_unlock_irqrestore(&nic->put_lock, flags);
#endif
#else
if (rxdp->Host_Control == END_OF_BLOCK) {
mac_control->rx_curr_put_info[ring_no].
block_index++;
mac_control->rx_curr_put_info[ring_no].
block_index %= nic->block_count[ring_no];
block_no = mac_control->rx_curr_put_info
[ring_no].block_index;
off = 0;
DBG_PRINT(INTR_DBG, "%s: block%d at: 0x%llx\n",
dev->name, block_no,
(unsigned long long) rxdp->Control_1);
mac_control->rx_curr_put_info[ring_no].offset =
off;
rxdp = nic->rx_blocks[ring_no][block_no].
block_virt_addr;
}
#ifndef CONFIG_S2IO_NAPI
spin_lock_irqsave(&nic->put_lock, flags);
nic->put_pos[ring_no] = (block_no *
(MAX_RXDS_PER_BLOCK + 1)) + off;
spin_unlock_irqrestore(&nic->put_lock, flags);
#endif
#endif
#ifndef CONFIG_2BUFF_MODE
if (rxdp->Control_1 & RXD_OWN_XENA)
#else
if (rxdp->Control_2 & BIT(0))
#endif
{
mac_control->rx_curr_put_info[ring_no].
offset = off;
goto end;
}
#ifdef CONFIG_2BUFF_MODE
/*
* RxDs Spanning cache lines will be replenished only
* if the succeeding RxD is also owned by Host. It
* will always be the ((8*i)+3) and ((8*i)+6)
* descriptors for the 48 byte descriptor. The offending
* decsriptor is of-course the 3rd descriptor.
*/
rxdpphys = nic->rx_blocks[ring_no][block_no].
block_dma_addr + (off * sizeof(RxD_t));
if (((u64) (rxdpphys)) % 128 > 80) {
rxdpnext = nic->rx_blocks[ring_no][block_no].
block_virt_addr + (off + 1);
if (rxdpnext->Host_Control == END_OF_BLOCK) {
nextblk = (block_no + 1) %
(nic->block_count[ring_no]);
rxdpnext = nic->rx_blocks[ring_no]
[nextblk].block_virt_addr;
}
if (rxdpnext->Control_2 & BIT(0))
goto end;
}
#endif
#ifndef CONFIG_2BUFF_MODE
skb = dev_alloc_skb(size + NET_IP_ALIGN);
#else
skb = dev_alloc_skb(dev->mtu + ALIGN_SIZE + BUF0_LEN + 4);
#endif
if (!skb) {
DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
return -ENOMEM;
}
#ifndef CONFIG_2BUFF_MODE
skb_reserve(skb, NET_IP_ALIGN);
memset(rxdp, 0, sizeof(RxD_t));
rxdp->Buffer0_ptr = pci_map_single
(nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE);
rxdp->Control_2 &= (~MASK_BUFFER0_SIZE);
rxdp->Control_2 |= SET_BUFFER0_SIZE(size);
rxdp->Host_Control = (unsigned long) (skb);
rxdp->Control_1 |= RXD_OWN_XENA;
off++;
off %= (MAX_RXDS_PER_BLOCK + 1);
mac_control->rx_curr_put_info[ring_no].offset = off;
#else
ba = &nic->ba[ring_no][block_no][off];
skb_reserve(skb, BUF0_LEN);
tmp = (unsigned long) skb->data;
tmp += ALIGN_SIZE;
tmp &= ~ALIGN_SIZE;
skb->data = (void *) tmp;
skb->tail = (void *) tmp;
memset(rxdp, 0, sizeof(RxD_t));
rxdp->Buffer2_ptr = pci_map_single
(nic->pdev, skb->data, dev->mtu + BUF0_LEN + 4,
PCI_DMA_FROMDEVICE);
rxdp->Buffer0_ptr =
pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
PCI_DMA_FROMDEVICE);
rxdp->Buffer1_ptr =
pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
PCI_DMA_FROMDEVICE);
rxdp->Control_2 = SET_BUFFER2_SIZE(dev->mtu + 4);
rxdp->Control_2 |= SET_BUFFER0_SIZE(BUF0_LEN);
rxdp->Control_2 |= SET_BUFFER1_SIZE(1); /* dummy. */
rxdp->Control_2 |= BIT(0); /* Set Buffer_Empty bit. */
rxdp->Host_Control = (u64) ((unsigned long) (skb));
rxdp->Control_1 |= RXD_OWN_XENA;
off++;
mac_control->rx_curr_put_info[ring_no].offset = off;
#endif
atomic_inc(&nic->rx_bufs_left[ring_no]);
alloc_tab++;
}
end:
return SUCCESS;
}
/**
* free_rx_buffers - Frees all Rx buffers
* @sp: device private variable.
* Description:
* This function will free all Rx buffers allocated by host.
* Return Value:
* NONE.
*/
static void free_rx_buffers(struct s2io_nic *sp)
{
struct net_device *dev = sp->dev;
int i, j, blk = 0, off, buf_cnt = 0;
RxD_t *rxdp;
struct sk_buff *skb;
mac_info_t *mac_control;
struct config_param *config;
#ifdef CONFIG_2BUFF_MODE
buffAdd_t *ba;
#endif
mac_control = &sp->mac_control;
config = &sp->config;
for (i = 0; i < config->rx_ring_num; i++) {
for (j = 0, blk = 0; j < config->rx_cfg[i].num_rxd; j++) {
off = j % (MAX_RXDS_PER_BLOCK + 1);
rxdp = sp->rx_blocks[i][blk].block_virt_addr + off;
#ifndef CONFIG_2BUFF_MODE
if (rxdp->Control_1 == END_OF_BLOCK) {
rxdp =
(RxD_t *) ((unsigned long) rxdp->
Control_2);
j++;
blk++;
}
#else
if (rxdp->Host_Control == END_OF_BLOCK) {
blk++;
continue;
}
#endif
if (!(rxdp->Control_1 & RXD_OWN_XENA)) {
memset(rxdp, 0, sizeof(RxD_t));
continue;
}
skb =
(struct sk_buff *) ((unsigned long) rxdp->
Host_Control);
if (skb) {
#ifndef CONFIG_2BUFF_MODE
pci_unmap_single(sp->pdev, (dma_addr_t)
rxdp->Buffer0_ptr,
dev->mtu +
HEADER_ETHERNET_II_802_3_SIZE
+ HEADER_802_2_SIZE +
HEADER_SNAP_SIZE,
PCI_DMA_FROMDEVICE);
#else
ba = &sp->ba[i][blk][off];
pci_unmap_single(sp->pdev, (dma_addr_t)
rxdp->Buffer0_ptr,
BUF0_LEN,
PCI_DMA_FROMDEVICE);
pci_unmap_single(sp->pdev, (dma_addr_t)
rxdp->Buffer1_ptr,
BUF1_LEN,
PCI_DMA_FROMDEVICE);
pci_unmap_single(sp->pdev, (dma_addr_t)
rxdp->Buffer2_ptr,
dev->mtu + BUF0_LEN + 4,
PCI_DMA_FROMDEVICE);
#endif
dev_kfree_skb(skb);
atomic_dec(&sp->rx_bufs_left[i]);
buf_cnt++;
}
memset(rxdp, 0, sizeof(RxD_t));
}
mac_control->rx_curr_put_info[i].block_index = 0;
mac_control->rx_curr_get_info[i].block_index = 0;
mac_control->rx_curr_put_info[i].offset = 0;
mac_control->rx_curr_get_info[i].offset = 0;
atomic_set(&sp->rx_bufs_left[i], 0);
DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
dev->name, buf_cnt, i);
}
}
/**
* s2io_poll - Rx interrupt handler for NAPI support
* @dev : pointer to the device structure.
* @budget : The number of packets that were budgeted to be processed
* during one pass through the 'Poll" function.
* Description:
* Comes into picture only if NAPI support has been incorporated. It does
* the same thing that rx_intr_handler does, but not in a interrupt context
* also It will process only a given number of packets.
* Return value:
* 0 on success and 1 if there are No Rx packets to be processed.
*/
#ifdef CONFIG_S2IO_NAPI
static int s2io_poll(struct net_device *dev, int *budget)
{
nic_t *nic = dev->priv;
XENA_dev_config_t __iomem *bar0 = nic->bar0;
int pkts_to_process = *budget, pkt_cnt = 0;
register u64 val64 = 0;
rx_curr_get_info_t get_info, put_info;
int i, get_block, put_block, get_offset, put_offset, ring_bufs;
#ifndef CONFIG_2BUFF_MODE
u16 val16, cksum;
#endif
struct sk_buff *skb;
RxD_t *rxdp;
mac_info_t *mac_control;
struct config_param *config;
#ifdef CONFIG_2BUFF_MODE
buffAdd_t *ba;
#endif
mac_control = &nic->mac_control;
config = &nic->config;
if (pkts_to_process > dev->quota)
pkts_to_process = dev->quota;
val64 = readq(&bar0->rx_traffic_int);
writeq(val64, &bar0->rx_traffic_int);
for (i = 0; i < config->rx_ring_num; i++) {
get_info = mac_control->rx_curr_get_info[i];
get_block = get_info.block_index;
put_info = mac_control->rx_curr_put_info[i];
put_block = put_info.block_index;
ring_bufs = config->rx_cfg[i].num_rxd;
rxdp = nic->rx_blocks[i][get_block].block_virt_addr +
get_info.offset;
#ifndef CONFIG_2BUFF_MODE
get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
get_info.offset;
put_offset = (put_block * (MAX_RXDS_PER_BLOCK + 1)) +
put_info.offset;
while ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
(((get_offset + 1) % ring_bufs) != put_offset)) {
if (--pkts_to_process < 0) {
goto no_rx;
}
if (rxdp->Control_1 == END_OF_BLOCK) {
rxdp =
(RxD_t *) ((unsigned long) rxdp->
Control_2);
get_info.offset++;
get_info.offset %=
(MAX_RXDS_PER_BLOCK + 1);
get_block++;
get_block %= nic->block_count[i];
mac_control->rx_curr_get_info[i].
offset = get_info.offset;
mac_control->rx_curr_get_info[i].
block_index = get_block;
continue;
}
get_offset =
(get_block * (MAX_RXDS_PER_BLOCK + 1)) +
get_info.offset;
skb =
(struct sk_buff *) ((unsigned long) rxdp->
Host_Control);
if (skb == NULL) {
DBG_PRINT(ERR_DBG, "%s: The skb is ",
dev->name);
DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
goto no_rx;
}
val64 = RXD_GET_BUFFER0_SIZE(rxdp->Control_2);
val16 = (u16) (val64 >> 48);
cksum = RXD_GET_L4_CKSUM(rxdp->Control_1);
pci_unmap_single(nic->pdev, (dma_addr_t)
rxdp->Buffer0_ptr,
dev->mtu +
HEADER_ETHERNET_II_802_3_SIZE +
HEADER_802_2_SIZE +
HEADER_SNAP_SIZE,
PCI_DMA_FROMDEVICE);
rx_osm_handler(nic, val16, rxdp, i);
pkt_cnt++;
get_info.offset++;
get_info.offset %= (MAX_RXDS_PER_BLOCK + 1);
rxdp =
nic->rx_blocks[i][get_block].block_virt_addr +
get_info.offset;
mac_control->rx_curr_get_info[i].offset =
get_info.offset;
}
#else
get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
get_info.offset;
put_offset = (put_block * (MAX_RXDS_PER_BLOCK + 1)) +
put_info.offset;
while (((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
!(rxdp->Control_2 & BIT(0))) &&
(((get_offset + 1) % ring_bufs) != put_offset)) {
if (--pkts_to_process < 0) {
goto no_rx;
}
skb = (struct sk_buff *) ((unsigned long)
rxdp->Host_Control);
if (skb == NULL) {
DBG_PRINT(ERR_DBG, "%s: The skb is ",
dev->name);
DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
goto no_rx;
}
pci_unmap_single(nic->pdev, (dma_addr_t)
rxdp->Buffer0_ptr,
BUF0_LEN, PCI_DMA_FROMDEVICE);
pci_unmap_single(nic->pdev, (dma_addr_t)
rxdp->Buffer1_ptr,
BUF1_LEN, PCI_DMA_FROMDEVICE);
pci_unmap_single(nic->pdev, (dma_addr_t)
rxdp->Buffer2_ptr,
dev->mtu + BUF0_LEN + 4,
PCI_DMA_FROMDEVICE);
ba = &nic->ba[i][get_block][get_info.offset];
rx_osm_handler(nic, rxdp, i, ba);
get_info.offset++;
mac_control->rx_curr_get_info[i].offset =
get_info.offset;
rxdp =
nic->rx_blocks[i][get_block].block_virt_addr +
get_info.offset;
if (get_info.offset &&
(!(get_info.offset % MAX_RXDS_PER_BLOCK))) {
get_info.offset = 0;
mac_control->rx_curr_get_info[i].
