2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-22 20:43:56 +08:00
linux-next/fs/namei.c
Kees Cook fc4177be96 exec: restore EACCES of S_ISDIR execve()
Patch series "Fix S_ISDIR execve() errno".

Fix an errno change for execve() of directories, noticed by Marc Zyngier.
Along with the fix, include a regression test to avoid seeing this return
in the future.

This patch (of 2):

The return code for attempting to execute a directory has always been
EACCES.  Adjust the S_ISDIR exec test to reflect the old errno instead of
the general EISDIR for other kinds of "open" attempts on directories.

Fixes: 633fb6ac39 ("exec: move S_ISREG() check earlier")
Reported-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Greg Kroah-Hartman <gregkh@android.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@google.com>
Link: http://lkml.kernel.org/r/20200813231723.2725102-2-keescook@chromium.org
Link: https://lore.kernel.org/lkml/20200813151305.6191993b@why
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-14 19:56:56 -07:00

4679 lines
120 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/fs/namei.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
/*
* Some corrections by tytso.
*/
/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
* lookup logic.
*/
/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
*/
#include <linux/init.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/fsnotify.h>
#include <linux/personality.h>
#include <linux/security.h>
#include <linux/ima.h>
#include <linux/syscalls.h>
#include <linux/mount.h>
#include <linux/audit.h>
#include <linux/capability.h>
#include <linux/file.h>
#include <linux/fcntl.h>
#include <linux/device_cgroup.h>
#include <linux/fs_struct.h>
#include <linux/posix_acl.h>
#include <linux/hash.h>
#include <linux/bitops.h>
#include <linux/init_task.h>
#include <linux/uaccess.h>
#include "internal.h"
#include "mount.h"
/* [Feb-1997 T. Schoebel-Theuer]
* Fundamental changes in the pathname lookup mechanisms (namei)
* were necessary because of omirr. The reason is that omirr needs
* to know the _real_ pathname, not the user-supplied one, in case
* of symlinks (and also when transname replacements occur).
*
* The new code replaces the old recursive symlink resolution with
* an iterative one (in case of non-nested symlink chains). It does
* this with calls to <fs>_follow_link().
* As a side effect, dir_namei(), _namei() and follow_link() are now
* replaced with a single function lookup_dentry() that can handle all
* the special cases of the former code.
*
* With the new dcache, the pathname is stored at each inode, at least as
* long as the refcount of the inode is positive. As a side effect, the
* size of the dcache depends on the inode cache and thus is dynamic.
*
* [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
* resolution to correspond with current state of the code.
*
* Note that the symlink resolution is not *completely* iterative.
* There is still a significant amount of tail- and mid- recursion in
* the algorithm. Also, note that <fs>_readlink() is not used in
* lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
* may return different results than <fs>_follow_link(). Many virtual
* filesystems (including /proc) exhibit this behavior.
*/
/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
* New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
* and the name already exists in form of a symlink, try to create the new
* name indicated by the symlink. The old code always complained that the
* name already exists, due to not following the symlink even if its target
* is nonexistent. The new semantics affects also mknod() and link() when
* the name is a symlink pointing to a non-existent name.
*
* I don't know which semantics is the right one, since I have no access
* to standards. But I found by trial that HP-UX 9.0 has the full "new"
* semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
* "old" one. Personally, I think the new semantics is much more logical.
* Note that "ln old new" where "new" is a symlink pointing to a non-existing
* file does succeed in both HP-UX and SunOs, but not in Solaris
* and in the old Linux semantics.
*/
/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
* semantics. See the comments in "open_namei" and "do_link" below.
*
* [10-Sep-98 Alan Modra] Another symlink change.
*/
/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
* inside the path - always follow.
* in the last component in creation/removal/renaming - never follow.
* if LOOKUP_FOLLOW passed - follow.
* if the pathname has trailing slashes - follow.
* otherwise - don't follow.
* (applied in that order).
*
* [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
* restored for 2.4. This is the last surviving part of old 4.2BSD bug.
* During the 2.4 we need to fix the userland stuff depending on it -
* hopefully we will be able to get rid of that wart in 2.5. So far only
* XEmacs seems to be relying on it...
*/
/*
* [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
* implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
* any extra contention...
*/
/* In order to reduce some races, while at the same time doing additional
* checking and hopefully speeding things up, we copy filenames to the
* kernel data space before using them..
*
* POSIX.1 2.4: an empty pathname is invalid (ENOENT).
* PATH_MAX includes the nul terminator --RR.
*/
#define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
struct filename *
getname_flags(const char __user *filename, int flags, int *empty)
{
struct filename *result;
char *kname;
int len;
result = audit_reusename(filename);
if (result)
return result;
result = __getname();
if (unlikely(!result))
return ERR_PTR(-ENOMEM);
/*
* First, try to embed the struct filename inside the names_cache
* allocation
*/
kname = (char *)result->iname;
result->name = kname;
len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
if (unlikely(len < 0)) {
__putname(result);
return ERR_PTR(len);
}
/*
* Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
* separate struct filename so we can dedicate the entire
* names_cache allocation for the pathname, and re-do the copy from
* userland.
*/
if (unlikely(len == EMBEDDED_NAME_MAX)) {
const size_t size = offsetof(struct filename, iname[1]);
kname = (char *)result;
/*
* size is chosen that way we to guarantee that
* result->iname[0] is within the same object and that
* kname can't be equal to result->iname, no matter what.
