2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-25 07:06:40 +08:00
linux-next/drivers/perf/qcom_l2_pmu.c
Neil Leeder 21bdbb7102 perf: add qcom l2 cache perf events driver
Adds perf events support for L2 cache PMU.

The L2 cache PMU driver is named 'l2cache_0' and can be used
with perf events to profile L2 events such as cache hits
and misses on Qualcomm Technologies processors.

Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Neil Leeder <nleeder@codeaurora.org>
[will: minimise nesting in l2_cache_associate_cpu_with_cluster]
[will: use kstrtoul for unsigned long, remove redunant .owner setting]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-02-08 19:32:24 +00:00

1014 lines
26 KiB
C

/* Copyright (c) 2015-2017 The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/acpi.h>
#include <linux/bitops.h>
#include <linux/bug.h>
#include <linux/cpuhotplug.h>
#include <linux/cpumask.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/percpu.h>
#include <linux/perf_event.h>
#include <linux/platform_device.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <asm/barrier.h>
#include <asm/local64.h>
#include <asm/sysreg.h>
#define MAX_L2_CTRS 9
#define L2PMCR_NUM_EV_SHIFT 11
#define L2PMCR_NUM_EV_MASK 0x1F
#define L2PMCR 0x400
#define L2PMCNTENCLR 0x403
#define L2PMCNTENSET 0x404
#define L2PMINTENCLR 0x405
#define L2PMINTENSET 0x406
#define L2PMOVSCLR 0x407
#define L2PMOVSSET 0x408
#define L2PMCCNTCR 0x409
#define L2PMCCNTR 0x40A
#define L2PMCCNTSR 0x40C
#define L2PMRESR 0x410
#define IA_L2PMXEVCNTCR_BASE 0x420
#define IA_L2PMXEVCNTR_BASE 0x421
#define IA_L2PMXEVFILTER_BASE 0x423
#define IA_L2PMXEVTYPER_BASE 0x424
#define IA_L2_REG_OFFSET 0x10
#define L2PMXEVFILTER_SUFILTER_ALL 0x000E0000
#define L2PMXEVFILTER_ORGFILTER_IDINDEP 0x00000004
#define L2PMXEVFILTER_ORGFILTER_ALL 0x00000003
#define L2EVTYPER_REG_SHIFT 3
#define L2PMRESR_GROUP_BITS 8
#define L2PMRESR_GROUP_MASK GENMASK(7, 0)
#define L2CYCLE_CTR_BIT 31
#define L2CYCLE_CTR_RAW_CODE 0xFE
#define L2PMCR_RESET_ALL 0x6
#define L2PMCR_COUNTERS_ENABLE 0x1
#define L2PMCR_COUNTERS_DISABLE 0x0
#define L2PMRESR_EN BIT_ULL(63)
#define L2_EVT_MASK 0x00000FFF
#define L2_EVT_CODE_MASK 0x00000FF0
#define L2_EVT_GRP_MASK 0x0000000F
#define L2_EVT_CODE_SHIFT 4
#define L2_EVT_GRP_SHIFT 0
#define L2_EVT_CODE(event) (((event) & L2_EVT_CODE_MASK) >> L2_EVT_CODE_SHIFT)
#define L2_EVT_GROUP(event) (((event) & L2_EVT_GRP_MASK) >> L2_EVT_GRP_SHIFT)
#define L2_EVT_GROUP_MAX 7
#define L2_COUNTER_RELOAD BIT_ULL(31)
#define L2_CYCLE_COUNTER_RELOAD BIT_ULL(63)
#define L2CPUSRSELR_EL1 sys_reg(3, 3, 15, 0, 6)
#define L2CPUSRDR_EL1 sys_reg(3, 3, 15, 0, 7)
#define reg_idx(reg, i) (((i) * IA_L2_REG_OFFSET) + reg##_BASE)
static DEFINE_RAW_SPINLOCK(l2_access_lock);
/**
* set_l2_indirect_reg: write value to an L2 register
* @reg: Address of L2 register.
* @value: Value to be written to register.