offset = get_info.offset;
get_block++;
get_block %= nic->block_count[i];
mac_control->rx_curr_get_info[i].
block_index = get_block;
rxdp =
nic->rx_blocks[i][get_block].
block_virt_addr;
}
get_offset =
(get_block * (MAX_RXDS_PER_BLOCK + 1)) +
get_info.offset;
pkt_cnt++;
}
#endif
}
if (!pkt_cnt)
pkt_cnt = 1;
dev->quota -= pkt_cnt;
*budget -= pkt_cnt;
netif_rx_complete(dev);
for (i = 0; i < config->rx_ring_num; i++) {
if (fill_rx_buffers(nic, i) == -ENOMEM) {
DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
break;
}
}
/* Re enable the Rx interrupts. */
en_dis_able_nic_intrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS);
return 0;
no_rx:
dev->quota -= pkt_cnt;
*budget -= pkt_cnt;
for (i = 0; i < config->rx_ring_num; i++) {
if (fill_rx_buffers(nic, i) == -ENOMEM) {
DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
break;
}
}
return 1;
}
#else
/**
* rx_intr_handler - Rx interrupt handler
* @nic: device private variable.
* Description:
* If the interrupt is because of a received frame or if the
* receive ring contains fresh as yet un-processed frames,this function is
* called. It picks out the RxD at which place the last Rx processing had
* stopped and sends the skb to the OSM's Rx handler and then increments
* the offset.
* Return Value:
* NONE.
*/
static void rx_intr_handler(struct s2io_nic *nic)
{
struct net_device *dev = (struct net_device *) nic->dev;
XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
rx_curr_get_info_t get_info, put_info;
RxD_t *rxdp;
struct sk_buff *skb;
#ifndef CONFIG_2BUFF_MODE
u16 val16, cksum;
#endif
register u64 val64 = 0;
int get_block, get_offset, put_block, put_offset, ring_bufs;
int i, pkt_cnt = 0;
mac_info_t *mac_control;
struct config_param *config;
#ifdef CONFIG_2BUFF_MODE
buffAdd_t *ba;
#endif
mac_control = &nic->mac_control;
config = &nic->config;
/*
* rx_traffic_int reg is an R1 register, hence we read and write back
* the samevalue in the register to clear it.
*/
val64 = readq(&bar0->rx_traffic_int);
writeq(val64, &bar0->rx_traffic_int);
for (i = 0; i < config->rx_ring_num; i++) {
get_info = mac_control->rx_curr_get_info[i];
get_block = get_info.block_index;
put_info = mac_control->rx_curr_put_info[i];
put_block = put_info.block_index;
ring_bufs = config->rx_cfg[i].num_rxd;
rxdp = nic->rx_blocks[i][get_block].block_virt_addr +
get_info.offset;
#ifndef CONFIG_2BUFF_MODE
get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
get_info.offset;
spin_lock(&nic->put_lock);
put_offset = nic->put_pos[i];
spin_unlock(&nic->put_lock);
while ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
(((get_offset + 1) % ring_bufs) != put_offset)) {
if (rxdp->Control_1 == END_OF_BLOCK) {
rxdp = (RxD_t *) ((unsigned long)
rxdp->Control_2);
get_info.offset++;
get_info.offset %=
(MAX_RXDS_PER_BLOCK + 1);
get_block++;
get_block %= nic->block_count[i];
mac_control->rx_curr_get_info[i].
offset = get_info.offset;
mac_control->rx_curr_get_info[i].
block_index = get_block;
continue;
}
get_offset =
(get_block * (MAX_RXDS_PER_BLOCK + 1)) +
get_info.offset;
skb = (struct sk_buff *) ((unsigned long)
rxdp->Host_Control);
if (skb == NULL) {
DBG_PRINT(ERR_DBG, "%s: The skb is ",
dev->name);
DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
return;
}
val64 = RXD_GET_BUFFER0_SIZE(rxdp->Control_2);
val16 = (u16) (val64 >> 48);
cksum = RXD_GET_L4_CKSUM(rxdp->Control_1);
pci_unmap_single(nic->pdev, (dma_addr_t)
rxdp->Buffer0_ptr,
dev->mtu +
HEADER_ETHERNET_II_802_3_SIZE +
HEADER_802_2_SIZE +
HEADER_SNAP_SIZE,
PCI_DMA_FROMDEVICE);
rx_osm_handler(nic, val16, rxdp, i);
get_info.offset++;
get_info.offset %= (MAX_RXDS_PER_BLOCK + 1);
rxdp =
nic->rx_blocks[i][get_block].block_virt_addr +
get_info.offset;
mac_control->rx_curr_get_info[i].offset =
get_info.offset;
pkt_cnt++;
if ((indicate_max_pkts)
&& (pkt_cnt > indicate_max_pkts))
break;
}
#else
get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
get_info.offset;
spin_lock(&nic->put_lock);
put_offset = nic->put_pos[i];
spin_unlock(&nic->put_lock);
while (((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
!(rxdp->Control_2 & BIT(0))) &&
(((get_offset + 1) % ring_bufs) != put_offset)) {
skb = (struct sk_buff *) ((unsigned long)
rxdp->Host_Control);
if (skb == NULL) {
DBG_PRINT(ERR_DBG, "%s: The skb is ",
dev->name);
DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
return;
}
pci_unmap_single(nic->pdev, (dma_addr_t)
rxdp->Buffer0_ptr,
BUF0_LEN, PCI_DMA_FROMDEVICE);
pci_unmap_single(nic->pdev, (dma_addr_t)
rxdp->Buffer1_ptr,
BUF1_LEN, PCI_DMA_FROMDEVICE);
pci_unmap_single(nic->pdev, (dma_addr_t)
rxdp->Buffer2_ptr,
dev->mtu + BUF0_LEN + 4,
PCI_DMA_FROMDEVICE);
ba = &nic->ba[i][get_block][get_info.offset];
rx_osm_handler(nic, rxdp, i, ba);
get_info.offset++;
mac_control->rx_curr_get_info[i].offset =
get_info.offset;
rxdp =
nic->rx_blocks[i][get_block].block_virt_addr +
get_info.offset;
if (get_info.offset &&
(!(get_info.offset % MAX_RXDS_PER_BLOCK))) {
get_info.offset = 0;
mac_control->rx_curr_get_info[i].
offset = get_info.offset;
get_block++;
get_block %= nic->block_count[i];
mac_control->rx_curr_get_info[i].
block_index = get_block;
rxdp =
nic->rx_blocks[i][get_block].
block_virt_addr;
}
get_offset =
(get_block * (MAX_RXDS_PER_BLOCK + 1)) +
get_info.offset;
pkt_cnt++;
if ((indicate_max_pkts)
&& (pkt_cnt > indicate_max_pkts))
break;
}
#endif
if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
break;
}
}
#endif
/**
* tx_intr_handler - Transmit interrupt handler
* @nic : device private variable
* Description:
* If an interrupt was raised to indicate DMA complete of the
* Tx packet, this function is called. It identifies the last TxD
* whose buffer was freed and frees all skbs whose data have already
* DMA'ed into the NICs internal memory.
* Return Value:
* NONE
*/
static void tx_intr_handler(struct s2io_nic *nic)
{
XENA_dev_config_t __iomem *bar0 = nic->bar0;
struct net_device *dev = (struct net_device *) nic->dev;
tx_curr_get_info_t get_info, put_info;
struct sk_buff *skb;
TxD_t *txdlp;
register u64 val64 = 0;
int i;
u16 j, frg_cnt;
mac_info_t *mac_control;
struct config_param *config;
mac_control = &nic->mac_control;
config = &nic->config;
/*
* tx_traffic_int reg is an R1 register, hence we read and write
* back the samevalue in the register to clear it.
*/
val64 = readq(&bar0->tx_traffic_int);
writeq(val64, &bar0->tx_traffic_int);
for (i = 0; i < config->tx_fifo_num; i++) {
get_info = mac_control->tx_curr_get_info[i];
put_info = mac_control->tx_curr_put_info[i];
txdlp = (TxD_t *) nic->list_info[i][get_info.offset].
list_virt_addr;
while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
(get_info.offset != put_info.offset) &&
(txdlp->Host_Control)) {
/* Check for TxD errors */
if (txdlp->Control_1 & TXD_T_CODE) {
unsigned long long err;
err = txdlp->Control_1 & TXD_T_CODE;
DBG_PRINT(ERR_DBG, "***TxD error %llx\n",
err);
}
skb = (struct sk_buff *) ((unsigned long)
txdlp->Host_Control);
if (skb == NULL) {
DBG_PRINT(ERR_DBG, "%s: Null skb ",
dev->name);
DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
return;
}
nic->tx_pkt_count++;
frg_cnt = skb_shinfo(skb)->nr_frags;
/* For unfragmented skb */
pci_unmap_single(nic->pdev, (dma_addr_t)
txdlp->Buffer_Pointer,
skb->len - skb->data_len,
PCI_DMA_TODEVICE);
if (frg_cnt) {
TxD_t *temp = txdlp;
txdlp++;
for (j = 0; j < frg_cnt; j++, txdlp++) {
skb_frag_t *frag =
&skb_shinfo(skb)->frags[j];
pci_unmap_page(nic->pdev,
(dma_addr_t)
txdlp->
Buffer_Pointer,
frag->size,
PCI_DMA_TODEVICE);
}
txdlp = temp;
}
memset(txdlp, 0,
(sizeof(TxD_t) * config->max_txds));
/* Updating the statistics block */
nic->stats.tx_packets++;
nic->stats.tx_bytes += skb->len;
dev_kfree_skb_irq(skb);
get_info.offset++;
get_info.offset %= get_info.fifo_len + 1;
txdlp = (TxD_t *) nic->list_info[i]
[get_info.offset].list_virt_addr;
mac_control->tx_curr_get_info[i].offset =
get_info.offset;
}
}
spin_lock(&nic->tx_lock);
if (netif_queue_stopped(dev))
netif_wake_queue(dev);
spin_unlock(&nic->tx_lock);
}
/**
* alarm_intr_handler - Alarm Interrrupt handler
* @nic: device private variable
* Description: If the interrupt was neither because of Rx packet or Tx
* complete, this function is called. If the interrupt was to indicate
* a loss of link, the OSM link status handler is invoked for any other
* alarm interrupt the block that raised the interrupt is displayed
* and a H/W reset is issued.
* Return Value:
* NONE
*/
static void alarm_intr_handler(struct s2io_nic *nic)
{
struct net_device *dev = (struct net_device *) nic->dev;
XENA_dev_config_t __iomem *bar0 = nic->bar0;
register u64 val64 = 0, err_reg = 0;
/* Handling link status change error Intr */
err_reg = readq(&bar0->mac_rmac_err_reg);
writeq(err_reg, &bar0->mac_rmac_err_reg);
if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
schedule_work(&nic->set_link_task);
}
/* In case of a serious error, the device will be Reset. */
val64 = readq(&bar0->serr_source);
if (val64 & SERR_SOURCE_ANY) {
DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
DBG_PRINT(ERR_DBG, "serious error!!\n");
netif_stop_queue(dev);
schedule_work(&nic->rst_timer_task);
}
/*
* Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
* Error occurs, the adapter will be recycled by disabling the
* adapter enable bit and enabling it again after the device
* becomes Quiescent.