*/
result = kzalloc(size, GFP_KERNEL);
if (unlikely(!result)) {
__putname(kname);
return ERR_PTR(-ENOMEM);
}
result->name = kname;
len = strncpy_from_user(kname, filename, PATH_MAX);
if (unlikely(len < 0)) {
__putname(kname);
kfree(result);
return ERR_PTR(len);
}
if (unlikely(len == PATH_MAX)) {
__putname(kname);
kfree(result);
return ERR_PTR(-ENAMETOOLONG);
}
}
result->refcnt = 1;
/* The empty path is special. */
if (unlikely(!len)) {
if (empty)
*empty = 1;
if (!(flags & LOOKUP_EMPTY)) {
putname(result);
return ERR_PTR(-ENOENT);
}
}
result->uptr = filename;
result->aname = NULL;
audit_getname(result);
return result;
}
struct filename *
getname(const char __user * filename)
{
return getname_flags(filename, 0, NULL);
}
struct filename *
getname_kernel(const char * filename)
{
struct filename *result;
int len = strlen(filename) + 1;
result = __getname();
if (unlikely(!result))
return ERR_PTR(-ENOMEM);
if (len <= EMBEDDED_NAME_MAX) {
result->name = (char *)result->iname;
} else if (len <= PATH_MAX) {
const size_t size = offsetof(struct filename, iname[1]);
struct filename *tmp;
tmp = kmalloc(size, GFP_KERNEL);
if (unlikely(!tmp)) {
__putname(result);
return ERR_PTR(-ENOMEM);
}
tmp->name = (char *)result;
result = tmp;
} else {
__putname(result);
return ERR_PTR(-ENAMETOOLONG);
}
memcpy((char *)result->name, filename, len);
result->uptr = NULL;
result->aname = NULL;
result->refcnt = 1;
audit_getname(result);
return result;
}
void putname(struct filename *name)
{
BUG_ON(name->refcnt <= 0);
if (--name->refcnt > 0)
return;
if (name->name != name->iname) {
__putname(name->name);
kfree(name);
} else
__putname(name);
}
static int check_acl(struct inode *inode, int mask)
{
#ifdef CONFIG_FS_POSIX_ACL
struct posix_acl *acl;
if (mask & MAY_NOT_BLOCK) {
acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
if (!acl)
return -EAGAIN;
/* no ->get_acl() calls in RCU mode... */
if (is_uncached_acl(acl))
return -ECHILD;
return posix_acl_permission(inode, acl, mask);
}
acl = get_acl(inode, ACL_TYPE_ACCESS);
if (IS_ERR(acl))
return PTR_ERR(acl);
if (acl) {
int error = posix_acl_permission(inode, acl, mask);
posix_acl_release(acl);
return error;
}
#endif
return -EAGAIN;
}
/*
* This does the basic UNIX permission checking.
*
* Note that the POSIX ACL check cares about the MAY_NOT_BLOCK bit,
* for RCU walking.
*/
static int acl_permission_check(struct inode *inode, int mask)
{
unsigned int mode = inode->i_mode;
/* Are we the owner? If so, ACL's don't matter */
if (likely(uid_eq(current_fsuid(), inode->i_uid))) {
mask &= 7;
mode >>= 6;
return (mask & ~mode) ? -EACCES : 0;
}
/* Do we have ACL's? */
if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
int error = check_acl(inode, mask);
if (error != -EAGAIN)
return error;
}
/* Only RWX matters for group/other mode bits */
mask &= 7;
/*
* Are the group permissions different from
* the other permissions in the bits we care
* about? Need to check group ownership if so.
*/
if (mask & (mode ^ (mode >> 3))) {
if (in_group_p(inode->i_gid))
mode >>= 3;
}
/* Bits in 'mode' clear that we require? */
return (mask & ~mode) ? -EACCES : 0;
}
/**
* generic_permission - check for access rights on a Posix-like filesystem
* @inode: inode to check access rights for
* @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
* %MAY_NOT_BLOCK ...)
*
* Used to check for read/write/execute permissions on a file.
* We use "fsuid" for this, letting us set arbitrary permissions
* for filesystem access without changing the "normal" uids which
* are used for other things.
*
* generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
* request cannot be satisfied (eg. requires blocking or too much complexity).
* It would then be called again in ref-walk mode.
*/
int generic_permission(struct inode *inode, int mask)
{
int ret;
/*
* Do the basic permission checks.
*/
ret = acl_permission_check(inode, mask);
if (ret != -EACCES)
return ret;
if (S_ISDIR(inode->i_mode)) {
/* DACs are overridable for directories */
if (!(mask & MAY_WRITE))
if (capable_wrt_inode_uidgid(inode,
CAP_DAC_READ_SEARCH))
return 0;
if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
return 0;
return -EACCES;
}
/*
* Searching includes executable on directories, else just read.
*/
mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
if (mask == MAY_READ)
if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
return 0;
/*
* Read/write DACs are always overridable.
* Executable DACs are overridable when there is
* at least one exec bit set.
*/
if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
return 0;
return -EACCES;
}
EXPORT_SYMBOL(generic_permission);
/*
* We _really_ want to just do "generic_permission()" without
* even looking at the inode->i_op values. So we keep a cache
* flag in inode->i_opflags, that says "this has not special
* permission function, use the fast case".
*/
static inline int do_inode_permission(struct inode *inode, int mask)
{
if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
if (likely(inode->i_op->permission))
return inode->i_op->permission(inode, mask);
/* This gets set once for the inode lifetime */
spin_lock(&inode->i_lock);
inode->i_opflags |= IOP_FASTPERM;
spin_unlock(&inode->i_lock);
}
return generic_permission(inode, mask);
}
/**
* sb_permission - Check superblock-level permissions
* @sb: Superblock of inode to check permission on
* @inode: Inode to check permission on
* @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
*
* Separate out file-system wide checks from inode-specific permission checks.
*/
static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
{
if (unlikely(mask & MAY_WRITE)) {
umode_t mode = inode->i_mode;
/* Nobody gets write access to a read-only fs. */
if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
return -EROFS;
}
return 0;
}
/**
* inode_permission - Check for access rights to a given inode
* @inode: Inode to check permission on
* @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
*
* Check for read/write/execute permissions on an inode. We use fs[ug]id for
* this, letting us set arbitrary permissions for filesystem access without
* changing the "normal" UIDs which are used for other things.
*
* When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
*/
int inode_permission(struct inode *inode, int mask)
{
int retval;
retval = sb_permission(inode->i_sb, inode, mask);
if (retval)
return retval;
if (unlikely(mask & MAY_WRITE)) {
/*
* Nobody gets write access to an immutable file.
*/
if (IS_IMMUTABLE(inode))
return -EPERM;
/*
* Updating mtime will likely cause i_uid and i_gid to be
* written back improperly if their true value is unknown
* to the vfs.
*/
if (HAS_UNMAPPED_ID(inode))
return -EACCES;
}
retval = do_inode_permission(inode, mask);
if (retval)
return retval;
retval = devcgroup_inode_permission(inode, mask);
if (retval)
return retval;
return security_inode_permission(inode, mask);
}
EXPORT_SYMBOL(inode_permission);
/**
* path_get - get a reference to a path
* @path: path to get the reference to
*
* Given a path increment the reference count to the dentry and the vfsmount.