*
* Use architecturally required barriers for ordering between system register
* accesses
*/
static void set_l2_indirect_reg(u64 reg, u64 val)
{
unsigned long flags;
raw_spin_lock_irqsave(&l2_access_lock, flags);
write_sysreg_s(reg, L2CPUSRSELR_EL1);
isb();
write_sysreg_s(val, L2CPUSRDR_EL1);
isb();
raw_spin_unlock_irqrestore(&l2_access_lock, flags);
}
/**
* get_l2_indirect_reg: read an L2 register value
* @reg: Address of L2 register.
*
* Use architecturally required barriers for ordering between system register
* accesses
*/
static u64 get_l2_indirect_reg(u64 reg)
{
u64 val;
unsigned long flags;
raw_spin_lock_irqsave(&l2_access_lock, flags);
write_sysreg_s(reg, L2CPUSRSELR_EL1);
isb();
val = read_sysreg_s(L2CPUSRDR_EL1);
raw_spin_unlock_irqrestore(&l2_access_lock, flags);
return val;
}
struct cluster_pmu;
/*
* Aggregate PMU. Implements the core pmu functions and manages
* the hardware PMUs.
*/
struct l2cache_pmu {
struct hlist_node node;
u32 num_pmus;
struct pmu pmu;
int num_counters;
cpumask_t cpumask;
struct platform_device *pdev;
struct cluster_pmu * __percpu *pmu_cluster;
struct list_head clusters;
};
/*
* The cache is made up of one or more clusters, each cluster has its own PMU.
* Each cluster is associated with one or more CPUs.
* This structure represents one of the hardware PMUs.
*
* Events can be envisioned as a 2-dimensional array. Each column represents
* a group of events. There are 8 groups. Only one entry from each
* group can be in use at a time.
*
* Events are specified as 0xCCG, where CC is 2 hex digits specifying
* the code (array row) and G specifies the group (column).
*
* In addition there is a cycle counter event specified by L2CYCLE_CTR_RAW_CODE
* which is outside the above scheme.
*/
struct cluster_pmu {
struct list_head next;
struct perf_event *events[MAX_L2_CTRS];
struct l2cache_pmu *l2cache_pmu;
DECLARE_BITMAP(used_counters, MAX_L2_CTRS);
DECLARE_BITMAP(used_groups, L2_EVT_GROUP_MAX + 1);
int irq;
int cluster_id;
/* The CPU that is used for collecting events on this cluster */
int on_cpu;
/* All the CPUs associated with this cluster */
cpumask_t cluster_cpus;
spinlock_t pmu_lock;
};
#define to_l2cache_pmu(p) (container_of(p, struct l2cache_pmu, pmu))
static u32 l2_cycle_ctr_idx;
static u32 l2_counter_present_mask;
static inline u32 idx_to_reg_bit(u32 idx)
{
if (idx == l2_cycle_ctr_idx)
return BIT(L2CYCLE_CTR_BIT);
return BIT(idx);
}
static inline struct cluster_pmu *get_cluster_pmu(
struct l2cache_pmu *l2cache_pmu, int cpu)
{
return *per_cpu_ptr(l2cache_pmu->pmu_cluster, cpu);
}
static void cluster_pmu_reset(void)
{
/* Reset all counters */
set_l2_indirect_reg(L2PMCR, L2PMCR_RESET_ALL);
set_l2_indirect_reg(L2PMCNTENCLR, l2_counter_present_mask);
set_l2_indirect_reg(L2PMINTENCLR, l2_counter_present_mask);
set_l2_indirect_reg(L2PMOVSCLR, l2_counter_present_mask);
}
static inline void cluster_pmu_enable(void)
{
set_l2_indirect_reg(L2PMCR, L2PMCR_COUNTERS_ENABLE);
}
static inline void cluster_pmu_disable(void)
{
set_l2_indirect_reg(L2PMCR, L2PMCR_COUNTERS_DISABLE);
}
static inline void cluster_pmu_counter_set_value(u32 idx, u64 value)
{
if (idx == l2_cycle_ctr_idx)
set_l2_indirect_reg(L2PMCCNTR, value);
else