*/
val64 = readq(&bar0->pcc_err_reg);
writeq(val64, &bar0->pcc_err_reg);
if (val64 & PCC_FB_ECC_DB_ERR) {
u64 ac = readq(&bar0->adapter_control);
ac &= ~(ADAPTER_CNTL_EN);
writeq(ac, &bar0->adapter_control);
ac = readq(&bar0->adapter_control);
schedule_work(&nic->set_link_task);
}
/* Other type of interrupts are not being handled now, TODO */
}
/**
* wait_for_cmd_complete - waits for a command to complete.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* Description: Function that waits for a command to Write into RMAC
* ADDR DATA registers to be completed and returns either success or
* error depending on whether the command was complete or not.
* Return value:
* SUCCESS on success and FAILURE on failure.
*/
static int wait_for_cmd_complete(nic_t * sp)
{
XENA_dev_config_t __iomem *bar0 = sp->bar0;
int ret = FAILURE, cnt = 0;
u64 val64;
while (TRUE) {
val64 = readq(&bar0->rmac_addr_cmd_mem);
if (!(val64 & RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
ret = SUCCESS;
break;
}
msleep(50);
if (cnt++ > 10)
break;
}
return ret;
}
/**
* s2io_reset - Resets the card.
* @sp : private member of the device structure.
* Description: Function to Reset the card. This function then also
* restores the previously saved PCI configuration space registers as
* the card reset also resets the configuration space.
* Return value:
* void.
*/
static void s2io_reset(nic_t * sp)
{
XENA_dev_config_t __iomem *bar0 = sp->bar0;
u64 val64;
u16 subid;
val64 = SW_RESET_ALL;
writeq(val64, &bar0->sw_reset);
/*
* At this stage, if the PCI write is indeed completed, the
* card is reset and so is the PCI Config space of the device.
* So a read cannot be issued at this stage on any of the
* registers to ensure the write into "sw_reset" register
* has gone through.
* Question: Is there any system call that will explicitly force
* all the write commands still pending on the bus to be pushed
* through?
* As of now I'am just giving a 250ms delay and hoping that the
* PCI write to sw_reset register is done by this time.
*/
msleep(250);
/* Restore the PCI state saved during initializarion. */
pci_restore_state(sp->pdev);
s2io_init_pci(sp);
msleep(250);
/* SXE-002: Configure link and activity LED to turn it off */
subid = sp->pdev->subsystem_device;
if ((subid & 0xFF) >= 0x07) {
val64 = readq(&bar0->gpio_control);
val64 |= 0x0000800000000000ULL;
writeq(val64, &bar0->gpio_control);
val64 = 0x0411040400000000ULL;
writeq(val64, (void __iomem *) bar0 + 0x2700);
}
sp->device_enabled_once = FALSE;
}
/**
* s2io_set_swapper - to set the swapper controle on the card
* @sp : private member of the device structure,
* pointer to the s2io_nic structure.
* Description: Function to set the swapper control on the card
* correctly depending on the 'endianness' of the system.
* Return value:
* SUCCESS on success and FAILURE on failure.
*/
static int s2io_set_swapper(nic_t * sp)
{
struct net_device *dev = sp->dev;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
u64 val64, valt, valr;
/*
* Set proper endian settings and verify the same by reading
* the PIF Feed-back register.
*/
val64 = readq(&bar0->pif_rd_swapper_fb);
if (val64 != 0x0123456789ABCDEFULL) {
int i = 0;
u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
0x8100008181000081ULL, /* FE=1, SE=0 */
0x4200004242000042ULL, /* FE=0, SE=1 */
0}; /* FE=0, SE=0 */
while(i<4) {
writeq(value[i], &bar0->swapper_ctrl);
val64 = readq(&bar0->pif_rd_swapper_fb);
if (val64 == 0x0123456789ABCDEFULL)
break;
i++;
}
if (i == 4) {
DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
dev->name);
DBG_PRINT(ERR_DBG, "feedback read %llx\n",
(unsigned long long) val64);
return FAILURE;
}
valr = value[i];
} else {
valr = readq(&bar0->swapper_ctrl);
}
valt = 0x0123456789ABCDEFULL;
writeq(valt, &bar0->xmsi_address);
val64 = readq(&bar0->xmsi_address);
if(val64 != valt) {
int i = 0;
u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
0x0081810000818100ULL, /* FE=1, SE=0 */
0x0042420000424200ULL, /* FE=0, SE=1 */
0}; /* FE=0, SE=0 */
while(i<4) {
writeq((value[i] | valr), &bar0->swapper_ctrl);
writeq(valt, &bar0->xmsi_address);
val64 = readq(&bar0->xmsi_address);
if(val64 == valt)
break;
i++;
}
if(i == 4) {
DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
DBG_PRINT(ERR_DBG, "reads:0x%llx\n",val64);
return FAILURE;
}
}
val64 = readq(&bar0->swapper_ctrl);
val64 &= 0xFFFF000000000000ULL;
#ifdef __BIG_ENDIAN
/*
* The device by default set to a big endian format, so a
* big endian driver need not set anything.
*/
val64 |= (SWAPPER_CTRL_TXP_FE |
SWAPPER_CTRL_TXP_SE |
SWAPPER_CTRL_TXD_R_FE |
SWAPPER_CTRL_TXD_W_FE |
SWAPPER_CTRL_TXF_R_FE |
SWAPPER_CTRL_RXD_R_FE |
SWAPPER_CTRL_RXD_W_FE |
SWAPPER_CTRL_RXF_W_FE |
SWAPPER_CTRL_XMSI_FE |
SWAPPER_CTRL_XMSI_SE |
SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
writeq(val64, &bar0->swapper_ctrl);
#else
/*
* Initially we enable all bits to make it accessible by the
* driver, then we selectively enable only those bits that
* we want to set.
*/
val64 |= (SWAPPER_CTRL_TXP_FE |
SWAPPER_CTRL_TXP_SE |
SWAPPER_CTRL_TXD_R_FE |
SWAPPER_CTRL_TXD_R_SE |
SWAPPER_CTRL_TXD_W_FE |
SWAPPER_CTRL_TXD_W_SE |
SWAPPER_CTRL_TXF_R_FE |
SWAPPER_CTRL_RXD_R_FE |
SWAPPER_CTRL_RXD_R_SE |
SWAPPER_CTRL_RXD_W_FE |
SWAPPER_CTRL_RXD_W_SE |
SWAPPER_CTRL_RXF_W_FE |
SWAPPER_CTRL_XMSI_FE |
SWAPPER_CTRL_XMSI_SE |
SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
writeq(val64, &bar0->swapper_ctrl);
#endif
val64 = readq(&bar0->swapper_ctrl);
/*
* Verifying if endian settings are accurate by reading a
* feedback register.
*/
val64 = readq(&bar0->pif_rd_swapper_fb);
if (val64 != 0x0123456789ABCDEFULL) {
/* Endian settings are incorrect, calls for another dekko. */
DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
dev->name);
DBG_PRINT(ERR_DBG, "feedback read %llx\n",
(unsigned long long) val64);
return FAILURE;
}
return SUCCESS;
}
/* ********************************************************* *
* Functions defined below concern the OS part of the driver *
* ********************************************************* */
/**
* s2io_open - open entry point of the driver
* @dev : pointer to the device structure.
* Description:
* This function is the open entry point of the driver. It mainly calls a
* function to allocate Rx buffers and inserts them into the buffer
* descriptors and then enables the Rx part of the NIC.
* Return value:
* 0 on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
*/
static int s2io_open(struct net_device *dev)
{
nic_t *sp = dev->priv;
int err = 0;
/*
* Make sure you have link off by default every time
* Nic is initialized
*/
netif_carrier_off(dev);
sp->last_link_state = LINK_DOWN;
/* Initialize H/W and enable interrupts */
if (s2io_card_up(sp)) {
DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
dev->name);
return -ENODEV;
}
/* After proper initialization of H/W, register ISR */
err = request_irq((int) sp->irq, s2io_isr, SA_SHIRQ,
sp->name, dev);
if (err) {
s2io_reset(sp);
DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
dev->name);
return err;
}
if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
s2io_reset(sp);
return -ENODEV;
}
netif_start_queue(dev);
return 0;
}
/**
* s2io_close -close entry point of the driver
* @dev : device pointer.
* Description:
* This is the stop entry point of the driver. It needs to undo exactly
* whatever was done by the open entry point,thus it's usually referred to
* as the close function.Among other things this function mainly stops the
* Rx side of the NIC and frees all the Rx buffers in the Rx rings.
* Return value:
* 0 on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
*/
static int s2io_close(struct net_device *dev)
{
nic_t *sp = dev->priv;
flush_scheduled_work();
netif_stop_queue(dev);
/* Reset card, kill tasklet and free Tx and Rx buffers. */
s2io_card_down(sp);
free_irq(dev->irq, dev);
sp->device_close_flag = TRUE; /* Device is shut down. */
return 0;
}
/**
* s2io_xmit - Tx entry point of te driver
* @skb : the socket buffer containing the Tx data.
* @dev : device pointer.
* Description :
* This function is the Tx entry point of the driver. S2IO NIC supports
* certain protocol assist features on Tx side, namely CSO, S/G, LSO.
* NOTE: when device cant queue the pkt,just the trans_start variable will
* not be upadted.
* Return value:
* 0 on success & 1 on failure.
*/
static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
{
nic_t *sp = dev->priv;
u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
register u64 val64;
TxD_t *txdp;
TxFIFO_element_t __iomem *tx_fifo;
unsigned long flags;
#ifdef NETIF_F_TSO
int mss;
#endif
mac_info_t *mac_control;
struct config_param *config;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
mac_control = &sp->mac_control;
config = &sp->config;
DBG_PRINT(TX_DBG, "%s: In S2IO Tx routine\n", dev->name);
spin_lock_irqsave(&sp->tx_lock, flags);
if (atomic_read(&sp->card_state) == CARD_DOWN) {
DBG_PRINT(ERR_DBG, "%s: Card going down for reset\n",
dev->name);
spin_unlock_irqrestore(&sp->tx_lock, flags);
return 1;
}
queue = 0;
put_off = (u16) mac_control->tx_curr_put_info[queue].offset;
get_off = (u16) mac_control->tx_curr_get_info[queue].offset;
txdp = (TxD_t *) sp->list_info[queue][put_off].list_virt_addr;
queue_len = mac_control->tx_curr_put_info[queue].fifo_len + 1;
/* Avoid "put" pointer going beyond "get" pointer */
if (txdp->Host_Control || (((put_off + 1) % queue_len) == get_off)) {
DBG_PRINT(ERR_DBG, "Error in xmit, No free TXDs.\n");
netif_stop_queue(dev);
dev_kfree_skb(skb);
spin_unlock_irqrestore(&sp->tx_lock, flags);
return 0;
}
#ifdef NETIF_F_TSO
mss = skb_shinfo(skb)->tso_size;
if (mss) {
txdp->Control_1 |= TXD_TCP_LSO_EN;
txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
}
#endif
frg_cnt = skb_shinfo(skb)->nr_frags;
frg_len = skb->len - skb->data_len;
txdp->Host_Control = (unsigned long) skb;
txdp->Buffer_Pointer = pci_map_single
(sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
if (skb->ip_summed == CHECKSUM_HW) {
txdp->Control_2 |=
(TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
TXD_TX_CKO_UDP_EN);
}
txdp->Control_2 |= config->tx_intr_type;
txdp->Control_1 |= (TXD_BUFFER0_SIZE(frg_len) |
TXD_GATHER_CODE_FIRST);
txdp->Control_1 |= TXD_LIST_OWN_XENA;
/* For fragmented SKB. */
for (i = 0; i < frg_cnt; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
txdp++;
txdp->Buffer_Pointer = (u64) pci_map_page
(sp->pdev, frag->page, frag->page_offset,
frag->size, PCI_DMA_TODEVICE);
txdp->Control_1 |= TXD_BUFFER0_SIZE(frag->size);
}
txdp->Control_1 |= TXD_GATHER_CODE_LAST;
tx_fifo = mac_control->tx_FIFO_start[queue];
val64 = sp->list_info[queue][put_off].list_phy_addr;
writeq(val64, &tx_fifo->TxDL_Pointer);
val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
TX_FIFO_LAST_LIST);
#ifdef NETIF_F_TSO
if (mss)
val64 |= TX_FIFO_SPECIAL_FUNC;
#endif
writeq(val64, &tx_fifo->List_Control);
/* Perform a PCI read to flush previous writes */
val64 = readq(&bar0->general_int_status);
put_off++;
put_off %= mac_control->tx_curr_put_info[queue].fifo_len + 1;
mac_control->tx_curr_put_info[queue].offset = put_off;
/* Avoid "put" pointer going beyond "get" pointer */
if (((put_off + 1) % queue_len) == get_off) {
DBG_PRINT(TX_DBG,
"No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
put_off, get_off);
netif_stop_queue(dev);
}
dev->trans_start = jiffies;
spin_unlock_irqrestore(&sp->tx_lock, flags);
return 0;
}
/**
* s2io_isr - ISR handler of the device .