*/
void path_get(const struct path *path)
{
mntget(path->mnt);
dget(path->dentry);
}
EXPORT_SYMBOL(path_get);
/**
* path_put - put a reference to a path
* @path: path to put the reference to
*
* Given a path decrement the reference count to the dentry and the vfsmount.
*/
void path_put(const struct path *path)
{
dput(path->dentry);
mntput(path->mnt);
}
EXPORT_SYMBOL(path_put);
#define EMBEDDED_LEVELS 2
struct nameidata {
struct path path;
struct qstr last;
struct path root;
struct inode *inode; /* path.dentry.d_inode */
unsigned int flags;
unsigned seq, m_seq, r_seq;
int last_type;
unsigned depth;
int total_link_count;
struct saved {
struct path link;
struct delayed_call done;
const char *name;
unsigned seq;
} *stack, internal[EMBEDDED_LEVELS];
struct filename *name;
struct nameidata *saved;
unsigned root_seq;
int dfd;
kuid_t dir_uid;
umode_t dir_mode;
} __randomize_layout;
static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
{
struct nameidata *old = current->nameidata;
p->stack = p->internal;
p->dfd = dfd;
p->name = name;
p->total_link_count = old ? old->total_link_count : 0;
p->saved = old;
current->nameidata = p;
}
static void restore_nameidata(void)
{
struct nameidata *now = current->nameidata, *old = now->saved;
current->nameidata = old;
if (old)
old->total_link_count = now->total_link_count;
if (now->stack != now->internal)
kfree(now->stack);
}
static bool nd_alloc_stack(struct nameidata *nd)
{
struct saved *p;
p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
if (unlikely(!p))
return false;
memcpy(p, nd->internal, sizeof(nd->internal));
nd->stack = p;
return true;
}
/**
* path_connected - Verify that a dentry is below mnt.mnt_root
*
* Rename can sometimes move a file or directory outside of a bind
* mount, path_connected allows those cases to be detected.
*/
static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
{
struct super_block *sb = mnt->mnt_sb;
/* Bind mounts and multi-root filesystems can have disconnected paths */
if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
return true;
return is_subdir(dentry, mnt->mnt_root);
}
static void drop_links(struct nameidata *nd)
{
int i = nd->depth;
while (i--) {
struct saved *last = nd->stack + i;
do_delayed_call(&last->done);
clear_delayed_call(&last->done);
}
}
static void terminate_walk(struct nameidata *nd)
{
drop_links(nd);
if (!(nd->flags & LOOKUP_RCU)) {
int i;
path_put(&nd->path);
for (i = 0; i < nd->depth; i++)
path_put(&nd->stack[i].link);
if (nd->flags & LOOKUP_ROOT_GRABBED) {
path_put(&nd->root);
nd->flags &= ~LOOKUP_ROOT_GRABBED;
}
} else {
nd->flags &= ~LOOKUP_RCU;
rcu_read_unlock();
}
nd->depth = 0;
}
/* path_put is needed afterwards regardless of success or failure */
static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
{
int res = __legitimize_mnt(path->mnt, mseq);
if (unlikely(res)) {
if (res > 0)
path->mnt = NULL;
path->dentry = NULL;
return false;
}
if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
path->dentry = NULL;
return false;
}
return !read_seqcount_retry(&path->dentry->d_seq, seq);
}
static inline bool legitimize_path(struct nameidata *nd,
struct path *path, unsigned seq)
{
return __legitimize_path(path, seq, nd->m_seq);
}
static bool legitimize_links(struct nameidata *nd)
{
int i;
for (i = 0; i < nd->depth; i++) {
struct saved *last = nd->stack + i;
if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
drop_links(nd);
nd->depth = i + 1;
return false;
}
}
return true;
}
static bool legitimize_root(struct nameidata *nd)
{
/*
* For scoped-lookups (where nd->root has been zeroed), we need to
* restart the whole lookup from scratch -- because set_root() is wrong
* for these lookups (nd->dfd is the root, not the filesystem root).
*/
if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
return false;
/* Nothing to do if nd->root is zero or is managed by the VFS user. */
if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
return true;
nd->flags |= LOOKUP_ROOT_GRABBED;
return legitimize_path(nd, &nd->root, nd->root_seq);
}
/*
* Path walking has 2 modes, rcu-walk and ref-walk (see
* Documentation/filesystems/path-lookup.txt). In situations when we can't
* continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
* normal reference counts on dentries and vfsmounts to transition to ref-walk
* mode. Refcounts are grabbed at the last known good point before rcu-walk
* got stuck, so ref-walk may continue from there. If this is not successful
* (eg. a seqcount has changed), then failure is returned and it's up to caller
* to restart the path walk from the beginning in ref-walk mode.
*/
/**
* unlazy_walk - try to switch to ref-walk mode.
* @nd: nameidata pathwalk data
* Returns: 0 on success, -ECHILD on failure
*
* unlazy_walk attempts to legitimize the current nd->path and nd->root
* for ref-walk mode.
* Must be called from rcu-walk context.
* Nothing should touch nameidata between unlazy_walk() failure and
* terminate_walk().
*/
static int unlazy_walk(struct nameidata *nd)
{
struct dentry *parent = nd->path.dentry;
BUG_ON(!(nd->flags & LOOKUP_RCU));
nd->flags &= ~LOOKUP_RCU;
if (unlikely(!legitimize_links(nd)))
goto out1;
if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
goto out;
if (unlikely(!legitimize_root(nd)))
goto out;
rcu_read_unlock();
BUG_ON(nd->inode != parent->d_inode);
return 0;
out1:
nd->path.mnt = NULL;
nd->path.dentry = NULL;
out:
rcu_read_unlock();
return -ECHILD;
}
/**
* unlazy_child - try to switch to ref-walk mode.
* @nd: nameidata pathwalk data
* @dentry: child of nd->path.dentry
* @seq: seq number to check dentry against
* Returns: 0 on success, -ECHILD on failure
*
* unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
* for ref-walk mode. @dentry must be a path found by a do_lookup call on
* @nd. Must be called from rcu-walk context.
* Nothing should touch nameidata between unlazy_child() failure and
* terminate_walk().