set_l2_indirect_reg(reg_idx(IA_L2PMXEVCNTR, idx), value);
}
static inline u64 cluster_pmu_counter_get_value(u32 idx)
{
u64 value;
if (idx == l2_cycle_ctr_idx)
value = get_l2_indirect_reg(L2PMCCNTR);
else
value = get_l2_indirect_reg(reg_idx(IA_L2PMXEVCNTR, idx));
return value;
}
static inline void cluster_pmu_counter_enable(u32 idx)
{
set_l2_indirect_reg(L2PMCNTENSET, idx_to_reg_bit(idx));
}
static inline void cluster_pmu_counter_disable(u32 idx)
{
set_l2_indirect_reg(L2PMCNTENCLR, idx_to_reg_bit(idx));
}
static inline void cluster_pmu_counter_enable_interrupt(u32 idx)
{
set_l2_indirect_reg(L2PMINTENSET, idx_to_reg_bit(idx));
}
static inline void cluster_pmu_counter_disable_interrupt(u32 idx)
{
set_l2_indirect_reg(L2PMINTENCLR, idx_to_reg_bit(idx));
}
static inline void cluster_pmu_set_evccntcr(u32 val)
{
set_l2_indirect_reg(L2PMCCNTCR, val);
}
static inline void cluster_pmu_set_evcntcr(u32 ctr, u32 val)
{
set_l2_indirect_reg(reg_idx(IA_L2PMXEVCNTCR, ctr), val);
}
static inline void cluster_pmu_set_evtyper(u32 ctr, u32 val)
{
set_l2_indirect_reg(reg_idx(IA_L2PMXEVTYPER, ctr), val);
}
static void cluster_pmu_set_resr(struct cluster_pmu *cluster,
u32 event_group, u32 event_cc)
{
u64 field;
u64 resr_val;
u32 shift;
unsigned long flags;
shift = L2PMRESR_GROUP_BITS * event_group;
field = ((u64)(event_cc & L2PMRESR_GROUP_MASK) << shift);
spin_lock_irqsave(&cluster->pmu_lock, flags);
resr_val = get_l2_indirect_reg(L2PMRESR);
resr_val &= ~(L2PMRESR_GROUP_MASK << shift);
resr_val |= field;
resr_val |= L2PMRESR_EN;
set_l2_indirect_reg(L2PMRESR, resr_val);
spin_unlock_irqrestore(&cluster->pmu_lock, flags);
}
/*
* Hardware allows filtering of events based on the originating
* CPU. Turn this off by setting filter bits to allow events from
* all CPUS, subunits and ID independent events in this cluster.
*/
static inline void cluster_pmu_set_evfilter_sys_mode(u32 ctr)
{
u32 val = L2PMXEVFILTER_SUFILTER_ALL |
L2PMXEVFILTER_ORGFILTER_IDINDEP |
L2PMXEVFILTER_ORGFILTER_ALL;
set_l2_indirect_reg(reg_idx(IA_L2PMXEVFILTER, ctr), val);
}
static inline u32 cluster_pmu_getreset_ovsr(void)
{
u32 result = get_l2_indirect_reg(L2PMOVSSET);
set_l2_indirect_reg(L2PMOVSCLR, result);
return result;
}
static inline bool cluster_pmu_has_overflowed(u32 ovsr)
{
return !!(ovsr & l2_counter_present_mask);
}
static inline bool cluster_pmu_counter_has_overflowed(u32 ovsr, u32 idx)
{
return !!(ovsr & idx_to_reg_bit(idx));
}
static void l2_cache_event_update(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
u64 delta, prev, now;
u32 idx = hwc->idx;
do {
prev = local64_read(&hwc->prev_count);
now = cluster_pmu_counter_get_value(idx);
} while (local64_cmpxchg(&hwc->prev_count, prev, now) != prev);
/*
* The cycle counter is 64-bit, but all other counters are
* 32-bit, and we must handle 32-bit overflow explicitly.
*/
delta = now - prev;
if (idx != l2_cycle_ctr_idx)
delta &= 0xffffffff;
local64_add(delta, &event->count);
}
static void l2_cache_cluster_set_period(struct cluster_pmu *cluster,
struct hw_perf_event *hwc)
{
u32 idx = hwc->idx;
u64 new;
/*
* We limit the max period to half the max counter value so
* that even in the case of extreme interrupt latency the
* counter will (hopefully) not wrap past its initial value.