* @irq: the irq of the device.
* @dev_id: a void pointer to the dev structure of the NIC.
* @pt_regs: pointer to the registers pushed on the stack.
* Description: This function is the ISR handler of the device. It
* identifies the reason for the interrupt and calls the relevant
* service routines. As a contongency measure, this ISR allocates the
* recv buffers, if their numbers are below the panic value which is
* presently set to 25% of the original number of rcv buffers allocated.
* Return value:
* IRQ_HANDLED: will be returned if IRQ was handled by this routine
* IRQ_NONE: will be returned if interrupt is not from our device
*/
static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *) dev_id;
nic_t *sp = dev->priv;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
#ifndef CONFIG_S2IO_NAPI
int i, ret;
#endif
u64 reason = 0;
mac_info_t *mac_control;
struct config_param *config;
mac_control = &sp->mac_control;
config = &sp->config;
/*
* Identify the cause for interrupt and call the appropriate
* interrupt handler. Causes for the interrupt could be;
* 1. Rx of packet.
* 2. Tx complete.
* 3. Link down.
* 4. Error in any functional blocks of the NIC.
*/
reason = readq(&bar0->general_int_status);
if (!reason) {
/* The interrupt was not raised by Xena. */
return IRQ_NONE;
}
/* If Intr is because of Tx Traffic */
if (reason & GEN_INTR_TXTRAFFIC) {
tx_intr_handler(sp);
}
/* If Intr is because of an error */
if (reason & (GEN_ERROR_INTR))
alarm_intr_handler(sp);
#ifdef CONFIG_S2IO_NAPI
if (reason & GEN_INTR_RXTRAFFIC) {
if (netif_rx_schedule_prep(dev)) {
en_dis_able_nic_intrs(sp, RX_TRAFFIC_INTR,
DISABLE_INTRS);
__netif_rx_schedule(dev);
}
}
#else
/* If Intr is because of Rx Traffic */
if (reason & GEN_INTR_RXTRAFFIC) {
rx_intr_handler(sp);
}
#endif
/*
* If the Rx buffer count is below the panic threshold then
* reallocate the buffers from the interrupt handler itself,
* else schedule a tasklet to reallocate the buffers.
*/
#ifndef CONFIG_S2IO_NAPI
for (i = 0; i < config->rx_ring_num; i++) {
int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
int level = rx_buffer_level(sp, rxb_size, i);
if ((level == PANIC) && (!TASKLET_IN_USE)) {
DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name);
DBG_PRINT(INTR_DBG, "PANIC levels\n");
if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
DBG_PRINT(ERR_DBG, "%s:Out of memory",
dev->name);
DBG_PRINT(ERR_DBG, " in ISR!!\n");
clear_bit(0, (&sp->tasklet_status));
return IRQ_HANDLED;
}
clear_bit(0, (&sp->tasklet_status));
} else if (level == LOW) {
tasklet_schedule(&sp->task);
}
}
#endif
return IRQ_HANDLED;
}
/**
* s2io_get_stats - Updates the device statistics structure.
* @dev : pointer to the device structure.
* Description:
* This function updates the device statistics structure in the s2io_nic
* structure and returns a pointer to the same.
* Return value:
* pointer to the updated net_device_stats structure.
*/
static struct net_device_stats *s2io_get_stats(struct net_device *dev)
{
nic_t *sp = dev->priv;
mac_info_t *mac_control;
struct config_param *config;
mac_control = &sp->mac_control;
config = &sp->config;
sp->stats.tx_errors = mac_control->stats_info->tmac_any_err_frms;
sp->stats.rx_errors = mac_control->stats_info->rmac_drop_frms;
sp->stats.multicast = mac_control->stats_info->rmac_vld_mcst_frms;
sp->stats.rx_length_errors =
mac_control->stats_info->rmac_long_frms;
return (&sp->stats);
}
/**
* s2io_set_multicast - entry point for multicast address enable/disable.
* @dev : pointer to the device structure
* Description:
* This function is a driver entry point which gets called by the kernel
* whenever multicast addresses must be enabled/disabled. This also gets
* called to set/reset promiscuous mode. Depending on the deivce flag, we
* determine, if multicast address must be enabled or if promiscuous mode
* is to be disabled etc.
* Return value:
* void.
*/
static void s2io_set_multicast(struct net_device *dev)
{
int i, j, prev_cnt;
struct dev_mc_list *mclist;
nic_t *sp = dev->priv;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
0xfeffffffffffULL;
u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
void __iomem *add;
if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
/* Enable all Multicast addresses */
writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
&bar0->rmac_addr_data0_mem);
writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
&bar0->rmac_addr_data1_mem);
val64 = RMAC_ADDR_CMD_MEM_WE |
RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
writeq(val64, &bar0->rmac_addr_cmd_mem);
/* Wait till command completes */
wait_for_cmd_complete(sp);
sp->m_cast_flg = 1;
sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
} else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
/* Disable all Multicast addresses */
writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
&bar0->rmac_addr_data0_mem);
val64 = RMAC_ADDR_CMD_MEM_WE |
RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
writeq(val64, &bar0->rmac_addr_cmd_mem);
/* Wait till command completes */
wait_for_cmd_complete(sp);
sp->m_cast_flg = 0;
sp->all_multi_pos = 0;
}
if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
/* Put the NIC into promiscuous mode */
add = &bar0->mac_cfg;
val64 = readq(&bar0->mac_cfg);
val64 |= MAC_CFG_RMAC_PROM_ENABLE;
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) val64, add);
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) (val64 >> 32), (add + 4));
val64 = readq(&bar0->mac_cfg);
sp->promisc_flg = 1;
DBG_PRINT(ERR_DBG, "%s: entered promiscuous mode\n",
dev->name);
} else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
/* Remove the NIC from promiscuous mode */
add = &bar0->mac_cfg;
val64 = readq(&bar0->mac_cfg);
val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) val64, add);
writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
writel((u32) (val64 >> 32), (add + 4));
val64 = readq(&bar0->mac_cfg);
sp->promisc_flg = 0;
DBG_PRINT(ERR_DBG, "%s: left promiscuous mode\n",
dev->name);
}
/* Update individual M_CAST address list */
if ((!sp->m_cast_flg) && dev->mc_count) {
if (dev->mc_count >
(MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
dev->name);
DBG_PRINT(ERR_DBG, "can be added, please enable ");
DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
return;
}
prev_cnt = sp->mc_addr_count;
sp->mc_addr_count = dev->mc_count;
/* Clear out the previous list of Mc in the H/W. */
for (i = 0; i < prev_cnt; i++) {
writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
&bar0->rmac_addr_data0_mem);
writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
&bar0->rmac_addr_data1_mem);
val64 = RMAC_ADDR_CMD_MEM_WE |
RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET
(MAC_MC_ADDR_START_OFFSET + i);
writeq(val64, &bar0->rmac_addr_cmd_mem);
/* Wait for command completes */
if (wait_for_cmd_complete(sp)) {
DBG_PRINT(ERR_DBG, "%s: Adding ",
dev->name);
DBG_PRINT(ERR_DBG, "Multicasts failed\n");
return;
}
}
/* Create the new Rx filter list and update the same in H/W. */
for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
i++, mclist = mclist->next) {
memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
ETH_ALEN);
for (j = 0; j < ETH_ALEN; j++) {
mac_addr |= mclist->dmi_addr[j];
mac_addr <<= 8;
}
mac_addr >>= 8;
writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
&bar0->rmac_addr_data0_mem);
writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
&bar0->rmac_addr_data1_mem);
val64 = RMAC_ADDR_CMD_MEM_WE |
RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET
(i + MAC_MC_ADDR_START_OFFSET);
writeq(val64, &bar0->rmac_addr_cmd_mem);
/* Wait for command completes */
if (wait_for_cmd_complete(sp)) {
DBG_PRINT(ERR_DBG, "%s: Adding ",
dev->name);
DBG_PRINT(ERR_DBG, "Multicasts failed\n");
return;
}
}
}
}
/**
* s2io_set_mac_addr - Programs the Xframe mac address
* @dev : pointer to the device structure.
* @addr: a uchar pointer to the new mac address which is to be set.
* Description : This procedure will program the Xframe to receive
* frames with new Mac Address
* Return value: SUCCESS on success and an appropriate (-)ve integer
* as defined in errno.h file on failure.
*/
int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
{
nic_t *sp = dev->priv;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
register u64 val64, mac_addr = 0;
int i;
/*
* Set the new MAC address as the new unicast filter and reflect this
* change on the device address registered with the OS. It will be
* at offset 0.
*/
for (i = 0; i < ETH_ALEN; i++) {
mac_addr <<= 8;
mac_addr |= addr[i];
}
writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
&bar0->rmac_addr_data0_mem);
val64 =
RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET(0);
writeq(val64, &bar0->rmac_addr_cmd_mem);
/* Wait till command completes */
if (wait_for_cmd_complete(sp)) {
DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
return FAILURE;
}
return SUCCESS;
}
/**
* s2io_ethtool_sset - Sets different link parameters.
* @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
* @info: pointer to the structure with parameters given by ethtool to set
* link information.
* Description:
* The function sets different link parameters provided by the user onto
* the NIC.
* Return value:
* 0 on success.
*/
static int s2io_ethtool_sset(struct net_device *dev,
struct ethtool_cmd *info)
{
nic_t *sp = dev->priv;
if ((info->autoneg == AUTONEG_ENABLE) ||
(info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
return -EINVAL;
else {
s2io_close(sp->dev);
s2io_open(sp->dev);
}
return 0;
}
/**
* s2io_ethtol_gset - Return link specific information.
* @sp : private member of the device structure, pointer to the
* s2io_nic structure.
* @info : pointer to the structure with parameters given by ethtool
* to return link information.
* Description:
* Returns link specific information like speed, duplex etc.. to ethtool.
* Return value :
* return 0 on success.
*/
static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
{
nic_t *sp = dev->priv;
info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
info->port = PORT_FIBRE;
/* info->transceiver?? TODO */
if (netif_carrier_ok(sp->dev)) {
info->speed = 10000;
info->duplex = DUPLEX_FULL;
} else {
info->speed = -1;
info->duplex = -1;
}
info->autoneg = AUTONEG_DISABLE;
return 0;
}
/**
* s2io_ethtool_gdrvinfo - Returns driver specific information.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @info : pointer to the structure with parameters given by ethtool to
* return driver information.
* Description:
* Returns driver specefic information like name, version etc.. to ethtool.
