mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-09 22:24:04 +08:00
8f2af155b5
Patch series "exec: Pin stack limit during exec". Attempts to solve problems with the stack limit changing during exec continue to be frustrated[1][2]. In addition to the specific issues around the Stack Clash family of flaws, Andy Lutomirski pointed out[3] other places during exec where the stack limit is used and is assumed to be unchanging. Given the many places it gets used and the fact that it can be manipulated/raced via setrlimit() and prlimit(), I think the only way to handle this is to move away from the "current" view of the stack limit and instead attach it to the bprm, and plumb this down into the functions that need to know the stack limits. This series implements the approach. [1]04e35f4495
("exec: avoid RLIMIT_STACK races with prlimit()") [2]779f4e1c6c
("Revert "exec: avoid RLIMIT_STACK races with prlimit()"") [3] to security@kernel.org, "Subject: existing rlimit races?" This patch (of 3): Since it is possible that the stack rlimit can change externally during exec (either via another thread calling setrlimit() or another process calling prlimit()), provide a way to pass the rlimit down into the per-architecture mm layout functions so that the rlimit can stay in the bprm structure instead of sitting in the signal structure until exec is finalized. Link: http://lkml.kernel.org/r/1518638796-20819-2-git-send-email-keescook@chromium.org Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Willy Tarreau <w@1wt.eu> Cc: Hugh Dickins <hughd@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: "Jason A. Donenfeld" <Jason@zx2c4.com> Cc: Rik van Riel <riel@redhat.com> Cc: Laura Abbott <labbott@redhat.com> Cc: Greg KH <greg@kroah.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ben Hutchings <ben.hutchings@codethink.co.uk> Cc: Brad Spengler <spender@grsecurity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
243 lines
6.2 KiB
C
243 lines
6.2 KiB
C
/*
|
|
* flexible mmap layout support
|
|
*
|
|
* Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
*
|
|
* Started by Ingo Molnar <mingo@elte.hu>
|
|
*/
|
|
|
|
#include <linux/personality.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/random.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/elf-randomize.h>
|
|
#include <linux/security.h>
|
|
#include <linux/mman.h>
|
|
|
|
/*
|
|
* Top of mmap area (just below the process stack).
|
|
*
|
|
* Leave at least a ~128 MB hole.
|
|
*/
|
|
#define MIN_GAP (128*1024*1024)
|
|
#define MAX_GAP (TASK_SIZE/6*5)
|
|
|
|
static inline int mmap_is_legacy(struct rlimit *rlim_stack)
|
|
{
|
|
if (current->personality & ADDR_COMPAT_LAYOUT)
|
|
return 1;
|
|
|
|
if (rlim_stack->rlim_cur == RLIM_INFINITY)
|
|
return 1;
|
|
|
|
return sysctl_legacy_va_layout;
|
|
}
|
|
|
|
unsigned long arch_mmap_rnd(void)
|
|
{
|
|
unsigned long shift, rnd;
|
|
|
|
shift = mmap_rnd_bits;
|
|
#ifdef CONFIG_COMPAT
|
|
if (is_32bit_task())
|
|
shift = mmap_rnd_compat_bits;
|
|
#endif
|
|
rnd = get_random_long() % (1ul << shift);
|
|
|
|
return rnd << PAGE_SHIFT;
|
|
}
|
|
|
|
static inline unsigned long stack_maxrandom_size(void)
|
|
{
|
|
if (!(current->flags & PF_RANDOMIZE))
|
|
return 0;
|
|
|
|
/* 8MB for 32bit, 1GB for 64bit */
|
|
if (is_32bit_task())
|
|
return (1<<23);
|
|
else
|
|
return (1<<30);
|
|
}
|
|
|
|
static inline unsigned long mmap_base(unsigned long rnd,
|
|
struct rlimit *rlim_stack)
|
|
{
|
|
unsigned long gap = rlim_stack->rlim_cur;
|
|
unsigned long pad = stack_maxrandom_size() + stack_guard_gap;
|
|
|
|
/* Values close to RLIM_INFINITY can overflow. */
|
|
if (gap + pad > gap)
|
|
gap += pad;
|
|
|
|
if (gap < MIN_GAP)
|
|
gap = MIN_GAP;
|
|
else if (gap > MAX_GAP)
|
|
gap = MAX_GAP;
|
|
|
|
return PAGE_ALIGN(DEFAULT_MAP_WINDOW - gap - rnd);
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_RADIX_MMU
|
|
/*
|
|
* Same function as generic code used only for radix, because we don't need to overload
|
|
* the generic one. But we will have to duplicate, because hash select
