mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-12 07:34:08 +08:00
1da177e4c3
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
1276 lines
30 KiB
C
1276 lines
30 KiB
C
/*
|
|
* Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
|
|
*
|
|
* Copyright (c) 2003 Intracom S.A.
|
|
* by Pantelis Antoniou <panto@intracom.gr>
|
|
*
|
|
* Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
|
|
* and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
|
|
*
|
|
* Released under the GPL
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/string.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/mii.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/bitops.h>
|
|
|
|
#include <asm/8xx_immap.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/mpc8xx.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/commproc.h>
|
|
#include <asm/dma-mapping.h>
|
|
|
|
#include "fec_8xx.h"
|
|
|
|
/*************************************************/
|
|
|
|
#define FEC_MAX_MULTICAST_ADDRS 64
|
|
|
|
/*************************************************/
|
|
|
|
static char version[] __devinitdata =
|
|
DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
|
|
|
|
MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
|
|
MODULE_DESCRIPTION("Motorola 8xx FEC ethernet driver");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
MODULE_PARM(fec_8xx_debug, "i");
|
|
MODULE_PARM_DESC(fec_8xx_debug,
|
|
"FEC 8xx bitmapped debugging message enable value");
|
|
|
|
int fec_8xx_debug = -1; /* -1 == use FEC_8XX_DEF_MSG_ENABLE as value */
|
|
|
|
/*************************************************/
|
|
|
|
/*
|
|
* Delay to wait for FEC reset command to complete (in us)
|
|
*/
|
|
#define FEC_RESET_DELAY 50
|
|
|
|
/*****************************************************************************************/
|
|
|
|
static void fec_whack_reset(fec_t * fecp)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Whack a reset. We should wait for this.
|
|
*/
|
|
FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET);
|
|
for (i = 0;
|
|
(FR(fecp, ecntrl) & FEC_ECNTRL_RESET) != 0 && i < FEC_RESET_DELAY;
|
|
i++)
|
|
udelay(1);
|
|
|
|
if (i == FEC_RESET_DELAY)
|
|
printk(KERN_WARNING "FEC Reset timeout!\n");
|
|
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
/*
|
|
* Transmitter timeout.
|
|
*/
|
|
#define TX_TIMEOUT (2*HZ)
|
|
|
|
/****************************************************************************/
|
|
|
|
/*
|
|
* Returns the CRC needed when filling in the hash table for
|
|
* multicast group filtering
|
|
* pAddr must point to a MAC address (6 bytes)
|
|
*/
|
|
static __u32 fec_mulicast_calc_crc(char *pAddr)
|
|
{
|
|
u8 byte;
|
|
int byte_count;
|
|
int bit_count;
|
|
__u32 crc = 0xffffffff;
|
|
u8 msb;
|
|
|
|
for (byte_count = 0; byte_count < 6; byte_count++) {
|
|
byte = pAddr[byte_count];
|
|
for (bit_count = 0; bit_count < 8; bit_count++) {
|
|
msb = crc >> 31;
|
|
crc <<= 1;
|
|
if (msb ^ (byte & 0x1)) {
|
|
crc ^= FEC_CRC_POLY;
|
|
}
|
|
byte >>= 1;
|
|
}
|
|
}
|
|
return (crc);
|
|
}
|
|
|
|
/*
|
|
* Set or clear the multicast filter for this adaptor.
|
|
* Skeleton taken from sunlance driver.
|
|
* The CPM Ethernet implementation allows Multicast as well as individual
|
|
* MAC address filtering. Some of the drivers check to make sure it is
|
|
* a group multicast address, and discard those that are not. I guess I
|
|
* will do the same for now, but just remove the test if you want
|
|
* individual filtering as well (do the upper net layers want or support
|
|
* this kind of feature?).
|
|
*/
|
|
static void fec_set_multicast_list(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
fec_t *fecp = fep->fecp;
|
|
struct dev_mc_list *pmc;
|
|
__u32 crc;
|
|
int temp;
|
|
__u32 csrVal;
|
|
int hash_index;
|
|
__u32 hthi, htlo;
|
|
unsigned long flags;
|
|
|
|
|
|
if ((dev->flags & IFF_PROMISC) != 0) {
|
|
|
|
spin_lock_irqsave(&fep->lock, flags);
|
|
FS(fecp, r_cntrl, FEC_RCNTRL_PROM);
|
|
spin_unlock_irqrestore(&fep->lock, flags);
|
|
|
|
/*
|
|
* Log any net taps.
|
|
*/
|
|
printk(KERN_WARNING DRV_MODULE_NAME
|
|
": %s: Promiscuous mode enabled.\n", dev->name);
|
|
return;
|
|
|
|
}
|
|
|
|
if ((dev->flags & IFF_ALLMULTI) != 0 ||
|
|
dev->mc_count > FEC_MAX_MULTICAST_ADDRS) {
|
|
/*
|
|
* Catch all multicast addresses, set the filter to all 1's.