*/
static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
{
BUG_ON(!(nd->flags & LOOKUP_RCU));
nd->flags &= ~LOOKUP_RCU;
if (unlikely(!legitimize_links(nd)))
goto out2;
if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
goto out2;
if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
goto out1;
/*
* We need to move both the parent and the dentry from the RCU domain
* to be properly refcounted. And the sequence number in the dentry
* validates *both* dentry counters, since we checked the sequence
* number of the parent after we got the child sequence number. So we
* know the parent must still be valid if the child sequence number is
*/
if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
goto out;
if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
goto out_dput;
/*
* Sequence counts matched. Now make sure that the root is
* still valid and get it if required.
*/
if (unlikely(!legitimize_root(nd)))
goto out_dput;
rcu_read_unlock();
return 0;
out2:
nd->path.mnt = NULL;
out1:
nd->path.dentry = NULL;
out:
rcu_read_unlock();
return -ECHILD;
out_dput:
rcu_read_unlock();
dput(dentry);
return -ECHILD;
}
static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
{
if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
return dentry->d_op->d_revalidate(dentry, flags);
else
return 1;
}
/**
* complete_walk - successful completion of path walk
* @nd: pointer nameidata
*
* If we had been in RCU mode, drop out of it and legitimize nd->path.
* Revalidate the final result, unless we'd already done that during
* the path walk or the filesystem doesn't ask for it. Return 0 on
* success, -error on failure. In case of failure caller does not
* need to drop nd->path.
*/
static int complete_walk(struct nameidata *nd)
{
struct dentry *dentry = nd->path.dentry;
int status;
if (nd->flags & LOOKUP_RCU) {
/*
* We don't want to zero nd->root for scoped-lookups or
* externally-managed nd->root.
*/
if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED)))
nd->root.mnt = NULL;
if (unlikely(unlazy_walk(nd)))
return -ECHILD;
}
if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
/*
* While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
* ever step outside the root during lookup" and should already
* be guaranteed by the rest of namei, we want to avoid a namei
* BUG resulting in userspace being given a path that was not
* scoped within the root at some point during the lookup.
*
* So, do a final sanity-check to make sure that in the
* worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
* we won't silently return an fd completely outside of the
* requested root to userspace.
*
* Userspace could move the path outside the root after this
* check, but as discussed elsewhere this is not a concern (the
* resolved file was inside the root at some point).
*/
if (!path_is_under(&nd->path, &nd->root))
return -EXDEV;
}
if (likely(!(nd->flags & LOOKUP_JUMPED)))
return 0;
if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
return 0;
status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
if (status > 0)
return 0;
if (!status)
status = -ESTALE;
return status;
}
static int set_root(struct nameidata *nd)
{
struct fs_struct *fs = current->fs;
/*
* Jumping to the real root in a scoped-lookup is a BUG in namei, but we
* still have to ensure it doesn't happen because it will cause a breakout
* from the dirfd.
*/
if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
return -ENOTRECOVERABLE;
if (nd->flags & LOOKUP_RCU) {
unsigned seq;
do {
seq = read_seqcount_begin(&fs->seq);
nd->root = fs->root;
nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
} while (read_seqcount_retry(&fs->seq, seq));
} else {
get_fs_root(fs, &nd->root);
nd->flags |= LOOKUP_ROOT_GRABBED;
}
return 0;
}
static int nd_jump_root(struct nameidata *nd)
{
if (unlikely(nd->flags & LOOKUP_BENEATH))
return -EXDEV;
if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
/* Absolute path arguments to path_init() are allowed. */
if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
return -EXDEV;
}
if (!nd->root.mnt) {
int error = set_root(nd);
if (error)
return error;
}
if (nd->flags & LOOKUP_RCU) {
struct dentry *d;
nd->path = nd->root;
d = nd->path.dentry;
nd->inode = d->d_inode;
nd->seq = nd->root_seq;
if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
return -ECHILD;
} else {
path_put(&nd->path);
nd->path = nd->root;
path_get(&nd->path);
nd->inode = nd->path.dentry->d_inode;
}
nd->flags |= LOOKUP_JUMPED;
return 0;
}
/*
* Helper to directly jump to a known parsed path from ->get_link,
* caller must have taken a reference to path beforehand.
*/
int nd_jump_link(struct path *path)
{
int error = -ELOOP;
struct nameidata *nd = current->nameidata;
if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
goto err;
error = -EXDEV;
if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
if (nd->path.mnt != path->mnt)
goto err;
}
/* Not currently safe for scoped-lookups. */
if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
goto err;
path_put(&nd->path);
nd->path = *path;
nd->inode = nd->path.dentry->d_inode;
nd->flags |= LOOKUP_JUMPED;
return 0;
err:
path_put(path);
return error;
}
static inline void put_link(struct nameidata *nd)
{
struct saved *last = nd->stack + --nd->depth;
do_delayed_call(&last->done);
if (!(nd->flags & LOOKUP_RCU))
path_put(&last->link);
}
int sysctl_protected_symlinks __read_mostly = 0;
int sysctl_protected_hardlinks __read_mostly = 0;
int sysctl_protected_fifos __read_mostly;
int sysctl_protected_regular __read_mostly;
/**
* may_follow_link - Check symlink following for unsafe situations
* @nd: nameidata pathwalk data
*
* In the case of the sysctl_protected_symlinks sysctl being enabled,
* CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
* in a sticky world-writable directory. This is to protect privileged
* processes from failing races against path names that may change out
* from under them by way of other users creating malicious symlinks.
* It will permit symlinks to be followed only when outside a sticky
* world-writable directory, or when the uid of the symlink and follower
* match, or when the directory owner matches the symlink's owner.
*
* Returns 0 if following the symlink is allowed, -ve on error.
*/
static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
{
if (!sysctl_protected_symlinks)
return 0;
/* Allowed if owner and follower match. */
if (uid_eq(current_cred()->fsuid, inode->i_uid))
return 0;
/* Allowed if parent directory not sticky and world-writable. */
if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
return 0;
/* Allowed if parent directory and link owner match. */
if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, inode->i_uid))
return 0;
if (nd->flags & LOOKUP_RCU)
return -ECHILD;
audit_inode(nd->name, nd->stack[0].link.dentry, 0);
audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
return -EACCES;
}
/**
* safe_hardlink_source - Check for safe hardlink conditions
* @inode: the source inode to hardlink from
*
* Return false if at least one of the following conditions:
* - inode is not a regular file
* - inode is setuid
* - inode is setgid and group-exec
* - access failure for read and write
*
* Otherwise returns true.