* Return value:
* void
*/
static void s2io_ethtool_gdrvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
nic_t *sp = dev->priv;
strncpy(info->driver, s2io_driver_name, sizeof(s2io_driver_name));
strncpy(info->version, s2io_driver_version,
sizeof(s2io_driver_version));
strncpy(info->fw_version, "", 32);
strncpy(info->bus_info, pci_name(sp->pdev), 32);
info->regdump_len = XENA_REG_SPACE;
info->eedump_len = XENA_EEPROM_SPACE;
info->testinfo_len = S2IO_TEST_LEN;
info->n_stats = S2IO_STAT_LEN;
}
/**
* s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
* @sp: private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @regs : pointer to the structure with parameters given by ethtool for
* dumping the registers.
* @reg_space: The input argumnet into which all the registers are dumped.
* Description:
* Dumps the entire register space of xFrame NIC into the user given
* buffer area.
* Return value :
* void .
*/
static void s2io_ethtool_gregs(struct net_device *dev,
struct ethtool_regs *regs, void *space)
{
int i;
u64 reg;
u8 *reg_space = (u8 *) space;
nic_t *sp = dev->priv;
regs->len = XENA_REG_SPACE;
regs->version = sp->pdev->subsystem_device;
for (i = 0; i < regs->len; i += 8) {
reg = readq(sp->bar0 + i);
memcpy((reg_space + i), &reg, 8);
}
}
/**
* s2io_phy_id - timer function that alternates adapter LED.
* @data : address of the private member of the device structure, which
* is a pointer to the s2io_nic structure, provided as an u32.
* Description: This is actually the timer function that alternates the
* adapter LED bit of the adapter control bit to set/reset every time on
* invocation. The timer is set for 1/2 a second, hence tha NIC blinks
* once every second.
*/
static void s2io_phy_id(unsigned long data)
{
nic_t *sp = (nic_t *) data;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
u64 val64 = 0;
u16 subid;
subid = sp->pdev->subsystem_device;
if ((subid & 0xFF) >= 0x07) {
val64 = readq(&bar0->gpio_control);
val64 ^= GPIO_CTRL_GPIO_0;
writeq(val64, &bar0->gpio_control);
} else {
val64 = readq(&bar0->adapter_control);
val64 ^= ADAPTER_LED_ON;
writeq(val64, &bar0->adapter_control);
}
mod_timer(&sp->id_timer, jiffies + HZ / 2);
}
/**
* s2io_ethtool_idnic - To physically identify the nic on the system.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @id : pointer to the structure with identification parameters given by
* ethtool.
* Description: Used to physically identify the NIC on the system.
* The Link LED will blink for a time specified by the user for
* identification.
* NOTE: The Link has to be Up to be able to blink the LED. Hence
* identification is possible only if it's link is up.
* Return value:
* int , returns 0 on success
*/
static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
{
u64 val64 = 0, last_gpio_ctrl_val;
nic_t *sp = dev->priv;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
u16 subid;
subid = sp->pdev->subsystem_device;
last_gpio_ctrl_val = readq(&bar0->gpio_control);
if ((subid & 0xFF) < 0x07) {
val64 = readq(&bar0->adapter_control);
if (!(val64 & ADAPTER_CNTL_EN)) {
printk(KERN_ERR
"Adapter Link down, cannot blink LED\n");
return -EFAULT;
}
}
if (sp->id_timer.function == NULL) {
init_timer(&sp->id_timer);
sp->id_timer.function = s2io_phy_id;
sp->id_timer.data = (unsigned long) sp;
}
mod_timer(&sp->id_timer, jiffies);
if (data)
msleep(data * 1000);
else
msleep(0xFFFFFFFF);
del_timer_sync(&sp->id_timer);
if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) {
writeq(last_gpio_ctrl_val, &bar0->gpio_control);
last_gpio_ctrl_val = readq(&bar0->gpio_control);
}
return 0;
}
/**
* s2io_ethtool_getpause_data -Pause frame frame generation and reception.
* @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
* @ep : pointer to the structure with pause parameters given by ethtool.
* Description:
* Returns the Pause frame generation and reception capability of the NIC.
* Return value:
* void
*/
static void s2io_ethtool_getpause_data(struct net_device *dev,
struct ethtool_pauseparam *ep)
{
u64 val64;
nic_t *sp = dev->priv;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
val64 = readq(&bar0->rmac_pause_cfg);
if (val64 & RMAC_PAUSE_GEN_ENABLE)
ep->tx_pause = TRUE;
if (val64 & RMAC_PAUSE_RX_ENABLE)
ep->rx_pause = TRUE;
ep->autoneg = FALSE;
}
/**
* s2io_ethtool_setpause_data - set/reset pause frame generation.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @ep : pointer to the structure with pause parameters given by ethtool.
* Description:
* It can be used to set or reset Pause frame generation or reception
* support of the NIC.
* Return value:
* int, returns 0 on Success
*/
static int s2io_ethtool_setpause_data(struct net_device *dev,
struct ethtool_pauseparam *ep)
{
u64 val64;
nic_t *sp = dev->priv;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
val64 = readq(&bar0->rmac_pause_cfg);
if (ep->tx_pause)
val64 |= RMAC_PAUSE_GEN_ENABLE;
else
val64 &= ~RMAC_PAUSE_GEN_ENABLE;
if (ep->rx_pause)
val64 |= RMAC_PAUSE_RX_ENABLE;
else
val64 &= ~RMAC_PAUSE_RX_ENABLE;
writeq(val64, &bar0->rmac_pause_cfg);
return 0;
}
/**
* read_eeprom - reads 4 bytes of data from user given offset.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @off : offset at which the data must be written
* @data : Its an output parameter where the data read at the given
* offset is stored.
* Description:
* Will read 4 bytes of data from the user given offset and return the
* read data.
* NOTE: Will allow to read only part of the EEPROM visible through the
* I2C bus.
* Return value:
* -1 on failure and 0 on success.
*/
#define S2IO_DEV_ID 5
static int read_eeprom(nic_t * sp, int off, u32 * data)
{
int ret = -1;
u32 exit_cnt = 0;
u64 val64;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
I2C_CONTROL_CNTL_START;
SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
while (exit_cnt < 5) {
val64 = readq(&bar0->i2c_control);
if (I2C_CONTROL_CNTL_END(val64)) {
*data = I2C_CONTROL_GET_DATA(val64);
ret = 0;
break;
}
msleep(50);
exit_cnt++;
}
return ret;
}
/**
* write_eeprom - actually writes the relevant part of the data value.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @off : offset at which the data must be written
* @data : The data that is to be written
* @cnt : Number of bytes of the data that are actually to be written into
* the Eeprom. (max of 3)
* Description:
* Actually writes the relevant part of the data value into the Eeprom
* through the I2C bus.
* Return value:
* 0 on success, -1 on failure.
*/
static int write_eeprom(nic_t * sp, int off, u32 data, int cnt)
{
int exit_cnt = 0, ret = -1;
u64 val64;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA(data) |
I2C_CONTROL_CNTL_START;
SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
while (exit_cnt < 5) {
val64 = readq(&bar0->i2c_control);
if (I2C_CONTROL_CNTL_END(val64)) {
if (!(val64 & I2C_CONTROL_NACK))
ret = 0;
break;
}
msleep(50);
exit_cnt++;
}
return ret;
}
/**
* s2io_ethtool_geeprom - reads the value stored in the Eeprom.
* @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
* @eeprom : pointer to the user level structure provided by ethtool,
* containing all relevant information.
* @data_buf : user defined value to be written into Eeprom.
* Description: Reads the values stored in the Eeprom at given offset
* for a given length. Stores these values int the input argument data
* buffer 'data_buf' and returns these to the caller (ethtool.)
* Return value:
* int 0 on success
*/
static int s2io_ethtool_geeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 * data_buf)
{
u32 data, i, valid;
nic_t *sp = dev->priv;
eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
for (i = 0; i < eeprom->len; i += 4) {
if (read_eeprom(sp, (eeprom->offset + i), &data)) {
DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
return -EFAULT;
}
valid = INV(data);
memcpy((data_buf + i), &valid, 4);
}
return 0;
}
/**
* s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @eeprom : pointer to the user level structure provided by ethtool,
* containing all relevant information.
* @data_buf ; user defined value to be written into Eeprom.
* Description:
* Tries to write the user provided value in the Eeprom, at the offset
* given by the user.
* Return value:
* 0 on success, -EFAULT on failure.
*/
static int s2io_ethtool_seeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom,
u8 * data_buf)
{
int len = eeprom->len, cnt = 0;
u32 valid = 0, data;
nic_t *sp = dev->priv;
if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
DBG_PRINT(ERR_DBG,
"ETHTOOL_WRITE_EEPROM Err: Magic value ");
DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
eeprom->magic);
return -EFAULT;
}
while (len) {
data = (u32) data_buf[cnt] & 0x000000FF;
if (data) {
valid = (u32) (data << 24);
} else
valid = data;
if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
DBG_PRINT(ERR_DBG,
"ETHTOOL_WRITE_EEPROM Err: Cannot ");
DBG_PRINT(ERR_DBG,
"write into the specified offset\n");
return -EFAULT;
}
cnt++;
len--;
}
return 0;
}
/**
* s2io_register_test - reads and writes into all clock domains.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @data : variable that returns the result of each of the test conducted b
* by the driver.
* Description:
* Read and write into all clock domains. The NIC has 3 clock domains,
* see that registers in all the three regions are accessible.
* Return value:
* 0 on success.
*/
static int s2io_register_test(nic_t * sp, uint64_t * data)
{
XENA_dev_config_t __iomem *bar0 = sp->bar0;
u64 val64 = 0;
int fail = 0;
val64 = readq(&bar0->pcc_enable);
if (val64 != 0xff00000000000000ULL) {
fail = 1;
DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
}
val64 = readq(&bar0->rmac_pause_cfg);
if (val64 != 0xc000ffff00000000ULL) {
fail = 1;
DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
}
val64 = readq(&bar0->rx_queue_cfg);
if (val64 != 0x0808080808080808ULL) {
fail = 1;
DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
}
val64 = readq(&bar0->xgxs_efifo_cfg);
if (val64 != 0x000000001923141EULL) {
fail = 1;
DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
}
val64 = 0x5A5A5A5A5A5A5A5AULL;
writeq(val64, &bar0->xmsi_data);
val64 = readq(&bar0->xmsi_data);
if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
fail = 1;
DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
}
val64 = 0xA5A5A5A5A5A5A5A5ULL;
writeq(val64, &bar0->xmsi_data);
val64 = readq(&bar0->xmsi_data);
if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
fail = 1;
DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
}
*data = fail;
return 0;
}
/**
* s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @data:variable that returns the result of each of the test conducted by
* the driver.
* Description:
* Verify that EEPROM in the xena can be programmed using I2C_CONTROL
* register.
* Return value:
* 0 on success.
*/
static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
{
int fail = 0;
u32 ret_data;
/* Test Write Error at offset 0 */
if (!write_eeprom(sp, 0, 0, 3))
fail = 1;
/* Test Write at offset 4f0 */
if (write_eeprom(sp, 0x4F0, 0x01234567, 3))
fail = 1;
if (read_eeprom(sp, 0x4F0, &ret_data))
fail = 1;
if (ret_data != 0x01234567)
fail = 1;
/* Reset the EEPROM data go FFFF */
write_eeprom(sp, 0x4F0, 0xFFFFFFFF, 3);
/* Test Write Request Error at offset 0x7c */
if (!write_eeprom(sp, 0x07C, 0, 3))
fail = 1;
/* Test Write Request at offset 0x7fc */
if (write_eeprom(sp, 0x7FC, 0x01234567, 3))
fail = 1;
if (read_eeprom(sp, 0x7FC, &ret_data))
fail = 1;
if (ret_data != 0x01234567)
fail = 1;
/* Reset the EEPROM data go FFFF */
write_eeprom(sp, 0x7FC, 0xFFFFFFFF, 3);
/* Test Write Error at offset 0x80 */
if (!write_eeprom(sp, 0x080, 0, 3))
fail = 1;
/* Test Write Error at offset 0xfc */
if (!write_eeprom(sp, 0x0FC, 0, 3))
fail = 1;
/* Test Write Error at offset 0x100 */
if (!write_eeprom(sp, 0x100, 0, 3))
fail = 1;
/* Test Write Error at offset 4ec */
if (!write_eeprom(sp, 0x4EC, 0, 3))
fail = 1;
*data = fail;
return 0;
}
/**
* s2io_bist_test - invokes the MemBist test of the card .