|
|
*/
|
|
hthi = 0xffffffffU;
|
|
htlo = 0xffffffffU;
|
|
} else {
|
|
hthi = 0;
|
|
htlo = 0;
|
|
|
|
/*
|
|
* Now populate the hash table
|
|
*/
|
|
for (pmc = dev->mc_list; pmc != NULL; pmc = pmc->next) {
|
|
crc = fec_mulicast_calc_crc(pmc->dmi_addr);
|
|
temp = (crc & 0x3f) >> 1;
|
|
hash_index = ((temp & 0x01) << 4) |
|
|
((temp & 0x02) << 2) |
|
|
((temp & 0x04)) |
|
|
((temp & 0x08) >> 2) |
|
|
((temp & 0x10) >> 4);
|
|
csrVal = (1 << hash_index);
|
|
if (crc & 1)
|
|
hthi |= csrVal;
|
|
else
|
|
htlo |= csrVal;
|
|
}
|
|
}
|
|
|
|
spin_lock_irqsave(&fep->lock, flags);
|
|
FC(fecp, r_cntrl, FEC_RCNTRL_PROM);
|
|
FW(fecp, hash_table_high, hthi);
|
|
FW(fecp, hash_table_low, htlo);
|
|
spin_unlock_irqrestore(&fep->lock, flags);
|
|
}
|
|
|
|
static int fec_set_mac_address(struct net_device *dev, void *addr)
|
|
{
|
|
struct sockaddr *mac = addr;
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
struct fec *fecp = fep->fecp;
|
|
int i;
|
|
__u32 addrhi, addrlo;
|
|
unsigned long flags;
|
|
|
|
/* Get pointer to SCC area in parameter RAM. */
|
|
for (i = 0; i < 6; i++)
|
|
dev->dev_addr[i] = mac->sa_data[i];
|
|
|
|
/*
|
|
* Set station address.
|
|
*/
|
|
addrhi = ((__u32) dev->dev_addr[0] << 24) |
|
|
((__u32) dev->dev_addr[1] << 16) |
|
|
((__u32) dev->dev_addr[2] << 8) |
|
|
(__u32) dev->dev_addr[3];
|
|
addrlo = ((__u32) dev->dev_addr[4] << 24) |
|
|
((__u32) dev->dev_addr[5] << 16);
|
|
|
|
spin_lock_irqsave(&fep->lock, flags);
|
|
FW(fecp, addr_low, addrhi);
|
|
FW(fecp, addr_high, addrlo);
|
|
spin_unlock_irqrestore(&fep->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function is called to start or restart the FEC during a link
|
|
* change. This only happens when switching between half and full
|
|
* duplex.
|
|
*/
|
|
void fec_restart(struct net_device *dev, int duplex, int speed)
|
|
{
|
|
#ifdef CONFIG_DUET
|
|
immap_t *immap = (immap_t *) IMAP_ADDR;
|
|
__u32 cptr;
|
|
#endif
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
struct fec *fecp = fep->fecp;
|
|
const struct fec_platform_info *fpi = fep->fpi;
|
|
cbd_t *bdp;
|
|
struct sk_buff *skb;
|
|
int i;
|
|
__u32 addrhi, addrlo;
|
|
|
|
fec_whack_reset(fep->fecp);
|
|
|
|
/*
|
|
* Set station address.
|
|
*/
|
|
addrhi = ((__u32) dev->dev_addr[0] << 24) |
|
|
((__u32) dev->dev_addr[1] << 16) |
|
|
((__u32) dev->dev_addr[2] << 8) |
|
|
(__u32) dev->dev_addr[3];
|
|
addrlo = ((__u32) dev->dev_addr[4] << 24) |
|
|
((__u32) dev->dev_addr[5] << 16);
|
|
FW(fecp, addr_low, addrhi);
|
|
FW(fecp, addr_high, addrlo);
|
|
|
|
/*
|
|
* Reset all multicast.
|
|
*/
|
|
FW(fecp, hash_table_high, 0);
|
|
FW(fecp, hash_table_low, 0);
|
|
|
|
/*
|
|
* Set maximum receive buffer size.
|
|
*/
|
|
FW(fecp, r_buff_size, PKT_MAXBLR_SIZE);
|
|
FW(fecp, r_hash, PKT_MAXBUF_SIZE);
|
|
|
|
/*
|
|
* Set receive and transmit descriptor base.
|
|
*/
|
|
FW(fecp, r_des_start, iopa((__u32) (fep->rx_bd_base)));
|
|
FW(fecp, x_des_start, iopa((__u32) (fep->tx_bd_base)));
|
|
|
|
fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
|
|
fep->tx_free = fep->tx_ring;
|
|
fep->cur_rx = fep->rx_bd_base;
|
|
|
|
/*
|
|
* Reset SKB receive buffers
|
|
*/
|
|
for (i = 0; i < fep->rx_ring; i++) {
|
|
if ((skb = fep->rx_skbuff[i]) == NULL)
|
|
continue;
|
|
fep->rx_skbuff[i] = NULL;
|
|
dev_kfree_skb(skb);
|
|
}
|
|
|
|
/*
|
|
* Initialize the receive buffer descriptors.
|
|
*/
|
|
for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
|
|
skb = dev_alloc_skb(ENET_RX_FRSIZE);
|
|
if (skb == NULL) {
|
|
printk(KERN_WARNING DRV_MODULE_NAME
|
|
": %s Memory squeeze, unable to allocate skb\n",
|
|
dev->name);
|
|
fep->stats.rx_dropped++;
|
|
break;
|
|
}
|
|
fep->rx_skbuff[i] = skb;
|
|
skb->dev = dev;
|
|
CBDW_BUFADDR(bdp, dma_map_single(NULL, skb->data,
|
|
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
|
|
DMA_FROM_DEVICE));
|
|
CBDW_DATLEN(bdp, 0); /* zero */
|
|
CBDW_SC(bdp, BD_ENET_RX_EMPTY |
|
|
((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
|
|
}
|
|
/*
|
|
* if we failed, fillup remainder
|
|
*/
|
|
for (; i < fep->rx_ring; i++, bdp++) {
|
|
fep->rx_skbuff[i] = NULL;
|
|
CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
|
|
}
|
|
|
|
/*
|
|
* Reset SKB transmit buffers.
