mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-02 10:43:57 +08:00
643ad15d47
Pull x86 protection key support from Ingo Molnar: "This tree adds support for a new memory protection hardware feature that is available in upcoming Intel CPUs: 'protection keys' (pkeys). There's a background article at LWN.net: https://lwn.net/Articles/643797/ The gist is that protection keys allow the encoding of user-controllable permission masks in the pte. So instead of having a fixed protection mask in the pte (which needs a system call to change and works on a per page basis), the user can map a (handful of) protection mask variants and can change the masks runtime relatively cheaply, without having to change every single page in the affected virtual memory range. This allows the dynamic switching of the protection bits of large amounts of virtual memory, via user-space instructions. It also allows more precise control of MMU permission bits: for example the executable bit is separate from the read bit (see more about that below). This tree adds the MM infrastructure and low level x86 glue needed for that, plus it adds a high level API to make use of protection keys - if a user-space application calls: mmap(..., PROT_EXEC); or mprotect(ptr, sz, PROT_EXEC); (note PROT_EXEC-only, without PROT_READ/WRITE), the kernel will notice this special case, and will set a special protection key on this memory range. It also sets the appropriate bits in the Protection Keys User Rights (PKRU) register so that the memory becomes unreadable and unwritable. So using protection keys the kernel is able to implement 'true' PROT_EXEC on x86 CPUs: without protection keys PROT_EXEC implies PROT_READ as well. Unreadable executable mappings have security advantages: they cannot be read via information leaks to figure out ASLR details, nor can they be scanned for ROP gadgets - and they cannot be used by exploits for data purposes either. We know about no user-space code that relies on pure PROT_EXEC mappings today, but binary loaders could start making use of this new feature to map binaries and libraries in a more secure fashion. There is other pending pkeys work that offers more high level system call APIs to manage protection keys - but those are not part of this pull request. Right now there's a Kconfig that controls this feature (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) that is default enabled (like most x86 CPU feature enablement code that has no runtime overhead), but it's not user-configurable at the moment. If there's any serious problem with this then we can make it configurable and/or flip the default" * 'mm-pkeys-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits) x86/mm/pkeys: Fix mismerge of protection keys CPUID bits mm/pkeys: Fix siginfo ABI breakage caused by new u64 field x86/mm/pkeys: Fix access_error() denial of writes to write-only VMA mm/core, x86/mm/pkeys: Add execute-only protection keys support x86/mm/pkeys: Create an x86 arch_calc_vm_prot_bits() for VMA flags x86/mm/pkeys: Allow kernel to modify user pkey rights register x86/fpu: Allow setting of XSAVE state x86/mm: Factor out LDT init from context init mm/core, x86/mm/pkeys: Add arch_validate_pkey() mm/core, arch, powerpc: Pass a protection key in to calc_vm_flag_bits() x86/mm/pkeys: Actually enable Memory Protection Keys in the CPU x86/mm/pkeys: Add Kconfig prompt to existing config option x86/mm/pkeys: Dump pkey from VMA in /proc/pid/smaps x86/mm/pkeys: Dump PKRU with other kernel registers mm/core, x86/mm/pkeys: Differentiate instruction fetches x86/mm/pkeys: Optimize fault handling in access_error() mm/core: Do not enforce PKEY permissions on remote mm access um, pkeys: Add UML arch_*_access_permitted() methods mm/gup, x86/mm/pkeys: Check VMAs and PTEs for protection keys x86/mm/gup: Simplify get_user_pages() PTE bit handling ...