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @data:variable that returns the result of each of the test conducted by
* the driver.
* Description:
* This invokes the MemBist test of the card. We give around
* 2 secs time for the Test to complete. If it's still not complete
* within this peiod, we consider that the test failed.
* Return value:
* 0 on success and -1 on failure.
*/
static int s2io_bist_test(nic_t * sp, uint64_t * data)
{
u8 bist = 0;
int cnt = 0, ret = -1;
pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
bist |= PCI_BIST_START;
pci_write_config_word(sp->pdev, PCI_BIST, bist);
while (cnt < 20) {
pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
if (!(bist & PCI_BIST_START)) {
*data = (bist & PCI_BIST_CODE_MASK);
ret = 0;
break;
}
msleep(100);
cnt++;
}
return ret;
}
/**
* s2io-link_test - verifies the link state of the nic
* @sp ; private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @data: variable that returns the result of each of the test conducted by
* the driver.
* Description:
* The function verifies the link state of the NIC and updates the input
* argument 'data' appropriately.
* Return value:
* 0 on success.
*/
static int s2io_link_test(nic_t * sp, uint64_t * data)
{
XENA_dev_config_t __iomem *bar0 = sp->bar0;
u64 val64;
val64 = readq(&bar0->adapter_status);
if (val64 & ADAPTER_STATUS_RMAC_LOCAL_FAULT)
*data = 1;
return 0;
}
/**
* s2io_rldram_test - offline test for access to the RldRam chip on the NIC
* @sp - private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @data - variable that returns the result of each of the test
* conducted by the driver.
* Description:
* This is one of the offline test that tests the read and write
* access to the RldRam chip on the NIC.
* Return value:
* 0 on success.
*/
static int s2io_rldram_test(nic_t * sp, uint64_t * data)
{
XENA_dev_config_t __iomem *bar0 = sp->bar0;
u64 val64;
int cnt, iteration = 0, test_pass = 0;
val64 = readq(&bar0->adapter_control);
val64 &= ~ADAPTER_ECC_EN;
writeq(val64, &bar0->adapter_control);
val64 = readq(&bar0->mc_rldram_test_ctrl);
val64 |= MC_RLDRAM_TEST_MODE;
writeq(val64, &bar0->mc_rldram_test_ctrl);
val64 = readq(&bar0->mc_rldram_mrs);
val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
val64 |= MC_RLDRAM_MRS_ENABLE;
SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
while (iteration < 2) {
val64 = 0x55555555aaaa0000ULL;
if (iteration == 1) {
val64 ^= 0xFFFFFFFFFFFF0000ULL;
}
writeq(val64, &bar0->mc_rldram_test_d0);
val64 = 0xaaaa5a5555550000ULL;
if (iteration == 1) {
val64 ^= 0xFFFFFFFFFFFF0000ULL;
}
writeq(val64, &bar0->mc_rldram_test_d1);
val64 = 0x55aaaaaaaa5a0000ULL;
if (iteration == 1) {
val64 ^= 0xFFFFFFFFFFFF0000ULL;
}
writeq(val64, &bar0->mc_rldram_test_d2);
val64 = (u64) (0x0000003fffff0000ULL);
writeq(val64, &bar0->mc_rldram_test_add);
val64 = MC_RLDRAM_TEST_MODE;
writeq(val64, &bar0->mc_rldram_test_ctrl);
val64 |=
MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
MC_RLDRAM_TEST_GO;
writeq(val64, &bar0->mc_rldram_test_ctrl);
for (cnt = 0; cnt < 5; cnt++) {
val64 = readq(&bar0->mc_rldram_test_ctrl);
if (val64 & MC_RLDRAM_TEST_DONE)
break;
msleep(200);
}
if (cnt == 5)
break;
val64 = MC_RLDRAM_TEST_MODE;
writeq(val64, &bar0->mc_rldram_test_ctrl);
val64 |= MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
writeq(val64, &bar0->mc_rldram_test_ctrl);
for (cnt = 0; cnt < 5; cnt++) {
val64 = readq(&bar0->mc_rldram_test_ctrl);
if (val64 & MC_RLDRAM_TEST_DONE)
break;
msleep(500);
}
if (cnt == 5)
break;
val64 = readq(&bar0->mc_rldram_test_ctrl);
if (val64 & MC_RLDRAM_TEST_PASS)
test_pass = 1;
iteration++;
}
if (!test_pass)
*data = 1;
else
*data = 0;
return 0;
}
/**
* s2io_ethtool_test - conducts 6 tsets to determine the health of card.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @ethtest : pointer to a ethtool command specific structure that will be
* returned to the user.
* @data : variable that returns the result of each of the test
* conducted by the driver.
* Description:
* This function conducts 6 tests ( 4 offline and 2 online) to determine
* the health of the card.
* Return value:
* void
*/
static void s2io_ethtool_test(struct net_device *dev,
struct ethtool_test *ethtest,
uint64_t * data)
{
nic_t *sp = dev->priv;
int orig_state = netif_running(sp->dev);
if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
/* Offline Tests. */
if (orig_state) {
s2io_close(sp->dev);
s2io_set_swapper(sp);
} else
s2io_set_swapper(sp);
if (s2io_register_test(sp, &data[0]))
ethtest->flags |= ETH_TEST_FL_FAILED;
s2io_reset(sp);
s2io_set_swapper(sp);
if (s2io_rldram_test(sp, &data[3]))
ethtest->flags |= ETH_TEST_FL_FAILED;
s2io_reset(sp);
s2io_set_swapper(sp);
if (s2io_eeprom_test(sp, &data[1]))
ethtest->flags |= ETH_TEST_FL_FAILED;
if (s2io_bist_test(sp, &data[4]))
ethtest->flags |= ETH_TEST_FL_FAILED;
if (orig_state)
s2io_open(sp->dev);
data[2] = 0;
} else {
/* Online Tests. */
if (!orig_state) {
DBG_PRINT(ERR_DBG,
"%s: is not up, cannot run test\n",
dev->name);
data[0] = -1;
data[1] = -1;
data[2] = -1;
data[3] = -1;
data[4] = -1;
}
if (s2io_link_test(sp, &data[2]))
ethtest->flags |= ETH_TEST_FL_FAILED;
data[0] = 0;
data[1] = 0;
data[3] = 0;
data[4] = 0;
}
}
static void s2io_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *estats,
u64 * tmp_stats)
{
int i = 0;
nic_t *sp = dev->priv;
StatInfo_t *stat_info = sp->mac_control.stats_info;
tmp_stats[i++] = le32_to_cpu(stat_info->tmac_frms);
tmp_stats[i++] = le32_to_cpu(stat_info->tmac_data_octets);
tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
tmp_stats[i++] = le32_to_cpu(stat_info->tmac_mcst_frms);
tmp_stats[i++] = le32_to_cpu(stat_info->tmac_bcst_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
tmp_stats[i++] = le32_to_cpu(stat_info->tmac_any_err_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
tmp_stats[i++] = le32_to_cpu(stat_info->tmac_vld_ip);
tmp_stats[i++] = le32_to_cpu(stat_info->tmac_drop_ip);
tmp_stats[i++] = le32_to_cpu(stat_info->tmac_icmp);
tmp_stats[i++] = le32_to_cpu(stat_info->tmac_rst_tcp);
tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
tmp_stats[i++] = le32_to_cpu(stat_info->tmac_udp);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_frms);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_data_octets);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_mcst_frms);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_bcst_frms);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_discarded_frms);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_usized_frms);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_osized_frms);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_frag_frms);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_jabber_frms);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ip);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_drop_ip);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_icmp);
tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_udp);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_drp_udp);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pause_cnt);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_accepted_ip);
tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
}
static int s2io_ethtool_get_regs_len(struct net_device *dev)
{
return (XENA_REG_SPACE);
}
static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
{
nic_t *sp = dev->priv;
return (sp->rx_csum);
}
static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
{
nic_t *sp = dev->priv;
if (data)
sp->rx_csum = 1;
else
sp->rx_csum = 0;
return 0;
}
static int s2io_get_eeprom_len(struct net_device *dev)
{
return (XENA_EEPROM_SPACE);
}
static int s2io_ethtool_self_test_count(struct net_device *dev)
{
return (S2IO_TEST_LEN);
}
static void s2io_ethtool_get_strings(struct net_device *dev,
u32 stringset, u8 * data)
{
switch (stringset) {
case ETH_SS_TEST:
memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
break;
case ETH_SS_STATS:
memcpy(data, &ethtool_stats_keys,
sizeof(ethtool_stats_keys));
}
}
static int s2io_ethtool_get_stats_count(struct net_device *dev)
{
return (S2IO_STAT_LEN);
}
static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
{
if (data)
dev->features |= NETIF_F_IP_CSUM;
else
dev->features &= ~NETIF_F_IP_CSUM;
return 0;
}
static struct ethtool_ops netdev_ethtool_ops = {
.get_settings = s2io_ethtool_gset,
.set_settings = s2io_ethtool_sset,
.get_drvinfo = s2io_ethtool_gdrvinfo,
.get_regs_len = s2io_ethtool_get_regs_len,
.get_regs = s2io_ethtool_gregs,
.get_link = ethtool_op_get_link,
.get_eeprom_len = s2io_get_eeprom_len,
.get_eeprom = s2io_ethtool_geeprom,
.set_eeprom = s2io_ethtool_seeprom,
.get_pauseparam = s2io_ethtool_getpause_data,
.set_pauseparam = s2io_ethtool_setpause_data,
.get_rx_csum = s2io_ethtool_get_rx_csum,
.set_rx_csum = s2io_ethtool_set_rx_csum,
.get_tx_csum = ethtool_op_get_tx_csum,
.set_tx_csum = s2io_ethtool_op_set_tx_csum,
.get_sg = ethtool_op_get_sg,
.set_sg = ethtool_op_set_sg,
#ifdef NETIF_F_TSO
.get_tso = ethtool_op_get_tso,
.set_tso = ethtool_op_set_tso,
#endif
.self_test_count = s2io_ethtool_self_test_count,
.self_test = s2io_ethtool_test,
.get_strings = s2io_ethtool_get_strings,
.phys_id = s2io_ethtool_idnic,
.get_stats_count = s2io_ethtool_get_stats_count,
.get_ethtool_stats = s2io_get_ethtool_stats
};
/**
* s2io_ioctl - Entry point for the Ioctl
* @dev : Device pointer.
* @ifr : An IOCTL specefic structure, that can contain a pointer to
* a proprietary structure used to pass information to the driver.
* @cmd : This is used to distinguish between the different commands that
* can be passed to the IOCTL functions.
* Description:
* This function has support for ethtool, adding multiple MAC addresses on
* the NIC and some DBG commands for the util tool.
* Return value:
* Currently the IOCTL supports no operations, hence by default this
* function returns OP NOT SUPPORTED value.
*/
static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
return -EOPNOTSUPP;
}
/**
* s2io_change_mtu - entry point to change MTU size for the device.
* @dev : device pointer.
* @new_mtu : the new MTU size for the device.
* Description: A driver entry point to change MTU size for the device.
* Before changing the MTU the device must be stopped.
* Return value:
* 0 on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
*/
static int s2io_change_mtu(struct net_device *dev, int new_mtu)
{
nic_t *sp = dev->priv;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
register u64 val64;
if (netif_running(dev)) {
DBG_PRINT(ERR_DBG, "%s: Must be stopped to ", dev->name);
DBG_PRINT(ERR_DBG, "change its MTU \n");
return -EBUSY;
}
if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
dev->name);
return -EPERM;
}
/* Set the new MTU into the PYLD register of the NIC */
val64 = new_mtu;
writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
dev->mtu = new_mtu;
return 0;
}
/**
* s2io_tasklet - Bottom half of the ISR.