|
|
*/
|
|
for (i = 0; i < fep->tx_ring; i++) {
|
|
if ((skb = fep->tx_skbuff[i]) == NULL)
|
|
continue;
|
|
fep->tx_skbuff[i] = NULL;
|
|
dev_kfree_skb(skb);
|
|
}
|
|
|
|
/*
|
|
* ...and the same for transmit.
|
|
*/
|
|
for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
|
|
fep->tx_skbuff[i] = NULL;
|
|
CBDW_BUFADDR(bdp, virt_to_bus(NULL));
|
|
CBDW_DATLEN(bdp, 0);
|
|
CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
|
|
}
|
|
|
|
/*
|
|
* Enable big endian and don't care about SDMA FC.
|
|
*/
|
|
FW(fecp, fun_code, 0x78000000);
|
|
|
|
/*
|
|
* Set MII speed.
|
|
*/
|
|
FW(fecp, mii_speed, fep->fec_phy_speed);
|
|
|
|
/*
|
|
* Clear any outstanding interrupt.
|
|
*/
|
|
FW(fecp, ievent, 0xffc0);
|
|
FW(fecp, ivec, (fpi->fec_irq / 2) << 29);
|
|
|
|
/*
|
|
* adjust to speed (only for DUET & RMII)
|
|
*/
|
|
#ifdef CONFIG_DUET
|
|
cptr = in_be32(&immap->im_cpm.cp_cptr);
|
|
switch (fpi->fec_no) {
|
|
case 0:
|
|
/*
|
|
* check if in RMII mode
|
|
*/
|
|
if ((cptr & 0x100) == 0)
|
|
break;
|
|
|
|
if (speed == 10)
|
|
cptr |= 0x0000010;
|
|
else if (speed == 100)
|
|
cptr &= ~0x0000010;
|
|
break;
|
|
case 1:
|
|
/*
|
|
* check if in RMII mode
|
|
*/
|
|
if ((cptr & 0x80) == 0)
|
|
break;
|
|
|
|
if (speed == 10)
|
|
cptr |= 0x0000008;
|
|
else if (speed == 100)
|
|
cptr &= ~0x0000008;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
out_be32(&immap->im_cpm.cp_cptr, cptr);
|
|
#endif
|
|
|
|
FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */
|
|
/*
|
|
* adjust to duplex mode
|
|
*/
|
|
if (duplex) {
|
|
FC(fecp, r_cntrl, FEC_RCNTRL_DRT);
|
|
FS(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD enable */
|
|
} else {
|
|
FS(fecp, r_cntrl, FEC_RCNTRL_DRT);
|
|
FC(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD disable */
|
|
}
|
|
|
|
/*
|
|
* Enable interrupts we wish to service.
|
|
*/
|
|
FW(fecp, imask, FEC_ENET_TXF | FEC_ENET_TXB |
|
|
FEC_ENET_RXF | FEC_ENET_RXB);
|
|
|
|
/*
|
|
* And last, enable the transmit and receive processing.
|
|
*/
|
|
FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
|
|
FW(fecp, r_des_active, 0x01000000);
|
|
}
|
|
|
|
void fec_stop(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
fec_t *fecp = fep->fecp;
|
|
struct sk_buff *skb;
|
|
int i;
|
|
|
|
if ((FR(fecp, ecntrl) & FEC_ECNTRL_ETHER_EN) == 0)
|
|
return; /* already down */
|
|
|
|
FW(fecp, x_cntrl, 0x01); /* Graceful transmit stop */
|
|
for (i = 0; ((FR(fecp, ievent) & 0x10000000) == 0) &&
|
|
i < FEC_RESET_DELAY; i++)
|
|
udelay(1);
|
|
|
|
if (i == FEC_RESET_DELAY)
|
|
printk(KERN_WARNING DRV_MODULE_NAME
|
|
": %s FEC timeout on graceful transmit stop\n",
|
|
dev->name);
|
|
/*
|
|
* Disable FEC. Let only MII interrupts.
|
|
*/
|
|
FW(fecp, imask, 0);
|
|
FW(fecp, ecntrl, ~FEC_ECNTRL_ETHER_EN);
|
|
|
|
/*
|
|
* Reset SKB transmit buffers.
|
|
*/
|
|
for (i = 0; i < fep->tx_ring; i++) {
|
|
if ((skb = fep->tx_skbuff[i]) == NULL)
|
|
continue;
|
|
fep->tx_skbuff[i] = NULL;
|
|
dev_kfree_skb(skb);
|
|
}
|
|
|
|
/*
|
|
* Reset SKB receive buffers
|
|
*/
|
|
for (i = 0; i < fep->rx_ring; i++) {
|
|
if ((skb = fep->rx_skbuff[i]) == NULL)
|
|
continue;
|
|
fep->rx_skbuff[i] = NULL;
|
|
dev_kfree_skb(skb);
|
|
}
|
|
}
|
|
|
|
/* common receive function */
|
|
static int fec_enet_rx_common(struct net_device *dev, int *budget)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
fec_t *fecp = fep->fecp;
|
|
const struct fec_platform_info *fpi = fep->fpi;
|
|
cbd_t *bdp;
|
|
struct sk_buff *skb, *skbn, *skbt;
|
|
int received = 0;
|
|
__u16 pkt_len, sc;
|
|
int curidx;
|
|
int rx_work_limit;
|
|
|
|
if (fpi->use_napi) {
|
|
rx_work_limit = min(dev->quota, *budget);
|
|
|
|
if (!netif_running(dev))
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* First, grab all of the stats for the incoming packet.