*/
static bool safe_hardlink_source(struct inode *inode)
{
umode_t mode = inode->i_mode;
/* Special files should not get pinned to the filesystem. */
if (!S_ISREG(mode))
return false;
/* Setuid files should not get pinned to the filesystem. */
if (mode & S_ISUID)
return false;
/* Executable setgid files should not get pinned to the filesystem. */
if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
return false;
/* Hardlinking to unreadable or unwritable sources is dangerous. */
if (inode_permission(inode, MAY_READ | MAY_WRITE))
return false;
return true;
}
/**
* may_linkat - Check permissions for creating a hardlink
* @link: the source to hardlink from
*
* Block hardlink when all of:
* - sysctl_protected_hardlinks enabled
* - fsuid does not match inode
* - hardlink source is unsafe (see safe_hardlink_source() above)
* - not CAP_FOWNER in a namespace with the inode owner uid mapped
*
* Returns 0 if successful, -ve on error.
*/
int may_linkat(struct path *link)
{
struct inode *inode = link->dentry->d_inode;
/* Inode writeback is not safe when the uid or gid are invalid. */
if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
return -EOVERFLOW;
if (!sysctl_protected_hardlinks)
return 0;
/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
* otherwise, it must be a safe source.
*/
if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
return 0;
audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
return -EPERM;
}
/**
* may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
* should be allowed, or not, on files that already
* exist.
* @dir_mode: mode bits of directory
* @dir_uid: owner of directory
* @inode: the inode of the file to open
*
* Block an O_CREAT open of a FIFO (or a regular file) when:
* - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
* - the file already exists
* - we are in a sticky directory
* - we don't own the file
* - the owner of the directory doesn't own the file
* - the directory is world writable
* If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
* the directory doesn't have to be world writable: being group writable will
* be enough.
*
* Returns 0 if the open is allowed, -ve on error.
*/
static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
struct inode * const inode)
{
if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
(!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
likely(!(dir_mode & S_ISVTX)) ||
uid_eq(inode->i_uid, dir_uid) ||
uid_eq(current_fsuid(), inode->i_uid))
return 0;
if (likely(dir_mode & 0002) ||
(dir_mode & 0020 &&
((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
(sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
const char *operation = S_ISFIFO(inode->i_mode) ?
"sticky_create_fifo" :
"sticky_create_regular";
audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
return -EACCES;
}
return 0;
}
/*
* follow_up - Find the mountpoint of path's vfsmount
*
* Given a path, find the mountpoint of its source file system.
* Replace @path with the path of the mountpoint in the parent mount.
* Up is towards /.
*
* Return 1 if we went up a level and 0 if we were already at the
* root.
*/
int follow_up(struct path *path)
{
struct mount *mnt = real_mount(path->mnt);
struct mount *parent;
struct dentry *mountpoint;
read_seqlock_excl(&mount_lock);
parent = mnt->mnt_parent;
if (parent == mnt) {
read_sequnlock_excl(&mount_lock);
return 0;
}
mntget(&parent->mnt);
mountpoint = dget(mnt->mnt_mountpoint);
read_sequnlock_excl(&mount_lock);
dput(path->dentry);
path->dentry = mountpoint;
mntput(path->mnt);
path->mnt = &parent->mnt;
return 1;
}
EXPORT_SYMBOL(follow_up);
static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
struct path *path, unsigned *seqp)
{
while (mnt_has_parent(m)) {
struct dentry *mountpoint = m->mnt_mountpoint;
m = m->mnt_parent;
if (unlikely(root->dentry == mountpoint &&
root->mnt == &m->mnt))
break;
if (mountpoint != m->mnt.mnt_root) {
path->mnt = &m->mnt;
path->dentry = mountpoint;
*seqp = read_seqcount_begin(&mountpoint->d_seq);
return true;
}
}
return false;
}
static bool choose_mountpoint(struct mount *m, const struct path *root,
struct path *path)
{
bool found;
rcu_read_lock();
while (1) {
unsigned seq, mseq = read_seqbegin(&mount_lock);
found = choose_mountpoint_rcu(m, root, path, &seq);
if (unlikely(!found)) {
if (!read_seqretry(&mount_lock, mseq))
break;
} else {
if (likely(__legitimize_path(path, seq, mseq)))
break;
rcu_read_unlock();
path_put(path);
rcu_read_lock();
}
}
rcu_read_unlock();
return found;
}
/*
* Perform an automount
* - return -EISDIR to tell follow_managed() to stop and return the path we
* were called with.
*/
static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
{
struct dentry *dentry = path->dentry;
/* We don't want to mount if someone's just doing a stat -
* unless they're stat'ing a directory and appended a '/' to
* the name.
*
* We do, however, want to mount if someone wants to open or
* create a file of any type under the mountpoint, wants to
* traverse through the mountpoint or wants to open the
* mounted directory. Also, autofs may mark negative dentries
* as being automount points. These will need the attentions
* of the daemon to instantiate them before they can be used.
*/
if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
dentry->d_inode)
return -EISDIR;
if (count && (*count)++ >= MAXSYMLINKS)
return -ELOOP;
return finish_automount(dentry->d_op->d_automount(path), path);
}
/*
* mount traversal - out-of-line part. One note on ->d_flags accesses -
* dentries are pinned but not locked here, so negative dentry can go
* positive right under us. Use of smp_load_acquire() provides a barrier
* sufficient for ->d_inode and ->d_flags consistency.
*/
static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
int *count, unsigned lookup_flags)
{
struct vfsmount *mnt = path->mnt;
bool need_mntput = false;
int ret = 0;
while (flags & DCACHE_MANAGED_DENTRY) {
/* Allow the filesystem to manage the transit without i_mutex
* being held. */
if (flags & DCACHE_MANAGE_TRANSIT) {
ret = path->dentry->d_op->d_manage(path, false);
flags = smp_load_acquire(&path->dentry->d_flags);
if (ret < 0)
break;
}
if (flags & DCACHE_MOUNTED) { // something's mounted on it..