* @dev_adr : address of the device structure in dma_addr_t format.
* Description:
* This is the tasklet or the bottom half of the ISR. This is
* an extension of the ISR which is scheduled by the scheduler to be run
* when the load on the CPU is low. All low priority tasks of the ISR can
* be pushed into the tasklet. For now the tasklet is used only to
* replenish the Rx buffers in the Rx buffer descriptors.
* Return value:
* void.
*/
static void s2io_tasklet(unsigned long dev_addr)
{
struct net_device *dev = (struct net_device *) dev_addr;
nic_t *sp = dev->priv;
int i, ret;
mac_info_t *mac_control;
struct config_param *config;
mac_control = &sp->mac_control;
config = &sp->config;
if (!TASKLET_IN_USE) {
for (i = 0; i < config->rx_ring_num; i++) {
ret = fill_rx_buffers(sp, i);
if (ret == -ENOMEM) {
DBG_PRINT(ERR_DBG, "%s: Out of ",
dev->name);
DBG_PRINT(ERR_DBG, "memory in tasklet\n");
break;
} else if (ret == -EFILL) {
DBG_PRINT(ERR_DBG,
"%s: Rx Ring %d is full\n",
dev->name, i);
break;
}
}
clear_bit(0, (&sp->tasklet_status));
}
}
/**
* s2io_set_link - Set the LInk status
* @data: long pointer to device private structue
* Description: Sets the link status for the adapter
*/
static void s2io_set_link(unsigned long data)
{
nic_t *nic = (nic_t *) data;
struct net_device *dev = nic->dev;
XENA_dev_config_t __iomem *bar0 = nic->bar0;
register u64 val64;
u16 subid;
if (test_and_set_bit(0, &(nic->link_state))) {
/* The card is being reset, no point doing anything */
return;
}
subid = nic->pdev->subsystem_device;
/*
* Allow a small delay for the NICs self initiated
* cleanup to complete.
*/
msleep(100);
val64 = readq(&bar0->adapter_status);
if (verify_xena_quiescence(val64, nic->device_enabled_once)) {
if (LINK_IS_UP(val64)) {
val64 = readq(&bar0->adapter_control);
val64 |= ADAPTER_CNTL_EN;
writeq(val64, &bar0->adapter_control);
if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) {
val64 = readq(&bar0->gpio_control);
val64 |= GPIO_CTRL_GPIO_0;
writeq(val64, &bar0->gpio_control);
val64 = readq(&bar0->gpio_control);
} else {
val64 |= ADAPTER_LED_ON;
writeq(val64, &bar0->adapter_control);
}
val64 = readq(&bar0->adapter_status);
if (!LINK_IS_UP(val64)) {
DBG_PRINT(ERR_DBG, "%s:", dev->name);
DBG_PRINT(ERR_DBG, " Link down");
DBG_PRINT(ERR_DBG, "after ");
DBG_PRINT(ERR_DBG, "enabling ");
DBG_PRINT(ERR_DBG, "device \n");
}
if (nic->device_enabled_once == FALSE) {
nic->device_enabled_once = TRUE;
}
s2io_link(nic, LINK_UP);
} else {
if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) {
val64 = readq(&bar0->gpio_control);
val64 &= ~GPIO_CTRL_GPIO_0;
writeq(val64, &bar0->gpio_control);
val64 = readq(&bar0->gpio_control);
}
s2io_link(nic, LINK_DOWN);
}
} else { /* NIC is not Quiescent. */
DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
netif_stop_queue(dev);
}
clear_bit(0, &(nic->link_state));
}
static void s2io_card_down(nic_t * sp)
{
int cnt = 0;
XENA_dev_config_t __iomem *bar0 = sp->bar0;
unsigned long flags;
register u64 val64 = 0;
/* If s2io_set_link task is executing, wait till it completes. */
while (test_and_set_bit(0, &(sp->link_state)))
msleep(50);
atomic_set(&sp->card_state, CARD_DOWN);
/* disable Tx and Rx traffic on the NIC */
stop_nic(sp);
/* Kill tasklet. */
tasklet_kill(&sp->task);
/* Check if the device is Quiescent and then Reset the NIC */
do {
val64 = readq(&bar0->adapter_status);
if (verify_xena_quiescence(val64, sp->device_enabled_once)) {
break;
}
msleep(50);
cnt++;
if (cnt == 10) {
DBG_PRINT(ERR_DBG,
"s2io_close:Device not Quiescent ");
DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
(unsigned long long) val64);
break;
}
} while (1);
spin_lock_irqsave(&sp->tx_lock, flags);
s2io_reset(sp);
/* Free all unused Tx and Rx buffers */
free_tx_buffers(sp);
free_rx_buffers(sp);
spin_unlock_irqrestore(&sp->tx_lock, flags);
clear_bit(0, &(sp->link_state));
}
static int s2io_card_up(nic_t * sp)
{
int i, ret;
mac_info_t *mac_control;
struct config_param *config;
struct net_device *dev = (struct net_device *) sp->dev;
/* Initialize the H/W I/O registers */
if (init_nic(sp) != 0) {
DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
dev->name);
return -ENODEV;
}
/*
* Initializing the Rx buffers. For now we are considering only 1
* Rx ring and initializing buffers into 30 Rx blocks
*/
mac_control = &sp->mac_control;
config = &sp->config;
for (i = 0; i < config->rx_ring_num; i++) {
if ((ret = fill_rx_buffers(sp, i))) {
DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
dev->name);
s2io_reset(sp);
free_rx_buffers(sp);
return -ENOMEM;
}
DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
atomic_read(&sp->rx_bufs_left[i]));
}
/* Setting its receive mode */
s2io_set_multicast(dev);
/* Enable tasklet for the device */
tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
/* Enable Rx Traffic and interrupts on the NIC */
if (start_nic(sp)) {
DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
tasklet_kill(&sp->task);
s2io_reset(sp);
free_irq(dev->irq, dev);
free_rx_buffers(sp);
return -ENODEV;
}
atomic_set(&sp->card_state, CARD_UP);
return 0;
}
/**
* s2io_restart_nic - Resets the NIC.
* @data : long pointer to the device private structure
* Description:
* This function is scheduled to be run by the s2io_tx_watchdog
* function after 0.5 secs to reset the NIC. The idea is to reduce
* the run time of the watch dog routine which is run holding a
* spin lock.
*/
static void s2io_restart_nic(unsigned long data)
{
struct net_device *dev = (struct net_device *) data;
nic_t *sp = dev->priv;
s2io_card_down(sp);
if (s2io_card_up(sp)) {
DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
dev->name);
}
netif_wake_queue(dev);
DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
dev->name);
}
/**
* s2io_tx_watchdog - Watchdog for transmit side.
* @dev : Pointer to net device structure
* Description:
* This function is triggered if the Tx Queue is stopped
* for a pre-defined amount of time when the Interface is still up.
* If the Interface is jammed in such a situation, the hardware is
* reset (by s2io_close) and restarted again (by s2io_open) to
* overcome any problem that might have been caused in the hardware.
* Return value:
* void
*/
static void s2io_tx_watchdog(struct net_device *dev)
{
nic_t *sp = dev->priv;
if (netif_carrier_ok(dev)) {
schedule_work(&sp->rst_timer_task);
}
}
/**
* rx_osm_handler - To perform some OS related operations on SKB.
* @sp: private member of the device structure,pointer to s2io_nic structure.
* @skb : the socket buffer pointer.
* @len : length of the packet
* @cksum : FCS checksum of the frame.
* @ring_no : the ring from which this RxD was extracted.
* Description:
* This function is called by the Tx interrupt serivce routine to perform
* some OS related operations on the SKB before passing it to the upper
* layers. It mainly checks if the checksum is OK, if so adds it to the
* SKBs cksum variable, increments the Rx packet count and passes the SKB
* to the upper layer. If the checksum is wrong, it increments the Rx
* packet error count, frees the SKB and returns error.
* Return value:
* SUCCESS on success and -1 on failure.
*/
#ifndef CONFIG_2BUFF_MODE
static int rx_osm_handler(nic_t * sp, u16 len, RxD_t * rxdp, int ring_no)
#else
static int rx_osm_handler(nic_t * sp, RxD_t * rxdp, int ring_no,
buffAdd_t * ba)
#endif
{
struct net_device *dev = (struct net_device *) sp->dev;
struct sk_buff *skb =
(struct sk_buff *) ((unsigned long) rxdp->Host_Control);
u16 l3_csum, l4_csum;
#ifdef CONFIG_2BUFF_MODE
int buf0_len, buf2_len;
unsigned char *buff;
#endif
l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && (sp->rx_csum)) {
l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
/*
* NIC verifies if the Checksum of the received
* frame is Ok or not and accordingly returns
* a flag in the RxD.
*/
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else {
/*
* Packet with erroneous checksum, let the
* upper layers deal with it.
*/
skb->ip_summed = CHECKSUM_NONE;
}
} else {
skb->ip_summed = CHECKSUM_NONE;
}
if (rxdp->Control_1 & RXD_T_CODE) {
unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
dev->name, err);
}
#ifdef CONFIG_2BUFF_MODE
buf0_len = RXD_GET_BUFFER0_SIZE(rxdp->Control_2);
buf2_len = RXD_GET_BUFFER2_SIZE(rxdp->Control_2);
#endif
skb->dev = dev;
#ifndef CONFIG_2BUFF_MODE
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, dev);
#else
buff = skb_push(skb, buf0_len);
memcpy(buff, ba->ba_0, buf0_len);
skb_put(skb, buf2_len);
skb->protocol = eth_type_trans(skb, dev);
#endif
#ifdef CONFIG_S2IO_NAPI
netif_receive_skb(skb);
#else
netif_rx(skb);
#endif
dev->last_rx = jiffies;
sp->rx_pkt_count++;
sp->stats.rx_packets++;
#ifndef CONFIG_2BUFF_MODE
sp->stats.rx_bytes += len;
#else
sp->stats.rx_bytes += buf0_len + buf2_len;
#endif
atomic_dec(&sp->rx_bufs_left[ring_no]);
rxdp->Host_Control = 0;
return SUCCESS;
}
/**
* s2io_link - stops/starts the Tx queue.
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* @link : inidicates whether link is UP/DOWN.
* Description:
* This function stops/starts the Tx queue depending on whether the link
* status of the NIC is is down or up. This is called by the Alarm
* interrupt handler whenever a link change interrupt comes up.
* Return value:
* void.
*/
static void s2io_link(nic_t * sp, int link)
{
struct net_device *dev = (struct net_device *) sp->dev;
if (link != sp->last_link_state) {
if (link == LINK_DOWN) {
DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
netif_carrier_off(dev);
} else {
DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
netif_carrier_on(dev);
}
}
sp->last_link_state = link;
}
/**
* s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
* @sp : private member of the device structure, which is a pointer to the
* s2io_nic structure.
* Description:
* This function initializes a few of the PCI and PCI-X configuration registers
* with recommended values.