|
|
* These get messed up if we get called due to a busy condition.
|
|
*/
|
|
bdp = fep->cur_rx;
|
|
|
|
/* clear RX status bits for napi*/
|
|
if (fpi->use_napi)
|
|
FW(fecp, ievent, FEC_ENET_RXF | FEC_ENET_RXB);
|
|
|
|
while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
|
|
|
|
curidx = bdp - fep->rx_bd_base;
|
|
|
|
/*
|
|
* Since we have allocated space to hold a complete frame,
|
|
* the last indicator should be set.
|
|
*/
|
|
if ((sc & BD_ENET_RX_LAST) == 0)
|
|
printk(KERN_WARNING DRV_MODULE_NAME
|
|
": %s rcv is not +last\n",
|
|
dev->name);
|
|
|
|
/*
|
|
* Check for errors.
|
|
*/
|
|
if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
|
|
BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
|
|
fep->stats.rx_errors++;
|
|
/* Frame too long or too short. */
|
|
if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
|
|
fep->stats.rx_length_errors++;
|
|
/* Frame alignment */
|
|
if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
|
|
fep->stats.rx_frame_errors++;
|
|
/* CRC Error */
|
|
if (sc & BD_ENET_RX_CR)
|
|
fep->stats.rx_crc_errors++;
|
|
/* FIFO overrun */
|
|
if (sc & BD_ENET_RX_OV)
|
|
fep->stats.rx_crc_errors++;
|
|
|
|
skbn = fep->rx_skbuff[curidx];
|
|
BUG_ON(skbn == NULL);
|
|
|
|
} else {
|
|
|
|
/* napi, got packet but no quota */
|
|
if (fpi->use_napi && --rx_work_limit < 0)
|
|
break;
|
|
|
|
skb = fep->rx_skbuff[curidx];
|
|
BUG_ON(skb == NULL);
|
|
|
|
/*
|
|
* Process the incoming frame.
|
|
*/
|
|
fep->stats.rx_packets++;
|
|
pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
|
|
fep->stats.rx_bytes += pkt_len + 4;
|
|
|
|
if (pkt_len <= fpi->rx_copybreak) {
|
|
/* +2 to make IP header L1 cache aligned */
|
|
skbn = dev_alloc_skb(pkt_len + 2);
|
|
if (skbn != NULL) {
|
|
skb_reserve(skbn, 2); /* align IP header */
|
|
memcpy(skbn->data, skb->data, pkt_len);
|
|
/* swap */
|
|
skbt = skb;
|
|
skb = skbn;
|
|
skbn = skbt;
|
|
}
|
|
} else
|
|
skbn = dev_alloc_skb(ENET_RX_FRSIZE);
|
|
|
|
if (skbn != NULL) {
|
|
skb->dev = dev;
|
|
skb_put(skb, pkt_len); /* Make room */
|
|
skb->protocol = eth_type_trans(skb, dev);
|
|
received++;
|
|
if (!fpi->use_napi)
|
|
netif_rx(skb);
|
|
else
|
|
netif_receive_skb(skb);
|
|
} else {
|
|
printk(KERN_WARNING DRV_MODULE_NAME
|
|
": %s Memory squeeze, dropping packet.\n",
|
|
dev->name);
|
|
fep->stats.rx_dropped++;
|
|
skbn = skb;
|
|
}
|
|
}
|
|
|
|
fep->rx_skbuff[curidx] = skbn;
|
|
CBDW_BUFADDR(bdp, dma_map_single(NULL, skbn->data,
|
|
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
|
|
DMA_FROM_DEVICE));
|
|
CBDW_DATLEN(bdp, 0);
|
|
CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
|
|
|
|
/*
|
|
* Update BD pointer to next entry.
|
|
*/
|
|
if ((sc & BD_ENET_RX_WRAP) == 0)
|
|
bdp++;
|
|
else
|
|
bdp = fep->rx_bd_base;
|
|
|
|
/*
|
|
* Doing this here will keep the FEC running while we process
|
|
* incoming frames. On a heavily loaded network, we should be
|
|
* able to keep up at the expense of system resources.
|
|
*/
|
|
FW(fecp, r_des_active, 0x01000000);
|
|
}
|
|
|
|
fep->cur_rx = bdp;
|
|
|
|
if (fpi->use_napi) {
|
|
dev->quota -= received;
|
|
*budget -= received;
|
|
|
|
if (rx_work_limit < 0)
|
|
return 1; /* not done */
|
|
|
|
/* done */
|
|
netif_rx_complete(dev);
|
|
|
|
/* enable RX interrupt bits */
|
|
FS(fecp, imask, FEC_ENET_RXF | FEC_ENET_RXB);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fec_enet_tx(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
cbd_t *bdp;
|
|
struct sk_buff *skb;
|
|
int dirtyidx, do_wake;
|
|
__u16 sc;
|
|
|
|
spin_lock(&fep->lock);
|
|
bdp = fep->dirty_tx;
|
|
|
|
do_wake = 0;
|
|
while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
|
|
|
|
dirtyidx = bdp - fep->tx_bd_base;
|
|
|
|
if (fep->tx_free == fep->tx_ring)
|
|
break;
|
|
|
|
skb = fep->tx_skbuff[dirtyidx];
|
|
|
|
/*
|
|
* Check for errors.