|
|
* HAVE_ARCH_UNMAPPED_AREA
|
|
*/
|
|
static unsigned long
|
|
radix__arch_get_unmapped_area(struct file *filp, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff,
|
|
unsigned long flags)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *vma;
|
|
int fixed = (flags & MAP_FIXED);
|
|
unsigned long high_limit;
|
|
struct vm_unmapped_area_info info;
|
|
|
|
high_limit = DEFAULT_MAP_WINDOW;
|
|
if (addr >= high_limit || (fixed && (addr + len > high_limit)))
|
|
high_limit = TASK_SIZE;
|
|
|
|
if (len > high_limit)
|
|
return -ENOMEM;
|
|
|
|
if (fixed) {
|
|
if (addr > high_limit - len)
|
|
return -ENOMEM;
|
|
return addr;
|
|
}
|
|
|
|
if (addr) {
|
|
addr = PAGE_ALIGN(addr);
|
|
vma = find_vma(mm, addr);
|
|
if (high_limit - len >= addr && addr >= mmap_min_addr &&
|
|
(!vma || addr + len <= vm_start_gap(vma)))
|
|
return addr;
|
|
}
|
|
|
|
info.flags = 0;
|
|
info.length = len;
|
|
info.low_limit = mm->mmap_base;
|
|
info.high_limit = high_limit;
|
|
info.align_mask = 0;
|
|
|
|
return vm_unmapped_area(&info);
|
|
}
|
|
|
|
static unsigned long
|
|
radix__arch_get_unmapped_area_topdown(struct file *filp,
|
|
const unsigned long addr0,
|
|
const unsigned long len,
|
|
const unsigned long pgoff,
|
|
const unsigned long flags)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long addr = addr0;
|
|
int fixed = (flags & MAP_FIXED);
|
|
unsigned long high_limit;
|
|
struct vm_unmapped_area_info info;
|
|
|
|
high_limit = DEFAULT_MAP_WINDOW;
|
|
if (addr >= high_limit || (fixed && (addr + len > high_limit)))
|
|
high_limit = TASK_SIZE;
|
|
|
|
if (len > high_limit)
|
|
return -ENOMEM;
|
|
|
|
if (fixed) {
|
|
if (addr > high_limit - len)
|
|
return -ENOMEM;
|
|
return addr;
|
|
}
|
|
|
|
if (addr) {
|
|
addr = PAGE_ALIGN(addr);
|
|
vma = find_vma(mm, addr);
|
|
if (high_limit - len >= addr && addr >= mmap_min_addr &&
|
|
(!vma || addr + len <= vm_start_gap(vma)))
|
|
return addr;
|
|
}
|
|
|
|
info.flags = VM_UNMAPPED_AREA_TOPDOWN;
|
|
info.length = len;
|
|
info.low_limit = max(PAGE_SIZE, mmap_min_addr);
|
|
info.high_limit = mm->mmap_base + (high_limit - DEFAULT_MAP_WINDOW);
|
|
info.align_mask = 0;
|
|
|
|
addr = vm_unmapped_area(&info);
|
|
if (!(addr & ~PAGE_MASK))
|
|
return addr;
|
|
VM_BUG_ON(addr != -ENOMEM);
|
|
|
|
/*
|
|
* A failed mmap() very likely causes application failure,
|
|
* so fall back to the bottom-up function here. This scenario
|
|
* can happen with large stack limits and large mmap()
|
|
* allocations.
|
|
*/
|
|
return radix__arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
|
|
}
|
|
|
|
static void radix__arch_pick_mmap_layout(struct mm_struct *mm,
|
|
unsigned long random_factor,
|
|
struct rlimit *rlim_stack)
|
|
{
|
|
if (mmap_is_legacy(rlim_stack)) {
|
|
mm->mmap_base = TASK_UNMAPPED_BASE;
|
|
mm->get_unmapped_area = radix__arch_get_unmapped_area;
|
|
} else {
|
|
mm->mmap_base = mmap_base(random_factor, rlim_stack);
|
|
mm->get_unmapped_area = radix__arch_get_unmapped_area_topdown;
|
|
}
|
|
}
|
|
#else
|
|
/* dummy */
|
|
extern void radix__arch_pick_mmap_layout(struct mm_struct *mm,
|
|
unsigned long random_factor,
|
|
struct rlimit *rlim_stack);
|
|
#endif
|
|
/*
|
|
* This function, called very early during the creation of a new
|
|
* process VM image, sets up which VM layout function to use:
|
|
*/
|
|
void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
|
|
{
|
|
unsigned long random_factor = 0UL;
|
|
|
|
if (current->flags & PF_RANDOMIZE)
|
|
random_factor = arch_mmap_rnd();
|
|
|
|
if (radix_enabled())
|
|
return radix__arch_pick_mmap_layout(mm, random_factor,
|
|
rlim_stack);
|
|
/*
|
|
* Fall back to the standard layout if the personality
|
|
* bit is set, or if the expected stack growth is unlimited:
|
|
*/
|
|
if (mmap_is_legacy(rlim_stack)) {
|
|
mm->mmap_base = TASK_UNMAPPED_BASE;
|
|
mm->get_unmapped_area = arch_get_unmapped_area;
|
|
} else {
|
|
mm->mmap_base = mmap_base(random_factor, rlim_stack);
|
|
mm->get_unmapped_area = arch_get_unmapped_area_topdown;
|
|
}
|
|
}
|