struct vfsmount *mounted = lookup_mnt(path);
if (mounted) { // ... in our namespace
dput(path->dentry);
if (need_mntput)
mntput(path->mnt);
path->mnt = mounted;
path->dentry = dget(mounted->mnt_root);
// here we know it's positive
flags = path->dentry->d_flags;
need_mntput = true;
continue;
}
}
if (!(flags & DCACHE_NEED_AUTOMOUNT))
break;
// uncovered automount point
ret = follow_automount(path, count, lookup_flags);
flags = smp_load_acquire(&path->dentry->d_flags);
if (ret < 0)
break;
}
if (ret == -EISDIR)
ret = 0;
// possible if you race with several mount --move
if (need_mntput && path->mnt == mnt)
mntput(path->mnt);
if (!ret && unlikely(d_flags_negative(flags)))
ret = -ENOENT;
*jumped = need_mntput;
return ret;
}
static inline int traverse_mounts(struct path *path, bool *jumped,
int *count, unsigned lookup_flags)
{
unsigned flags = smp_load_acquire(&path->dentry->d_flags);
/* fastpath */
if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
*jumped = false;
if (unlikely(d_flags_negative(flags)))
return -ENOENT;
return 0;
}
return __traverse_mounts(path, flags, jumped, count, lookup_flags);
}
int follow_down_one(struct path *path)
{
struct vfsmount *mounted;
mounted = lookup_mnt(path);
if (mounted) {
dput(path->dentry);
mntput(path->mnt);
path->mnt = mounted;
path->dentry = dget(mounted->mnt_root);
return 1;
}
return 0;
}
EXPORT_SYMBOL(follow_down_one);
/*
* Follow down to the covering mount currently visible to userspace. At each
* point, the filesystem owning that dentry may be queried as to whether the
* caller is permitted to proceed or not.
*/
int follow_down(struct path *path)
{
struct vfsmount *mnt = path->mnt;
bool jumped;
int ret = traverse_mounts(path, &jumped, NULL, 0);
if (path->mnt != mnt)
mntput(mnt);
return ret;
}
EXPORT_SYMBOL(follow_down);
/*
* Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
* we meet a managed dentry that would need blocking.
*/
static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
struct inode **inode, unsigned *seqp)
{
struct dentry *dentry = path->dentry;
unsigned int flags = dentry->d_flags;
if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
return true;
if (unlikely(nd->flags & LOOKUP_NO_XDEV))
return false;
for (;;) {
/*
* Don't forget we might have a non-mountpoint managed dentry
* that wants to block transit.
*/
if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
int res = dentry->d_op->d_manage(path, true);
if (res)
return res == -EISDIR;
flags = dentry->d_flags;
}
if (flags & DCACHE_MOUNTED) {
struct mount *mounted = __lookup_mnt(path->mnt, dentry);
if (mounted) {
path->mnt = &mounted->mnt;
dentry = path->dentry = mounted->mnt.mnt_root;
nd->flags |= LOOKUP_JUMPED;
*seqp = read_seqcount_begin(&dentry->d_seq);
*inode = dentry->d_inode;
/*
* We don't need to re-check ->d_seq after this
* ->d_inode read - there will be an RCU delay
* between mount hash removal and ->mnt_root
* becoming unpinned.
*/
flags = dentry->d_flags;
continue;
}
if (read_seqretry(&mount_lock, nd->m_seq))
return false;
}
return !(flags & DCACHE_NEED_AUTOMOUNT);
}
}
static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
struct path *path, struct inode **inode,
unsigned int *seqp)
{
bool jumped;
int ret;
path->mnt = nd->path.mnt;
path->dentry = dentry;
if (nd->flags & LOOKUP_RCU) {
unsigned int seq = *seqp;
if (unlikely(!*inode))
return -ENOENT;
if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
return 0;
if (unlazy_child(nd, dentry, seq))
return -ECHILD;
// *path might've been clobbered by __follow_mount_rcu()
path->mnt = nd->path.mnt;
path->dentry = dentry;
}
ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
if (jumped) {
if (unlikely(nd->flags & LOOKUP_NO_XDEV))
ret = -EXDEV;
else
nd->flags |= LOOKUP_JUMPED;
}
if (unlikely(ret)) {
dput(path->dentry);
if (path->mnt != nd->path.mnt)
mntput(path->mnt);
} else {
*inode = d_backing_inode(path->dentry);
*seqp = 0; /* out of RCU mode, so the value doesn't matter */
}
return ret;
}
/*
* This looks up the name in dcache and possibly revalidates the found dentry.
* NULL is returned if the dentry does not exist in the cache.
*/
static struct dentry *lookup_dcache(const struct qstr *name,
struct dentry *dir,
unsigned int flags)
{
struct dentry *dentry = d_lookup(dir, name);
if (dentry) {
int error = d_revalidate(dentry, flags);
if (unlikely(error <= 0)) {
if (!error)
d_invalidate(dentry);
dput(dentry);
return ERR_PTR(error);
}
}
return dentry;
}
/*
* Parent directory has inode locked exclusive. This is one
* and only case when ->lookup() gets called on non in-lookup
* dentries - as the matter of fact, this only gets called
* when directory is guaranteed to have no in-lookup children
* at all.
*/
static struct dentry *__lookup_hash(const struct qstr *name,
struct dentry *base, unsigned int flags)
{
struct dentry *dentry = lookup_dcache(name, base, flags);
struct dentry *old;
struct inode *dir = base->d_inode;
if (dentry)
return dentry;
/* Don't create child dentry for a dead directory. */
if (unlikely(IS_DEADDIR(dir)))
return ERR_PTR(-ENOENT);
dentry = d_alloc(base, name);
if (unlikely(!dentry))
return ERR_PTR(-ENOMEM);
old = dir->i_op->lookup(dir, dentry, flags);
if (unlikely(old)) {
dput(dentry);
dentry = old;
}
return dentry;
}
static struct dentry *lookup_fast(struct nameidata *nd,
struct inode **inode,
unsigned *seqp)
{
struct dentry *dentry, *parent = nd->path.dentry;
int status = 1;
/*
* Rename seqlock is not required here because in the off chance
* of a false negative due to a concurrent rename, the caller is
* going to fall back to non-racy lookup.
*/
if (nd->flags & LOOKUP_RCU) {
unsigned seq;
dentry = __d_lookup_rcu(parent, &nd->last, &seq);
if (unlikely(!dentry)) {
if (unlazy_walk(nd))
return ERR_PTR(-ECHILD);
return NULL;
}
/*
* This sequence count validates that the inode matches
* the dentry name information from lookup.
*/
*inode = d_backing_inode(dentry);
if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
return ERR_PTR(-ECHILD);
/*
* This sequence count validates that the parent had no
* changes while we did the lookup of the dentry above.
*
* The memory barrier in read_seqcount_begin of child is
* enough, we can use __read_seqcount_retry here.