*/
if (idx == l2_cycle_ctr_idx)
new = L2_CYCLE_COUNTER_RELOAD;
else
new = L2_COUNTER_RELOAD;
local64_set(&hwc->prev_count, new);
cluster_pmu_counter_set_value(idx, new);
}
static int l2_cache_get_event_idx(struct cluster_pmu *cluster,
struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
int idx;
int num_ctrs = cluster->l2cache_pmu->num_counters - 1;
unsigned int group;
if (hwc->config_base == L2CYCLE_CTR_RAW_CODE) {
if (test_and_set_bit(l2_cycle_ctr_idx, cluster->used_counters))
return -EAGAIN;
return l2_cycle_ctr_idx;
}
idx = find_first_zero_bit(cluster->used_counters, num_ctrs);
if (idx == num_ctrs)
/* The counters are all in use. */
return -EAGAIN;
/*
* Check for column exclusion: event column already in use by another
* event. This is for events which are not in the same group.
* Conflicting events in the same group are detected in event_init.
*/
group = L2_EVT_GROUP(hwc->config_base);
if (test_bit(group, cluster->used_groups))
return -EAGAIN;
set_bit(idx, cluster->used_counters);
set_bit(group, cluster->used_groups);
return idx;
}
static void l2_cache_clear_event_idx(struct cluster_pmu *cluster,
struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
clear_bit(idx, cluster->used_counters);
if (hwc->config_base != L2CYCLE_CTR_RAW_CODE)
clear_bit(L2_EVT_GROUP(hwc->config_base), cluster->used_groups);
}
static irqreturn_t l2_cache_handle_irq(int irq_num, void *data)
{
struct cluster_pmu *cluster = data;
int num_counters = cluster->l2cache_pmu->num_counters;
u32 ovsr;
int idx;
ovsr = cluster_pmu_getreset_ovsr();
if (!cluster_pmu_has_overflowed(ovsr))
return IRQ_NONE;
for_each_set_bit(idx, cluster->used_counters, num_counters) {
struct perf_event *event = cluster->events[idx];
struct hw_perf_event *hwc;
if (WARN_ON_ONCE(!event))
continue;
if (!cluster_pmu_counter_has_overflowed(ovsr, idx))
continue;
l2_cache_event_update(event);
hwc = &event->hw;
l2_cache_cluster_set_period(cluster, hwc);
}
return IRQ_HANDLED;
}
/*
* Implementation of abstract pmu functionality required by
* the core perf events code.
*/
static void l2_cache_pmu_enable(struct pmu *pmu)
{
/*
* Although there is only one PMU (per socket) controlling multiple
* physical PMUs (per cluster), because we do not support per-task mode
* each event is associated with a CPU. Each event has pmu_enable
* called on its CPU, so here it is only necessary to enable the
* counters for the current CPU.