|
|
*/
|
|
if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
|
|
BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
|
|
fep->stats.tx_errors++;
|
|
if (sc & BD_ENET_TX_HB) /* No heartbeat */
|
|
fep->stats.tx_heartbeat_errors++;
|
|
if (sc & BD_ENET_TX_LC) /* Late collision */
|
|
fep->stats.tx_window_errors++;
|
|
if (sc & BD_ENET_TX_RL) /* Retrans limit */
|
|
fep->stats.tx_aborted_errors++;
|
|
if (sc & BD_ENET_TX_UN) /* Underrun */
|
|
fep->stats.tx_fifo_errors++;
|
|
if (sc & BD_ENET_TX_CSL) /* Carrier lost */
|
|
fep->stats.tx_carrier_errors++;
|
|
} else
|
|
fep->stats.tx_packets++;
|
|
|
|
if (sc & BD_ENET_TX_READY)
|
|
printk(KERN_WARNING DRV_MODULE_NAME
|
|
": %s HEY! Enet xmit interrupt and TX_READY.\n",
|
|
dev->name);
|
|
|
|
/*
|
|
* Deferred means some collisions occurred during transmit,
|
|
* but we eventually sent the packet OK.
|
|
*/
|
|
if (sc & BD_ENET_TX_DEF)
|
|
fep->stats.collisions++;
|
|
|
|
/*
|
|
* Free the sk buffer associated with this last transmit.
|
|
*/
|
|
dev_kfree_skb_irq(skb);
|
|
fep->tx_skbuff[dirtyidx] = NULL;
|
|
|
|
/*
|
|
* Update pointer to next buffer descriptor to be transmitted.
|
|
*/
|
|
if ((sc & BD_ENET_TX_WRAP) == 0)
|
|
bdp++;
|
|
else
|
|
bdp = fep->tx_bd_base;
|
|
|
|
/*
|
|
* Since we have freed up a buffer, the ring is no longer
|
|
* full.
|
|
*/
|
|
if (!fep->tx_free++)
|
|
do_wake = 1;
|
|
}
|
|
|
|
fep->dirty_tx = bdp;
|
|
|
|
spin_unlock(&fep->lock);
|
|
|
|
if (do_wake && netif_queue_stopped(dev))
|
|
netif_wake_queue(dev);
|
|
}
|
|
|
|
/*
|
|
* The interrupt handler.
|
|
* This is called from the MPC core interrupt.
|
|
*/
|
|
static irqreturn_t
|
|
fec_enet_interrupt(int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
struct net_device *dev = dev_id;
|
|
struct fec_enet_private *fep;
|
|
const struct fec_platform_info *fpi;
|
|
fec_t *fecp;
|
|
__u32 int_events;
|
|
__u32 int_events_napi;
|
|
|
|
if (unlikely(dev == NULL))
|
|
return IRQ_NONE;
|
|
|
|
fep = netdev_priv(dev);
|
|
fecp = fep->fecp;
|
|
fpi = fep->fpi;
|
|
|
|
/*
|
|
* Get the interrupt events that caused us to be here.
|
|
*/
|
|
while ((int_events = FR(fecp, ievent) & FR(fecp, imask)) != 0) {
|
|
|
|
if (!fpi->use_napi)
|
|
FW(fecp, ievent, int_events);
|
|
else {
|
|
int_events_napi = int_events & ~(FEC_ENET_RXF | FEC_ENET_RXB);
|
|
FW(fecp, ievent, int_events_napi);
|
|
}
|
|
|
|
if ((int_events & (FEC_ENET_HBERR | FEC_ENET_BABR |
|
|
FEC_ENET_BABT | FEC_ENET_EBERR)) != 0)
|
|
printk(KERN_WARNING DRV_MODULE_NAME
|
|
": %s FEC ERROR(s) 0x%x\n",
|
|
dev->name, int_events);
|
|
|
|
if ((int_events & FEC_ENET_RXF) != 0) {
|
|
if (!fpi->use_napi)
|
|
fec_enet_rx_common(dev, NULL);
|
|
else {
|
|
if (netif_rx_schedule_prep(dev)) {
|
|
/* disable rx interrupts */
|
|
FC(fecp, imask, FEC_ENET_RXF | FEC_ENET_RXB);
|
|
__netif_rx_schedule(dev);
|
|
} else {
|
|
printk(KERN_ERR DRV_MODULE_NAME
|
|
": %s driver bug! interrupt while in poll!\n",
|
|
dev->name);
|
|
FC(fecp, imask, FEC_ENET_RXF | FEC_ENET_RXB);
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((int_events & FEC_ENET_TXF) != 0)
|
|
fec_enet_tx(dev);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* This interrupt occurs when the PHY detects a link change. */
|
|
static irqreturn_t
|
|
fec_mii_link_interrupt(int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
struct net_device *dev = dev_id;
|
|
struct fec_enet_private *fep;
|
|
const struct fec_platform_info *fpi;
|
|
|
|
if (unlikely(dev == NULL))
|
|
return IRQ_NONE;
|
|
|
|
fep = netdev_priv(dev);
|
|
fpi = fep->fpi;
|
|
|
|
if (!fpi->use_mdio)
|
|
return IRQ_NONE;
|
|
|
|
/*
|
|
* Acknowledge the interrupt if possible. If we have not
|
|
* found the PHY yet we can't process or acknowledge the
|
|
* interrupt now. Instead we ignore this interrupt for now,
|
|
* which we can do since it is edge triggered. It will be
|
|
* acknowledged later by fec_enet_open().