235 lines
5.6 KiB
C
235 lines
5.6 KiB
C
/*
|
|
* kvm asynchronous fault support
|
|
*
|
|
* Copyright 2010 Red Hat, Inc.
|
|
*
|
|
* Author:
|
|
* Gleb Natapov <gleb@redhat.com>
|
|
*
|
|
* This file is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License
|
|
* as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mmu_context.h>
|
|
|
|
#include "async_pf.h"
|
|
#include <trace/events/kvm.h>
|
|
|
|
static inline void kvm_async_page_present_sync(struct kvm_vcpu *vcpu,
|
|
struct kvm_async_pf *work)
|
|
{
|
|
#ifdef CONFIG_KVM_ASYNC_PF_SYNC
|
|
kvm_arch_async_page_present(vcpu, work);
|
|
#endif
|
|
}
|
|
static inline void kvm_async_page_present_async(struct kvm_vcpu *vcpu,
|
|
struct kvm_async_pf *work)
|
|
{
|
|
#ifndef CONFIG_KVM_ASYNC_PF_SYNC
|
|
kvm_arch_async_page_present(vcpu, work);
|
|
#endif
|
|
}
|
|
|
|
static struct kmem_cache *async_pf_cache;
|
|
|
|
int kvm_async_pf_init(void)
|
|
{
|
|
async_pf_cache = KMEM_CACHE(kvm_async_pf, 0);
|
|
|
|
if (!async_pf_cache)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_async_pf_deinit(void)
|
|
{
|
|
kmem_cache_destroy(async_pf_cache);
|
|
async_pf_cache = NULL;
|
|
}
|
|
|
|
void kvm_async_pf_vcpu_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
INIT_LIST_HEAD(&vcpu->async_pf.done);
|
|
INIT_LIST_HEAD(&vcpu->async_pf.queue);
|
|
spin_lock_init(&vcpu->async_pf.lock);
|
|
}
|
|
|
|
static void async_pf_execute(struct work_struct *work)
|
|
{
|
|
struct kvm_async_pf *apf =
|
|
container_of(work, struct kvm_async_pf, work);
|
|
struct mm_struct *mm = apf->mm;
|
|
struct kvm_vcpu *vcpu = apf->vcpu;
|
|
unsigned long addr = apf->addr;
|
|
gva_t gva = apf->gva;
|
|
|
|
might_sleep();
|
|
|
|
/*
|
|
* This work is run asynchromously to the task which owns
|
|
* mm and might be done in another context, so we must
|
|
* use FOLL_REMOTE.
|
|
*/
|
|
__get_user_pages_unlocked(NULL, mm, addr, 1, 1, 0, NULL, FOLL_REMOTE);
|
|
|
|
kvm_async_page_present_sync(vcpu, apf);
|
|
|
|
spin_lock(&vcpu->async_pf.lock);
|
|
list_add_tail(&apf->link, &vcpu->async_pf.done);
|
|
spin_unlock(&vcpu->async_pf.lock);
|
|
|
|
/*
|
|
* apf may be freed by kvm_check_async_pf_completion() after
|
|
* this point
|
|
*/
|
|
|
|
trace_kvm_async_pf_completed(addr, gva);
|
|
|
|
/*
|
|
* This memory barrier pairs with prepare_to_wait's set_current_state()
|
|
*/
|
|
smp_mb();
|
|
if (swait_active(&vcpu->wq))
|
|
swake_up(&vcpu->wq);
|
|
|
|
mmput(mm);
|
|
kvm_put_kvm(vcpu->kvm);
|
|
}
|
|
|
|
void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* cancel outstanding work queue item */
|
|
while (!list_empty(&vcpu->async_pf.queue)) {
|
|
struct kvm_async_pf *work =
|
|
list_first_entry(&vcpu->async_pf.queue,
|
|
typeof(*work), queue);
|
|
list_del(&work->queue);
|
|
|
|
#ifdef CONFIG_KVM_ASYNC_PF_SYNC
|
|
flush_work(&work->work);
|
|
#else
|
|