*/
if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
return ERR_PTR(-ECHILD);
*seqp = seq;
status = d_revalidate(dentry, nd->flags);
if (likely(status > 0))
return dentry;
if (unlazy_child(nd, dentry, seq))
return ERR_PTR(-ECHILD);
if (unlikely(status == -ECHILD))
/* we'd been told to redo it in non-rcu mode */
status = d_revalidate(dentry, nd->flags);
} else {
dentry = __d_lookup(parent, &nd->last);
if (unlikely(!dentry))
return NULL;
status = d_revalidate(dentry, nd->flags);
}
if (unlikely(status <= 0)) {
if (!status)
d_invalidate(dentry);
dput(dentry);
return ERR_PTR(status);
}
return dentry;
}
/* Fast lookup failed, do it the slow way */
static struct dentry *__lookup_slow(const struct qstr *name,
struct dentry *dir,
unsigned int flags)
{
struct dentry *dentry, *old;
struct inode *inode = dir->d_inode;
DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
/* Don't go there if it's already dead */
if (unlikely(IS_DEADDIR(inode)))
return ERR_PTR(-ENOENT);
again:
dentry = d_alloc_parallel(dir, name, &wq);
if (IS_ERR(dentry))
return dentry;
if (unlikely(!d_in_lookup(dentry))) {
int error = d_revalidate(dentry, flags);
if (unlikely(error <= 0)) {
if (!error) {
d_invalidate(dentry);
dput(dentry);
goto again;
}
dput(dentry);
dentry = ERR_PTR(error);
}
} else {
old = inode->i_op->lookup(inode, dentry, flags);
d_lookup_done(dentry);
if (unlikely(old)) {
dput(dentry);
dentry = old;
}
}
return dentry;
}
static struct dentry *lookup_slow(const struct qstr *name,
struct dentry *dir,
unsigned int flags)
{
struct inode *inode = dir->d_inode;
struct dentry *res;
inode_lock_shared(inode);
res = __lookup_slow(name, dir, flags);
inode_unlock_shared(inode);
return res;
}
static inline int may_lookup(struct nameidata *nd)
{
if (nd->flags & LOOKUP_RCU) {
int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
if (err != -ECHILD)
return err;
if (unlazy_walk(nd))
return -ECHILD;
}
return inode_permission(nd->inode, MAY_EXEC);
}
static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
{
if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
return -ELOOP;
if (likely(nd->depth != EMBEDDED_LEVELS))
return 0;
if (likely(nd->stack != nd->internal))
return 0;
if (likely(nd_alloc_stack(nd)))
return 0;
if (nd->flags & LOOKUP_RCU) {
// we need to grab link before we do unlazy. And we can't skip
// unlazy even if we fail to grab the link - cleanup needs it
bool grabbed_link = legitimize_path(nd, link, seq);
if (unlazy_walk(nd) != 0 || !grabbed_link)
return -ECHILD;
if (nd_alloc_stack(nd))
return 0;
}
return -ENOMEM;
}
enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
static const char *pick_link(struct nameidata *nd, struct path *link,
struct inode *inode, unsigned seq, int flags)
{
struct saved *last;
const char *res;
int error = reserve_stack(nd, link, seq);
if (unlikely(error)) {
if (!(nd->flags & LOOKUP_RCU))
path_put(link);
return ERR_PTR(error);
}
last = nd->stack + nd->depth++;
last->link = *link;
clear_delayed_call(&last->done);
last->seq = seq;
if (flags & WALK_TRAILING) {
error = may_follow_link(nd, inode);
if (unlikely(error))
return ERR_PTR(error);
}
if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS))
return ERR_PTR(-ELOOP);
if (!(nd->flags & LOOKUP_RCU)) {
touch_atime(&last->link);
cond_resched();
} else if (atime_needs_update(&last->link, inode)) {
if (unlikely(unlazy_walk(nd)))
return ERR_PTR(-ECHILD);
touch_atime(&last->link);
}
error = security_inode_follow_link(link->dentry, inode,
nd->flags & LOOKUP_RCU);
if (unlikely(error))
return ERR_PTR(error);
res = READ_ONCE(inode->i_link);
if (!res) {
const char * (*get)(struct dentry *, struct inode *,
struct delayed_call *);
get = inode->i_op->get_link;
if (nd->flags & LOOKUP_RCU) {
res = get(NULL, inode, &last->done);
if (res == ERR_PTR(-ECHILD)) {
if (unlikely(unlazy_walk(nd)))
return ERR_PTR(-ECHILD);
res = get(link->dentry, inode, &last->done);
}
} else {
res = get(link->dentry, inode, &last->done);
}
if (!res)
goto all_done;
if (IS_ERR(res))
return res;
}
if (*res == '/') {
error = nd_jump_root(nd);
if (unlikely(error))
return ERR_PTR(error);
while (unlikely(*++res == '/'))
;
}
if (*res)
return res;
all_done: // pure jump
put_link(nd);
return NULL;
}
/*
* Do we need to follow links? We _really_ want to be able
* to do this check without having to look at inode->i_op,
* so we keep a cache of "no, this doesn't need follow_link"
* for the common case.