|
|
*/
|
|
if (!fep->phy)
|
|
return IRQ_NONE;
|
|
|
|
fec_mii_ack_int(dev);
|
|
fec_mii_link_status_change_check(dev, 0);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
|
|
/**********************************************************************************/
|
|
|
|
static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
fec_t *fecp = fep->fecp;
|
|
cbd_t *bdp;
|
|
int curidx;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&fep->tx_lock, flags);
|
|
|
|
/*
|
|
* Fill in a Tx ring entry
|
|
*/
|
|
bdp = fep->cur_tx;
|
|
|
|
if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
|
|
netif_stop_queue(dev);
|
|
spin_unlock_irqrestore(&fep->tx_lock, flags);
|
|
|
|
/*
|
|
* Ooops. All transmit buffers are full. Bail out.
|
|
* This should not happen, since the tx queue should be stopped.
|
|
*/
|
|
printk(KERN_WARNING DRV_MODULE_NAME
|
|
": %s tx queue full!.\n", dev->name);
|
|
return 1;
|
|
}
|
|
|
|
curidx = bdp - fep->tx_bd_base;
|
|
/*
|
|
* Clear all of the status flags.
|
|
*/
|
|
CBDC_SC(bdp, BD_ENET_TX_STATS);
|
|
|
|
/*
|
|
* Save skb pointer.
|
|
*/
|
|
fep->tx_skbuff[curidx] = skb;
|
|
|
|
fep->stats.tx_bytes += skb->len;
|
|
|
|
/*
|
|
* Push the data cache so the CPM does not get stale memory data.
|
|
*/
|
|
CBDW_BUFADDR(bdp, dma_map_single(NULL, skb->data,
|
|
skb->len, DMA_TO_DEVICE));
|
|
CBDW_DATLEN(bdp, skb->len);
|
|
|
|
dev->trans_start = jiffies;
|
|
|
|
/*
|
|
* If this was the last BD in the ring, start at the beginning again.
|
|
*/
|
|
if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
|
|
fep->cur_tx++;
|
|
else
|
|
fep->cur_tx = fep->tx_bd_base;
|
|
|
|
if (!--fep->tx_free)
|
|
netif_stop_queue(dev);
|
|
|
|
/*
|
|
* Trigger transmission start
|
|
*/
|
|
CBDS_SC(bdp, BD_ENET_TX_READY | BD_ENET_TX_INTR |
|
|
BD_ENET_TX_LAST | BD_ENET_TX_TC);
|
|
FW(fecp, x_des_active, 0x01000000);
|
|
|
|
spin_unlock_irqrestore(&fep->tx_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fec_timeout(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
|
|
fep->stats.tx_errors++;
|
|
|
|
if (fep->tx_free)
|
|
netif_wake_queue(dev);
|
|
|
|
/* check link status again */
|
|
fec_mii_link_status_change_check(dev, 0);
|
|
}
|
|
|
|
static int fec_enet_open(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
const struct fec_platform_info *fpi = fep->fpi;
|
|
unsigned long flags;
|
|
|
|
/* Install our interrupt handler. */
|
|
if (request_irq(fpi->fec_irq, fec_enet_interrupt, 0, "fec", dev) != 0) {
|
|
printk(KERN_ERR DRV_MODULE_NAME
|
|
": %s Could not allocate FEC IRQ!", dev->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Install our phy interrupt handler */
|
|
if (fpi->phy_irq != -1 &&
|
|
request_irq(fpi->phy_irq, fec_mii_link_interrupt, 0, "fec-phy",
|
|
dev) != 0) {
|
|
printk(KERN_ERR DRV_MODULE_NAME
|
|
": %s Could not allocate PHY IRQ!", dev->name);
|
|
free_irq(fpi->fec_irq, dev);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (fpi->use_mdio) {
|
|
fec_mii_startup(dev);
|
|
netif_carrier_off(dev);
|
|
fec_mii_link_status_change_check(dev, 1);
|
|
} else {
|
|
spin_lock_irqsave(&fep->lock, flags);
|
|
fec_restart(dev, 1, 100); /* XXX this sucks */
|
|
spin_unlock_irqrestore(&fep->lock, flags);
|
|
|
|
netif_carrier_on(dev);
|
|
netif_start_queue(dev);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int fec_enet_close(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
const struct fec_platform_info *fpi = fep->fpi;
|
|
unsigned long flags;
|
|
|
|
netif_stop_queue(dev);
|
|
netif_carrier_off(dev);
|
|
|
|
if (fpi->use_mdio)
|
|
fec_mii_shutdown(dev);
|
|
|
|
spin_lock_irqsave(&fep->lock, flags);
|
|
fec_stop(dev);
|
|
spin_unlock_irqrestore(&fep->lock, flags);
|
|
|
|
/* release any irqs */
|
|
if (fpi->phy_irq != -1)
|
|
free_irq(fpi->phy_irq, dev);
|
|
free_irq(fpi->fec_irq, dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
return &fep->stats;
|
|
}
|
|
|
|
static int fec_enet_poll(struct net_device *dev, int *budget)
|
|
{
|
|
return fec_enet_rx_common(dev, budget);
|