*/
cluster_pmu_enable();
}
static void l2_cache_pmu_disable(struct pmu *pmu)
{
cluster_pmu_disable();
}
static int l2_cache_event_init(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
struct cluster_pmu *cluster;
struct perf_event *sibling;
struct l2cache_pmu *l2cache_pmu;
if (event->attr.type != event->pmu->type)
return -ENOENT;
l2cache_pmu = to_l2cache_pmu(event->pmu);
if (hwc->sample_period) {
dev_dbg_ratelimited(&l2cache_pmu->pdev->dev,
"Sampling not supported\n");
return -EOPNOTSUPP;
}
if (event->cpu < 0) {
dev_dbg_ratelimited(&l2cache_pmu->pdev->dev,
"Per-task mode not supported\n");
return -EOPNOTSUPP;
}
/* We cannot filter accurately so we just don't allow it. */
if (event->attr.exclude_user || event->attr.exclude_kernel ||
event->attr.exclude_hv || event->attr.exclude_idle) {
dev_dbg_ratelimited(&l2cache_pmu->pdev->dev,
"Can't exclude execution levels\n");
return -EOPNOTSUPP;
}
if (((L2_EVT_GROUP(event->attr.config) > L2_EVT_GROUP_MAX) ||
((event->attr.config & ~L2_EVT_MASK) != 0)) &&
(event->attr.config != L2CYCLE_CTR_RAW_CODE)) {
dev_dbg_ratelimited(&l2cache_pmu->pdev->dev,
"Invalid config %llx\n",
event->attr.config);
return -EINVAL;
}
/* Don't allow groups with mixed PMUs, except for s/w events */
if (event->group_leader->pmu != event->pmu &&
!is_software_event(event->group_leader)) {
dev_dbg_ratelimited(&l2cache_pmu->pdev->dev,
"Can't create mixed PMU group\n");
return -EINVAL;
}
list_for_each_entry(sibling, &event->group_leader->sibling_list,
group_entry)
if (sibling->pmu != event->pmu &&
!is_software_event(sibling)) {
dev_dbg_ratelimited(&l2cache_pmu->pdev->dev,
"Can't create mixed PMU group\n");
return -EINVAL;
}
cluster = get_cluster_pmu(l2cache_pmu, event->cpu);
if (!cluster) {
/* CPU has not been initialised */
dev_dbg_ratelimited(&l2cache_pmu->pdev->dev,
"CPU%d not associated with L2 cluster\n", event->cpu);
return -EINVAL;
}
/* Ensure all events in a group are on the same cpu */
if ((event->group_leader != event) &&
(cluster->on_cpu != event->group_leader->cpu)) {
dev_dbg_ratelimited(&l2cache_pmu->pdev->dev,
"Can't create group on CPUs %d and %d",
event->cpu, event->group_leader->cpu);
return -EINVAL;
}
if ((event != event->group_leader) &&
(L2_EVT_GROUP(event->group_leader->attr.config) ==
L2_EVT_GROUP(event->attr.config))) {
dev_dbg_ratelimited(&l2cache_pmu->pdev->dev,
"Column exclusion: conflicting events %llx %llx\n",
event->group_leader->attr.config,
event->attr.config);
return -EINVAL;
}
list_for_each_entry(sibling, &event->group_leader->sibling_list,
group_entry) {
if ((sibling != event) &&
(L2_EVT_GROUP(sibling->attr.config) ==
L2_EVT_GROUP(event->attr.config))) {
dev_dbg_ratelimited(&l2cache_pmu->pdev->dev,
"Column exclusion: conflicting events %llx %llx\n",
sibling->attr.config,
event->attr.config);
return -EINVAL;
}
}
hwc->idx = -1;
hwc->config_base = event->attr.config;
/*
* Ensure all events are on the same cpu so all events are in the
* same cpu context, to avoid races on pmu_enable etc.
*/
event->cpu = cluster->on_cpu;
return 0;
}
static void l2_cache_event_start(struct perf_event *event, int flags)
{
struct cluster_pmu *cluster;
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
u32 config;
u32 event_cc, event_group;
hwc->state = 0;
cluster = get_cluster_pmu(to_l2cache_pmu(event->pmu), event->cpu);
l2_cache_cluster_set_period(cluster, hwc);
if (hwc->config_base == L2CYCLE_CTR_RAW_CODE) {
cluster_pmu_set_evccntcr(0);
} else {
config = hwc->config_base;