if (cancel_work_sync(&work->work)) {
|
|
mmput(work->mm);
|
|
kvm_put_kvm(vcpu->kvm); /* == work->vcpu->kvm */
|
|
kmem_cache_free(async_pf_cache, work);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
spin_lock(&vcpu->async_pf.lock);
|
|
while (!list_empty(&vcpu->async_pf.done)) {
|
|
struct kvm_async_pf *work =
|
|
list_first_entry(&vcpu->async_pf.done,
|
|
typeof(*work), link);
|
|
list_del(&work->link);
|
|
kmem_cache_free(async_pf_cache, work);
|
|
}
|
|
spin_unlock(&vcpu->async_pf.lock);
|
|
|
|
vcpu->async_pf.queued = 0;
|
|
}
|
|
|
|
void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_async_pf *work;
|
|
|
|
while (!list_empty_careful(&vcpu->async_pf.done) &&
|
|
kvm_arch_can_inject_async_page_present(vcpu)) {
|
|
spin_lock(&vcpu->async_pf.lock);
|
|
work = list_first_entry(&vcpu->async_pf.done, typeof(*work),
|
|
link);
|
|
list_del(&work->link);
|
|
spin_unlock(&vcpu->async_pf.lock);
|
|
|
|
kvm_arch_async_page_ready(vcpu, work);
|
|
kvm_async_page_present_async(vcpu, work);
|
|
|
|
list_del(&work->queue);
|
|
vcpu->async_pf.queued--;
|
|
kmem_cache_free(async_pf_cache, work);
|
|
}
|
|
}
|
|
|
|
int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva,
|
|
struct kvm_arch_async_pf *arch)
|
|
{
|
|
struct kvm_async_pf *work;
|
|
|
|
if (vcpu->async_pf.queued >= ASYNC_PF_PER_VCPU)
|
|
return 0;
|
|
|
|
/* setup delayed work */
|
|
|
|
/*
|
|
* do alloc nowait since if we are going to sleep anyway we
|
|
* may as well sleep faulting in page
|
|
*/
|
|
work = kmem_cache_zalloc(async_pf_cache, GFP_NOWAIT | __GFP_NOWARN);
|
|
if (!work)
|
|
return 0;
|
|
|
|
work->wakeup_all = false;
|
|
work->vcpu = vcpu;
|
|
work->gva = gva;
|
|
work->addr = hva;
|
|
work->arch = *arch;
|
|
work->mm = current->mm;
|
|
atomic_inc(&work->mm->mm_users);
|
|
kvm_get_kvm(work->vcpu->kvm);
|
|
|
|
/* this can't really happen otherwise gfn_to_pfn_async
|
|
would succeed */
|
|
if (unlikely(kvm_is_error_hva(work->addr)))
|
|
goto retry_sync;
|
|
|
|
INIT_WORK(&work->work, async_pf_execute);
|
|
if (!schedule_work(&work->work))
|
|
goto retry_sync;
|
|
|
|
list_add_tail(&work->queue, &vcpu->async_pf.queue);
|
|
vcpu->async_pf.queued++;
|
|
kvm_arch_async_page_not_present(vcpu, work);
|
|
return 1;
|
|
retry_sync:
|
|
kvm_put_kvm(work->vcpu->kvm);
|
|
mmput(work->mm);
|
|
kmem_cache_free(async_pf_cache, work);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_async_pf *work;
|
|
|
|
if (!list_empty_careful(&vcpu->async_pf.done))
|
|
return 0;
|
|
|
|
work = kmem_cache_zalloc(async_pf_cache, GFP_ATOMIC);
|
|
if (!work)
|
|
return -ENOMEM;
|
|
|
|
work->wakeup_all = true;
|
|
INIT_LIST_HEAD(&work->queue); /* for list_del to work */
|
|
|
|
spin_lock(&vcpu->async_pf.lock);
|
|
list_add_tail(&work->link, &vcpu->async_pf.done);
|
|
spin_unlock(&vcpu->async_pf.lock);
|
|
|
|
vcpu->async_pf.queued++;
|
|
return 0;
|
|
}
|