|
}
|
|
|
|
/*************************************************************************/
|
|
|
|
static void fec_get_drvinfo(struct net_device *dev,
|
|
struct ethtool_drvinfo *info)
|
|
{
|
|
strcpy(info->driver, DRV_MODULE_NAME);
|
|
strcpy(info->version, DRV_MODULE_VERSION);
|
|
}
|
|
|
|
static int fec_get_regs_len(struct net_device *dev)
|
|
{
|
|
return sizeof(fec_t);
|
|
}
|
|
|
|
static void fec_get_regs(struct net_device *dev, struct ethtool_regs *regs,
|
|
void *p)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
unsigned long flags;
|
|
|
|
if (regs->len < sizeof(fec_t))
|
|
return;
|
|
|
|
regs->version = 0;
|
|
spin_lock_irqsave(&fep->lock, flags);
|
|
memcpy_fromio(p, fep->fecp, sizeof(fec_t));
|
|
spin_unlock_irqrestore(&fep->lock, flags);
|
|
}
|
|
|
|
static int fec_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
unsigned long flags;
|
|
int rc;
|
|
|
|
spin_lock_irqsave(&fep->lock, flags);
|
|
rc = mii_ethtool_gset(&fep->mii_if, cmd);
|
|
spin_unlock_irqrestore(&fep->lock, flags);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int fec_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
unsigned long flags;
|
|
int rc;
|
|
|
|
spin_lock_irqsave(&fep->lock, flags);
|
|
rc = mii_ethtool_sset(&fep->mii_if, cmd);
|
|
spin_unlock_irqrestore(&fep->lock, flags);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int fec_nway_reset(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
return mii_nway_restart(&fep->mii_if);
|
|
}
|
|
|
|
static __u32 fec_get_msglevel(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
return fep->msg_enable;
|
|
}
|
|
|
|
static void fec_set_msglevel(struct net_device *dev, __u32 value)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
fep->msg_enable = value;
|
|
}
|
|
|
|
static struct ethtool_ops fec_ethtool_ops = {
|
|
.get_drvinfo = fec_get_drvinfo,
|
|
.get_regs_len = fec_get_regs_len,
|
|
.get_settings = fec_get_settings,
|
|
.set_settings = fec_set_settings,
|
|
.nway_reset = fec_nway_reset,
|
|
.get_link = ethtool_op_get_link,
|
|
.get_msglevel = fec_get_msglevel,
|
|
.set_msglevel = fec_set_msglevel,
|
|
.get_tx_csum = ethtool_op_get_tx_csum,
|
|
.set_tx_csum = ethtool_op_set_tx_csum, /* local! */
|
|
.get_sg = ethtool_op_get_sg,
|
|
.set_sg = ethtool_op_set_sg,
|
|
.get_regs = fec_get_regs,
|
|
};
|
|
|
|
static int fec_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
|
|
unsigned long flags;
|
|
int rc;
|
|
|
|
if (!netif_running(dev))
|
|
return -EINVAL;
|
|
|
|
spin_lock_irqsave(&fep->lock, flags);
|
|
rc = generic_mii_ioctl(&fep->mii_if, mii, cmd, NULL);
|
|
spin_unlock_irqrestore(&fep->lock, flags);
|
|
return rc;
|
|
}
|
|
|
|
int fec_8xx_init_one(const struct fec_platform_info *fpi,
|
|
struct net_device **devp)
|
|
{
|
|
immap_t *immap = (immap_t *) IMAP_ADDR;
|
|
static int fec_8xx_version_printed = 0;
|
|
struct net_device *dev = NULL;
|
|
struct fec_enet_private *fep = NULL;
|
|
fec_t *fecp = NULL;
|
|
int i;
|
|
int err = 0;
|
|
int registered = 0;
|
|
__u32 siel;
|
|
|
|
*devp = NULL;
|
|
|
|
switch (fpi->fec_no) {
|
|
case 0:
|
|
fecp = &((immap_t *) IMAP_ADDR)->im_cpm.cp_fec;
|
|
break;
|
|
#ifdef CONFIG_DUET
|
|
case 1:
|
|
fecp = &((immap_t *) IMAP_ADDR)->im_cpm.cp_fec2;
|
|
break;
|
|
#endif
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (fec_8xx_version_printed++ == 0)
|
|
printk(KERN_INFO "%s", version);
|
|
|
|
i = sizeof(*fep) + (sizeof(struct sk_buff **) *
|
|
(fpi->rx_ring + fpi->tx_ring));
|
|
|
|
dev = alloc_etherdev(i);
|
|
if (!dev) {
|
|
err = -ENOMEM;
|
|
goto err;
|
|
}
|
|
SET_MODULE_OWNER(dev);
|
|
|
|
fep = netdev_priv(dev);
|
|
|
|
/* partial reset of FEC */
|
|
fec_whack_reset(fecp);
|
|
|
|
/* point rx_skbuff, tx_skbuff */
|
|
fep->rx_skbuff = (struct sk_buff **)&fep[1];
|
|
fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
|
|
|
|
fep->fecp = fecp;
|
|
fep->fpi = fpi;
|
|
|
|
/* init locks */
|
|
spin_lock_init(&fep->lock);
|
|
spin_lock_init(&fep->tx_lock);
|
|
|
|
/*
|
|
* Set the Ethernet address.