event_cc = L2_EVT_CODE(config);
event_group = L2_EVT_GROUP(config);
cluster_pmu_set_evcntcr(idx, 0);
cluster_pmu_set_evtyper(idx, event_group);
cluster_pmu_set_resr(cluster, event_group, event_cc);
cluster_pmu_set_evfilter_sys_mode(idx);
}
cluster_pmu_counter_enable_interrupt(idx);
cluster_pmu_counter_enable(idx);
}
static void l2_cache_event_stop(struct perf_event *event, int flags)
{
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
if (hwc->state & PERF_HES_STOPPED)
return;
cluster_pmu_counter_disable_interrupt(idx);
cluster_pmu_counter_disable(idx);
if (flags & PERF_EF_UPDATE)
l2_cache_event_update(event);
hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
}
static int l2_cache_event_add(struct perf_event *event, int flags)
{
struct hw_perf_event *hwc = &event->hw;
int idx;
int err = 0;
struct cluster_pmu *cluster;
cluster = get_cluster_pmu(to_l2cache_pmu(event->pmu), event->cpu);
idx = l2_cache_get_event_idx(cluster, event);
if (idx < 0)
return idx;
hwc->idx = idx;
hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
cluster->events[idx] = event;
local64_set(&hwc->prev_count, 0);
if (flags & PERF_EF_START)
l2_cache_event_start(event, flags);
/* Propagate changes to the userspace mapping. */
perf_event_update_userpage(event);
return err;
}
static void l2_cache_event_del(struct perf_event *event, int flags)
{
struct hw_perf_event *hwc = &event->hw;
struct cluster_pmu *cluster;
int idx = hwc->idx;
cluster = get_cluster_pmu(to_l2cache_pmu(event->pmu), event->cpu);
l2_cache_event_stop(event, flags | PERF_EF_UPDATE);
cluster->events[idx] = NULL;
l2_cache_clear_event_idx(cluster, event);
perf_event_update_userpage(event);
}
static void l2_cache_event_read(struct perf_event *event)
{
l2_cache_event_update(event);
}
static ssize_t l2_cache_pmu_cpumask_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct l2cache_pmu *l2cache_pmu = to_l2cache_pmu(dev_get_drvdata(dev));
return cpumap_print_to_pagebuf(true, buf, &l2cache_pmu->cpumask);
}
static struct device_attribute l2_cache_pmu_cpumask_attr =
__ATTR(cpumask, S_IRUGO, l2_cache_pmu_cpumask_show, NULL);
static struct attribute *l2_cache_pmu_cpumask_attrs[] = {
&l2_cache_pmu_cpumask_attr.attr,
NULL,
};
static struct attribute_group l2_cache_pmu_cpumask_group = {
.attrs = l2_cache_pmu_cpumask_attrs,
};
/* CCG format for perf RAW codes. */
PMU_FORMAT_ATTR(l2_code, "config:4-11");
PMU_FORMAT_ATTR(l2_group, "config:0-3");
static struct attribute *l2_cache_pmu_formats[] = {
&format_attr_l2_code.attr,
&format_attr_l2_group.attr,
NULL,
};
static struct attribute_group l2_cache_pmu_format_group = {
.name = "format",
.attrs = l2_cache_pmu_formats,
};
static const struct attribute_group *l2_cache_pmu_attr_grps[] = {
&l2_cache_pmu_format_group,
&l2_cache_pmu_cpumask_group,
NULL,
};
/*
* Generic device handlers
*/
static const struct acpi_device_id l2_cache_pmu_acpi_match[] = {
{ "QCOM8130", },
{ }
};
static int get_num_counters(void)
{
int val;
val = get_l2_indirect_reg(L2PMCR);
/*
* Read number of counters from L2PMCR and add 1
* for the cycle counter.
*/
return ((val >> L2PMCR_NUM_EV_SHIFT) & L2PMCR_NUM_EV_MASK) + 1;
}
static struct cluster_pmu *l2_cache_associate_cpu_with_cluster(
struct l2cache_pmu *l2cache_pmu, int cpu)
{
u64 mpidr;
int cpu_cluster_id;
struct cluster_pmu *cluster = NULL;
/*
* This assumes that the cluster_id is in MPIDR[aff1] for
* single-threaded cores, and MPIDR[aff2] for multi-threaded
* cores. This logic will have to be updated if this changes.