* Return value:
* void
*/
static void s2io_init_pci(nic_t * sp)
{
u16 pci_cmd = 0;
/* Enable Data Parity Error Recovery in PCI-X command register. */
pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
&(sp->pcix_cmd));
pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
(sp->pcix_cmd | 1));
pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
&(sp->pcix_cmd));
/* Set the PErr Response bit in PCI command register. */
pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
pci_write_config_word(sp->pdev, PCI_COMMAND,
(pci_cmd | PCI_COMMAND_PARITY));
pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
/* Set MMRB count to 1024 in PCI-X Command register. */
sp->pcix_cmd &= 0xFFF3;
pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, (sp->pcix_cmd | (0x1 << 2))); /* MMRBC 1K */
pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
&(sp->pcix_cmd));
/* Setting Maximum outstanding splits based on system type. */
sp->pcix_cmd &= 0xFF8F;
sp->pcix_cmd |= XENA_MAX_OUTSTANDING_SPLITS(0x1); /* 2 splits. */
pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
sp->pcix_cmd);
pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
&(sp->pcix_cmd));
/* Forcibly disabling relaxed ordering capability of the card. */
sp->pcix_cmd &= 0xfffd;
pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
sp->pcix_cmd);
pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
&(sp->pcix_cmd));
}
MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
MODULE_LICENSE("GPL");
module_param(tx_fifo_num, int, 0);
module_param_array(tx_fifo_len, int, NULL, 0);
module_param(rx_ring_num, int, 0);
module_param_array(rx_ring_sz, int, NULL, 0);
module_param(Stats_refresh_time, int, 0);
module_param(rmac_pause_time, int, 0);
module_param(mc_pause_threshold_q0q3, int, 0);
module_param(mc_pause_threshold_q4q7, int, 0);
module_param(shared_splits, int, 0);
module_param(tmac_util_period, int, 0);
module_param(rmac_util_period, int, 0);
#ifndef CONFIG_S2IO_NAPI
module_param(indicate_max_pkts, int, 0);
#endif
/**
* s2io_init_nic - Initialization of the adapter .
* @pdev : structure containing the PCI related information of the device.
* @pre: List of PCI devices supported by the driver listed in s2io_tbl.
* Description:
* The function initializes an adapter identified by the pci_dec structure.
* All OS related initialization including memory and device structure and
* initlaization of the device private variable is done. Also the swapper
* control register is initialized to enable read and write into the I/O
* registers of the device.
* Return value:
* returns 0 on success and negative on failure.
*/
static int __devinit
s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
{
nic_t *sp;
struct net_device *dev;
char *dev_name = "S2IO 10GE NIC";
int i, j, ret;
int dma_flag = FALSE;
u32 mac_up, mac_down;
u64 val64 = 0, tmp64 = 0;
XENA_dev_config_t __iomem *bar0 = NULL;
u16 subid;
mac_info_t *mac_control;
struct config_param *config;
DBG_PRINT(ERR_DBG, "Loading S2IO driver with %s\n",
s2io_driver_version);
if ((ret = pci_enable_device(pdev))) {
DBG_PRINT(ERR_DBG,
"s2io_init_nic: pci_enable_device failed\n");
return ret;
}
if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
dma_flag = TRUE;
if (pci_set_consistent_dma_mask
(pdev, DMA_64BIT_MASK)) {
DBG_PRINT(ERR_DBG,
"Unable to obtain 64bit DMA for \
consistent allocations\n");
pci_disable_device(pdev);
return -ENOMEM;
}
} else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
} else {
pci_disable_device(pdev);
return -ENOMEM;
}
if (pci_request_regions(pdev, s2io_driver_name)) {
DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
pci_disable_device(pdev);
return -ENODEV;
}
dev = alloc_etherdev(sizeof(nic_t));
if (dev == NULL) {
DBG_PRINT(ERR_DBG, "Device allocation failed\n");
pci_disable_device(pdev);
pci_release_regions(pdev);
return -ENODEV;
}
pci_set_master(pdev);
pci_set_drvdata(pdev, dev);
SET_MODULE_OWNER(dev);
SET_NETDEV_DEV(dev, &pdev->dev);
/* Private member variable initialized to s2io NIC structure */
sp = dev->priv;
memset(sp, 0, sizeof(nic_t));
sp->dev = dev;
sp->pdev = pdev;
sp->vendor_id = pdev->vendor;
sp->device_id = pdev->device;
sp->high_dma_flag = dma_flag;
sp->irq = pdev->irq;
sp->device_enabled_once = FALSE;
strcpy(sp->name, dev_name);
/* Initialize some PCI/PCI-X fields of the NIC. */
s2io_init_pci(sp);
/*
* Setting the device configuration parameters.
* Most of these parameters can be specified by the user during
* module insertion as they are module loadable parameters. If
* these parameters are not not specified during load time, they
* are initialized with default values.
*/
mac_control = &sp->mac_control;
config = &sp->config;
/* Tx side parameters. */
tx_fifo_len[0] = DEFAULT_FIFO_LEN; /* Default value. */
config->tx_fifo_num = tx_fifo_num;
for (i = 0; i < MAX_TX_FIFOS; i++) {
config->tx_cfg[i].fifo_len = tx_fifo_len[i];
config->tx_cfg[i].fifo_priority = i;
}
config->tx_intr_type = TXD_INT_TYPE_UTILZ;
for (i = 0; i < config->tx_fifo_num; i++) {
config->tx_cfg[i].f_no_snoop =
(NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
if (config->tx_cfg[i].fifo_len < 65) {
config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
break;
}
}
config->max_txds = MAX_SKB_FRAGS;
/* Rx side parameters. */
rx_ring_sz[0] = SMALL_BLK_CNT; /* Default value. */
config->rx_ring_num = rx_ring_num;
for (i = 0; i < MAX_RX_RINGS; i++) {
config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
(MAX_RXDS_PER_BLOCK + 1);
config->rx_cfg[i].ring_priority = i;
}
for (i = 0; i < rx_ring_num; i++) {
config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
config->rx_cfg[i].f_no_snoop =
(NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
}
/* Setting Mac Control parameters */
mac_control->rmac_pause_time = rmac_pause_time;
mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
/* Initialize Ring buffer parameters. */
for (i = 0; i < config->rx_ring_num; i++)
atomic_set(&sp->rx_bufs_left[i], 0);
/* initialize the shared memory used by the NIC and the host */
if (init_shared_mem(sp)) {
DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
dev->name);
ret = -ENOMEM;
goto mem_alloc_failed;
}
sp->bar0 = ioremap(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
if (!sp->bar0) {
DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
dev->name);
ret = -ENOMEM;
goto bar0_remap_failed;
}
sp->bar1 = ioremap(pci_resource_start(pdev, 2),
pci_resource_len(pdev, 2));
if (!sp->bar1) {
DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
dev->name);
ret = -ENOMEM;
goto bar1_remap_failed;
}
dev->irq = pdev->irq;
dev->base_addr = (unsigned long) sp->bar0;
/* Initializing the BAR1 address as the start of the FIFO pointer. */
for (j = 0; j < MAX_TX_FIFOS; j++) {
mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
(sp->bar1 + (j * 0x00020000));
}
/* Driver entry points */
dev->open = &s2io_open;
dev->stop = &s2io_close;
dev->hard_start_xmit = &s2io_xmit;
dev->get_stats = &s2io_get_stats;
dev->set_multicast_list = &s2io_set_multicast;
dev->do_ioctl = &s2io_ioctl;
dev->change_mtu = &s2io_change_mtu;
SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
/*
* will use eth_mac_addr() for dev->set_mac_address
* mac address will be set every time dev->open() is called
*/
#ifdef CONFIG_S2IO_NAPI
dev->poll = s2io_poll;
dev->weight = 90;
#endif
dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
if (sp->high_dma_flag == TRUE)
dev->features |= NETIF_F_HIGHDMA;
#ifdef NETIF_F_TSO
dev->features |= NETIF_F_TSO;
#endif
dev->tx_timeout = &s2io_tx_watchdog;
dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
INIT_WORK(&sp->rst_timer_task,
(void (*)(void *)) s2io_restart_nic, dev);
INIT_WORK(&sp->set_link_task,
(void (*)(void *)) s2io_set_link, sp);
pci_save_state(sp->pdev);
/* Setting swapper control on the NIC, for proper reset operation */
if (s2io_set_swapper(sp)) {
DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
dev->name);
ret = -EAGAIN;
goto set_swap_failed;
}
/* Fix for all "FFs" MAC address problems observed on Alpha platforms */
fix_mac_address(sp);
s2io_reset(sp);
/*
* Setting swapper control on the NIC, so the MAC address can be read.
*/
if (s2io_set_swapper(sp)) {
DBG_PRINT(ERR_DBG,
"%s: S2IO: swapper settings are wrong\n",
dev->name);
ret = -EAGAIN;
goto set_swap_failed;
}
/*
* MAC address initialization.
* For now only one mac address will be read and used.
*/
bar0 = sp->bar0;
val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
writeq(val64, &bar0->rmac_addr_cmd_mem);
wait_for_cmd_complete(sp);
tmp64 = readq(&bar0->rmac_addr_data0_mem);
mac_down = (u32) tmp64;
mac_up = (u32) (tmp64 >> 32);
memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
DBG_PRINT(INIT_DBG,
"DEFAULT MAC ADDR:0x%02x-%02x-%02x-%02x-%02x-%02x\n",
sp->def_mac_addr[0].mac_addr[0],
sp->def_mac_addr[0].mac_addr[1],
sp->def_mac_addr[0].mac_addr[2],
sp->def_mac_addr[0].mac_addr[3],
sp->def_mac_addr[0].mac_addr[4],
sp->def_mac_addr[0].mac_addr[5]);
/* Set the factory defined MAC address initially */
dev->addr_len = ETH_ALEN;
memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
/*
* Initialize the tasklet status and link state flags
* and the card statte parameter
*/
atomic_set(&(sp->card_state), 0);
sp->tasklet_status = 0;
sp->link_state = 0;
/* Initialize spinlocks */
spin_lock_init(&sp->tx_lock);
#ifndef CONFIG_S2IO_NAPI
spin_lock_init(&sp->put_lock);
#endif
/*
* SXE-002: Configure link and activity LED to init state
* on driver load.
*/
subid = sp->pdev->subsystem_device;
if ((subid & 0xFF) >= 0x07) {
val64 = readq(&bar0->gpio_control);
val64 |= 0x0000800000000000ULL;
writeq(val64, &bar0->gpio_control);
val64 = 0x0411040400000000ULL;
writeq(val64, (void __iomem *) bar0 + 0x2700);
val64 = readq(&bar0->gpio_control);
}
sp->rx_csum = 1; /* Rx chksum verify enabled by default */
if (register_netdev(dev)) {
DBG_PRINT(ERR_DBG, "Device registration failed\n");
ret = -ENODEV;
goto register_failed;
}
/*
* Make Link state as off at this point, when the Link change
* interrupt comes the state will be automatically changed to
* the right state.
*/
netif_carrier_off(dev);
sp->last_link_state = LINK_DOWN;
return 0;
register_failed:
set_swap_failed:
iounmap(sp->bar1);
bar1_remap_failed:
iounmap(sp->bar0);
bar0_remap_failed:
mem_alloc_failed:
free_shared_mem(sp);
pci_disable_device(pdev);
pci_release_regions(pdev);
pci_set_drvdata(pdev, NULL);
free_netdev(dev);
return ret;
}
/**
* s2io_rem_nic - Free the PCI device
* @pdev: structure containing the PCI related information of the device.
* Description: This function is called by the Pci subsystem to release a
* PCI device and free up all resource held up by the device. This could
* be in response to a Hot plug event or when the driver is to be removed
* from memory.
*/
static void __devexit s2io_rem_nic(struct pci_dev *pdev)
{
struct net_device *dev =
(struct net_device *) pci_get_drvdata(pdev);
nic_t *sp;
if (dev == NULL) {
DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
return;
}
sp = dev->priv;
unregister_netdev(dev);
free_shared_mem(sp);
iounmap(sp->bar0);
iounmap(sp->bar1);
pci_disable_device(pdev);
pci_release_regions(pdev);
pci_set_drvdata(pdev, NULL);
free_netdev(dev);
}
/**
* s2io_starter - Entry point for the driver
* Description: This function is the entry point for the driver. It verifies
* the module loadable parameters and initializes PCI configuration space.
*/
int __init s2io_starter(void)
{
return pci_module_init(&s2io_driver);
}
/**
* s2io_closer - Cleanup routine for the driver
* Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
*/
static void s2io_closer(void)
{
pci_unregister_driver(&s2io_driver);
DBG_PRINT(INIT_DBG, "cleanup done\n");
}
module_init(s2io_starter);
module_exit(s2io_closer);