|
|
*/
|
|
for (i = 0; i < 6; i++)
|
|
dev->dev_addr[i] = fpi->macaddr[i];
|
|
|
|
fep->ring_base = dma_alloc_coherent(NULL,
|
|
(fpi->tx_ring + fpi->rx_ring) *
|
|
sizeof(cbd_t), &fep->ring_mem_addr,
|
|
GFP_KERNEL);
|
|
if (fep->ring_base == NULL) {
|
|
printk(KERN_ERR DRV_MODULE_NAME
|
|
": %s dma alloc failed.\n", dev->name);
|
|
err = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Set receive and transmit descriptor base.
|
|
*/
|
|
fep->rx_bd_base = fep->ring_base;
|
|
fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
|
|
|
|
/* initialize ring size variables */
|
|
fep->tx_ring = fpi->tx_ring;
|
|
fep->rx_ring = fpi->rx_ring;
|
|
|
|
/* SIU interrupt */
|
|
if (fpi->phy_irq != -1 &&
|
|
(fpi->phy_irq >= SIU_IRQ0 && fpi->phy_irq < SIU_LEVEL7)) {
|
|
|
|
siel = in_be32(&immap->im_siu_conf.sc_siel);
|
|
if ((fpi->phy_irq & 1) == 0)
|
|
siel |= (0x80000000 >> fpi->phy_irq);
|
|
else
|
|
siel &= ~(0x80000000 >> (fpi->phy_irq & ~1));
|
|
out_be32(&immap->im_siu_conf.sc_siel, siel);
|
|
}
|
|
|
|
/*
|
|
* The FEC Ethernet specific entries in the device structure.
|
|
*/
|
|
dev->open = fec_enet_open;
|
|
dev->hard_start_xmit = fec_enet_start_xmit;
|
|
dev->tx_timeout = fec_timeout;
|
|
dev->watchdog_timeo = TX_TIMEOUT;
|
|
dev->stop = fec_enet_close;
|
|
dev->get_stats = fec_enet_get_stats;
|
|
dev->set_multicast_list = fec_set_multicast_list;
|
|
dev->set_mac_address = fec_set_mac_address;
|
|
if (fpi->use_napi) {
|
|
dev->poll = fec_enet_poll;
|
|
dev->weight = fpi->napi_weight;
|
|
}
|
|
dev->ethtool_ops = &fec_ethtool_ops;
|
|
dev->do_ioctl = fec_ioctl;
|
|
|
|
fep->fec_phy_speed =
|
|
((((fpi->sys_clk + 4999999) / 2500000) / 2) & 0x3F) << 1;
|
|
|
|
init_timer(&fep->phy_timer_list);
|
|
|
|
/* partial reset of FEC so that only MII works */
|
|
FW(fecp, mii_speed, fep->fec_phy_speed);
|
|
FW(fecp, ievent, 0xffc0);
|
|
FW(fecp, ivec, (fpi->fec_irq / 2) << 29);
|
|
FW(fecp, imask, 0);
|
|
FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */
|
|
FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
|
|
|
|
netif_carrier_off(dev);
|
|
|
|
err = register_netdev(dev);
|
|
if (err != 0)
|
|
goto err;
|
|
registered = 1;
|
|
|
|
if (fpi->use_mdio) {
|
|
fep->mii_if.dev = dev;
|
|
fep->mii_if.mdio_read = fec_mii_read;
|
|
fep->mii_if.mdio_write = fec_mii_write;
|
|
fep->mii_if.phy_id_mask = 0x1f;
|
|
fep->mii_if.reg_num_mask = 0x1f;
|
|
fep->mii_if.phy_id = fec_mii_phy_id_detect(dev);
|
|
}
|
|
|
|
*devp = dev;
|
|
|
|
return 0;
|
|
|
|
err:
|
|
if (dev != NULL) {
|
|
if (fecp != NULL)
|
|
fec_whack_reset(fecp);
|
|
|
|
if (registered)
|
|
unregister_netdev(dev);
|
|
|
|
if (fep != NULL) {
|
|
if (fep->ring_base)
|
|
dma_free_coherent(NULL,
|
|
(fpi->tx_ring +
|
|
fpi->rx_ring) *
|
|
sizeof(cbd_t), fep->ring_base,
|
|
fep->ring_mem_addr);
|
|
}
|
|
free_netdev(dev);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
int fec_8xx_cleanup_one(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
fec_t *fecp = fep->fecp;
|
|
const struct fec_platform_info *fpi = fep->fpi;
|
|
|
|
fec_whack_reset(fecp);
|
|
|
|
unregister_netdev(dev);
|
|
|
|
dma_free_coherent(NULL, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
|
|
fep->ring_base, fep->ring_mem_addr);
|
|
|
|
free_netdev(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**************************************************************************************/
|
|
/**************************************************************************************/
|
|
/**************************************************************************************/
|
|
|
|
static int __init fec_8xx_init(void)
|
|
{
|
|
return fec_8xx_platform_init();
|
|
}
|
|
|
|
static void __exit fec_8xx_cleanup(void)
|
|
{
|
|
fec_8xx_platform_cleanup();
|
|
}
|
|
|
|
/**************************************************************************************/
|
|
/**************************************************************************************/
|
|
/**************************************************************************************/
|
|
|
|
module_init(fec_8xx_init);
|
|
module_exit(fec_8xx_cleanup);
|