*/
mpidr = read_cpuid_mpidr();
if (mpidr & MPIDR_MT_BITMASK)
cpu_cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
else
cpu_cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
list_for_each_entry(cluster, &l2cache_pmu->clusters, next) {
if (cluster->cluster_id != cpu_cluster_id)
continue;
dev_info(&l2cache_pmu->pdev->dev,
"CPU%d associated with cluster %d\n", cpu,
cluster->cluster_id);
cpumask_set_cpu(cpu, &cluster->cluster_cpus);
*per_cpu_ptr(l2cache_pmu->pmu_cluster, cpu) = cluster;
break;
}
return cluster;
}
static int l2cache_pmu_online_cpu(unsigned int cpu, struct hlist_node *node)
{
struct cluster_pmu *cluster;
struct l2cache_pmu *l2cache_pmu;
l2cache_pmu = hlist_entry_safe(node, struct l2cache_pmu, node);
cluster = get_cluster_pmu(l2cache_pmu, cpu);
if (!cluster) {
/* First time this CPU has come online */
cluster = l2_cache_associate_cpu_with_cluster(l2cache_pmu, cpu);
if (!cluster) {
/* Only if broken firmware doesn't list every cluster */
WARN_ONCE(1, "No L2 cache cluster for CPU%d\n", cpu);
return 0;
}
}
/* If another CPU is managing this cluster, we're done */
if (cluster->on_cpu != -1)
return 0;
/*
* All CPUs on this cluster were down, use this one.
* Reset to put it into sane state.
*/
cluster->on_cpu = cpu;
cpumask_set_cpu(cpu, &l2cache_pmu->cpumask);
cluster_pmu_reset();
WARN_ON(irq_set_affinity(cluster->irq, cpumask_of(cpu)));
enable_irq(cluster->irq);
return 0;
}
static int l2cache_pmu_offline_cpu(unsigned int cpu, struct hlist_node *node)
{
struct cluster_pmu *cluster;
struct l2cache_pmu *l2cache_pmu;
cpumask_t cluster_online_cpus;
unsigned int target;
l2cache_pmu = hlist_entry_safe(node, struct l2cache_pmu, node);
cluster = get_cluster_pmu(l2cache_pmu, cpu);
if (!cluster)
return 0;
/* If this CPU is not managing the cluster, we're done */
if (cluster->on_cpu != cpu)
return 0;
/* Give up ownership of cluster */
cpumask_clear_cpu(cpu, &l2cache_pmu->cpumask);
cluster->on_cpu = -1;
/* Any other CPU for this cluster which is still online */
cpumask_and(&cluster_online_cpus, &cluster->cluster_cpus,
cpu_online_mask);
target = cpumask_any_but(&cluster_online_cpus, cpu);
if (target >= nr_cpu_ids) {
disable_irq(cluster->irq);
return 0;
}
perf_pmu_migrate_context(&l2cache_pmu->pmu, cpu, target);
cluster->on_cpu = target;
cpumask_set_cpu(target, &l2cache_pmu->cpumask);
WARN_ON(irq_set_affinity(cluster->irq, cpumask_of(target)));
return 0;
}
static int l2_cache_pmu_probe_cluster(struct device *dev, void *data)
{
struct platform_device *pdev = to_platform_device(dev->parent);
struct platform_device *sdev = to_platform_device(dev);
struct l2cache_pmu *l2cache_pmu = data;
struct cluster_pmu *cluster;
struct acpi_device *device;
unsigned long fw_cluster_id;
int err;
int irq;
if (acpi_bus_get_device(ACPI_HANDLE(dev), &device))
return -ENODEV;
if (kstrtoul(device->pnp.unique_id, 10, &fw_cluster_id) < 0) {
dev_err(&pdev->dev, "unable to read ACPI uid\n");
return -ENODEV;
}
cluster = devm_kzalloc(&pdev->dev, sizeof(*cluster), GFP_KERNEL);
if (!cluster)
return -ENOMEM;
INIT_LIST_HEAD(&cluster->next);
list_add(&cluster->next, &l2cache_pmu->clusters);
cluster->cluster_id = fw_cluster_id;
irq = platform_get_irq(sdev, 0);
if (irq < 0) {
dev_err(&pdev->dev,
"Failed to get valid irq for cluster %ld\n",
fw_cluster_id);
return irq;
}
irq_set_status_flags(irq, IRQ_NOAUTOEN);
cluster->irq = irq;
cluster->l2cache_pmu = l2cache_pmu;
cluster->on_cpu = -1;
err = devm_request_irq(&pdev->dev, irq, l2_cache_handle_irq,
IRQF_NOBALANCING | IRQF_NO_THREAD,
"l2-cache-pmu", cluster);
if (err) {
dev_err(&pdev->dev,
"Unable to request IRQ%d for L2 PMU counters\n", irq);
return err;
}
dev_info(&pdev->dev,
"Registered L2 cache PMU cluster %ld\n", fw_cluster_id);
spin_lock_init(&cluster->pmu_lock);
l2cache_pmu->num_pmus++;
return 0;
}
static int l2_cache_pmu_probe(struct platform_device *pdev)
{
int err;
struct l2cache_pmu *l2cache_pmu;
l2cache_pmu =
devm_kzalloc(&pdev->dev, sizeof(*l2cache_pmu), GFP_KERNEL);
if (!l2cache_pmu)
return -ENOMEM;
INIT_LIST_HEAD(&l2cache_pmu->clusters);
platform_set_drvdata(pdev, l2cache_pmu);
l2cache_pmu->pmu = (struct pmu) {
/* suffix is instance id for future use with multiple sockets */
.name = "l2cache_0",
.task_ctx_nr = perf_invalid_context,
.pmu_enable = l2_cache_pmu_enable,
.pmu_disable = l2_cache_pmu_disable,
.event_init = l2_cache_event_init,
.add = l2_cache_event_add,
.del = l2_cache_event_del,
.start = l2_cache_event_start,
.stop = l2_cache_event_stop,
.read = l2_cache_event_read,
.attr_groups = l2_cache_pmu_attr_grps,
};
l2cache_pmu->num_counters = get_num_counters();
l2cache_pmu->pdev = pdev;
l2cache_pmu->pmu_cluster = devm_alloc_percpu(&pdev->dev,
struct cluster_pmu *);
if (!l2cache_pmu->pmu_cluster)
return -ENOMEM;
l2_cycle_ctr_idx = l2cache_pmu->num_counters - 1;
l2_counter_present_mask = GENMASK(l2cache_pmu->num_counters - 2, 0) |
BIT(L2CYCLE_CTR_BIT);
cpumask_clear(&l2cache_pmu->cpumask);
/* Read cluster info and initialize each cluster */
err = device_for_each_child(&pdev->dev, l2cache_pmu,
l2_cache_pmu_probe_cluster);
if (err)
return err;
if (l2cache_pmu->num_pmus == 0) {
dev_err(&pdev->dev, "No hardware L2 cache PMUs found\n");
return -ENODEV;
}
err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_QCOM_L2_ONLINE,
&l2cache_pmu->node);
if (err) {
dev_err(&pdev->dev, "Error %d registering hotplug", err);
return err;
}
err = perf_pmu_register(&l2cache_pmu->pmu, l2cache_pmu->pmu.name, -1);
if (err) {
dev_err(&pdev->dev, "Error %d registering L2 cache PMU\n", err);
goto out_unregister;
}
dev_info(&pdev->dev, "Registered L2 cache PMU using %d HW PMUs\n",
l2cache_pmu->num_pmus);
return err;
out_unregister:
cpuhp_state_remove_instance(CPUHP_AP_PERF_ARM_QCOM_L2_ONLINE,
&l2cache_pmu->node);
return err;
}
static int l2_cache_pmu_remove(struct platform_device *pdev)
{
struct l2cache_pmu *l2cache_pmu =
to_l2cache_pmu(platform_get_drvdata(pdev));
perf_pmu_unregister(&l2cache_pmu->pmu);
cpuhp_state_remove_instance(CPUHP_AP_PERF_ARM_QCOM_L2_ONLINE,
&l2cache_pmu->node);
return 0;
}
static struct platform_driver l2_cache_pmu_driver = {
.driver = {
.name = "qcom-l2cache-pmu",
.acpi_match_table = ACPI_PTR(l2_cache_pmu_acpi_match),
},
.probe = l2_cache_pmu_probe,
.remove = l2_cache_pmu_remove,
};
static int __init register_l2_cache_pmu_driver(void)
{
int err;
err = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_QCOM_L2_ONLINE,
"AP_PERF_ARM_QCOM_L2_ONLINE",
l2cache_pmu_online_cpu,
l2cache_pmu_offline_cpu);
if (err)
return err;
return platform_driver_register(&l2_cache_pmu_driver);
}
device_initcall(register_l2_cache_pmu_driver);