*/
static const char *step_into(struct nameidata *nd, int flags,
struct dentry *dentry, struct inode *inode, unsigned seq)
{
struct path path;
int err = handle_mounts(nd, dentry, &path, &inode, &seq);
if (err < 0)
return ERR_PTR(err);
if (likely(!d_is_symlink(path.dentry)) ||
((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
(flags & WALK_NOFOLLOW)) {
/* not a symlink or should not follow */
if (!(nd->flags & LOOKUP_RCU)) {
dput(nd->path.dentry);
if (nd->path.mnt != path.mnt)
mntput(nd->path.mnt);
}
nd->path = path;
nd->inode = inode;
nd->seq = seq;
return NULL;
}
if (nd->flags & LOOKUP_RCU) {
/* make sure that d_is_symlink above matches inode */
if (read_seqcount_retry(&path.dentry->d_seq, seq))
return ERR_PTR(-ECHILD);
} else {
if (path.mnt == nd->path.mnt)
mntget(path.mnt);
}
return pick_link(nd, &path, inode, seq, flags);
}
static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
struct inode **inodep,
unsigned *seqp)
{
struct dentry *parent, *old;
if (path_equal(&nd->path, &nd->root))
goto in_root;
if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
struct path path;
unsigned seq;
if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
&nd->root, &path, &seq))
goto in_root;
if (unlikely(nd->flags & LOOKUP_NO_XDEV))
return ERR_PTR(-ECHILD);
nd->path = path;
nd->inode = path.dentry->d_inode;
nd->seq = seq;
if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
return ERR_PTR(-ECHILD);
/* we know that mountpoint was pinned */
}
old = nd->path.dentry;
parent = old->d_parent;
*inodep = parent->d_inode;
*seqp = read_seqcount_begin(&parent->d_seq);
if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
return ERR_PTR(-ECHILD);
if (unlikely(!path_connected(nd->path.mnt, parent)))
return ERR_PTR(-ECHILD);
return parent;
in_root:
if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
return ERR_PTR(-ECHILD);
if (unlikely(nd->flags & LOOKUP_BENEATH))
return ERR_PTR(-ECHILD);
return NULL;
}
static struct dentry *follow_dotdot(struct nameidata *nd,
struct inode **inodep,
unsigned *seqp)
{
struct dentry *parent;
if (path_equal(&nd->path, &nd->root))
goto in_root;
if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
struct path path;
if (!choose_mountpoint(real_mount(nd->path.mnt),
&nd->root, &path))
goto in_root;
path_put(&nd->path);
nd->path = path;
nd->inode = path.dentry->d_inode;
if (unlikely(nd->flags & LOOKUP_NO_XDEV))
return ERR_PTR(-EXDEV);
}
/* rare case of legitimate dget_parent()... */
parent = dget_parent(nd->path.dentry);
if (unlikely(!path_connected(nd->path.mnt, parent))) {
dput(parent);
return ERR_PTR(-ENOENT);
}
*seqp = 0;
*inodep = parent->d_inode;
return parent;
in_root:
if (unlikely(nd->flags & LOOKUP_BENEATH))
return ERR_PTR(-EXDEV);
dget(nd->path.dentry);
return NULL;
}
static const char *handle_dots(struct nameidata *nd, int type)
{
if (type == LAST_DOTDOT) {
const char *error = NULL;
struct dentry *parent;
struct inode *inode;
unsigned seq;
if (!nd->root.mnt) {
error = ERR_PTR(set_root(nd));
if (error)
return error;
}
if (nd->flags & LOOKUP_RCU)
parent = follow_dotdot_rcu(nd, &inode, &seq);
else
parent = follow_dotdot(nd, &inode, &seq);
if (IS_ERR(parent))
return ERR_CAST(parent);
if (unlikely(!parent))
error = step_into(nd, WALK_NOFOLLOW,
nd->path.dentry, nd->inode, nd->seq);
else
error = step_into(nd, WALK_NOFOLLOW,
parent, inode, seq);
if (unlikely(error))
return error;
if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
/*
* If there was a racing rename or mount along our
* path, then we can't be sure that ".." hasn't jumped
* above nd->root (and so userspace should retry or use
* some fallback).
*/
smp_rmb();
if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
return ERR_PTR(-EAGAIN);
if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
return ERR_PTR(-EAGAIN);
}
}
return NULL;
}
static const char *walk_component(struct nameidata *nd, int flags)
{
struct dentry *dentry;
struct inode *inode;
unsigned seq;
/*
* "." and ".." are special - ".." especially so because it has
* to be able to know about the current root directory and
* parent relationships.
*/
if (unlikely(nd->last_type != LAST_NORM)) {
if (!(flags & WALK_MORE) && nd->depth)
put_link(nd);
return handle_dots(nd, nd->last_type);
}
dentry = lookup_fast(nd, &inode, &seq);
if (IS_ERR(dentry))
return ERR_CAST(dentry);
if (unlikely(!dentry)) {
dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
if (IS_ERR(dentry))
return ERR_CAST(dentry);
}
if (!(flags & WALK_MORE) && nd->depth)
put_link(nd);
return step_into(nd, flags, dentry, inode, seq);
}
/*
* We can do the critical dentry name comparison and hashing
* operations one word at a time, but we are limited to:
*
* - Architectures with fast unaligned word accesses. We could
* do a "get_unaligned()" if this helps and is sufficiently
* fast.
*
* - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
* do not trap on the (extremely unlikely) case of a page
* crossing operation.
*
* - Furthermore, we need an efficient 64-bit compile for the
* 64-bit case in order to generate the "number of bytes in
* the final mask". Again, that could be replaced with a
* efficient population count instruction or similar.
*/
#ifdef CONFIG_DCACHE_WORD_ACCESS
#include <asm/word-at-a-time.h>
#ifdef HASH_MIX
/* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
#elif defined(CONFIG_64BIT)
/*
* Register pressure in the mixing function is an issue, particularly
* on 32-bit x86, but almost any function requires one state value and
* one temporary. Instead, use a function designed for two state values
* and no temporaries.
*
* This function cannot create a collision in only two iterations, so
* we have two iterations to achieve avalanche. In those two iterations,
* we have six layers of mixing, which is enough to spread one bit's
* influence out to 2^6 = 64 state bits.
*
* Rotate constants are scored by considering either 64 one-bit input
* deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
* probability of that delta causing a change to each of the 128 output
* bits, using a sample of random initial states.
*
* The Shannon entropy of the computed probabilities is then summed
* to produce a score. Ideally, any input change has a 50% chance of
* toggling any given output bit.
*
* Mixing scores (in bits) for (12,45):
* Input delta: 1-bit 2-bit
* 1 round: 713.3 42542.6
* 2 rounds: 2753.7 140389.8
* 3 rounds: 5954.1 233458.2
* 4 rounds: 7862.6 256672.2
* Perfect: 8192 258048
* (64*128) (64*63/2 * 128)
*/
#define HASH_MIX(x, y, a) \
( x ^= (a), \
y ^= x, x = rol64(x,12),\
x += y, y = rol64(y,45),\
y *= 9 )
/*
* Fold two longs into one 32-bit hash value. This must be fast, but
* latency isn't quite as critical, as there is a fair bit of additional
* work done before the hash value is used.
*/
static inline unsigned int fold_hash(unsigned long x, unsigned long y)
{
y ^= x * GOLDEN_RATIO_64;
y *= GOLDEN_RATIO_64;
return y >> 32;
}
#else /* 32-bit case */
/*
* Mixing scores (in bits) for (7,20):
* Input delta: 1-bit 2-bit
* 1 round: 330.3 9201.6
* 2 rounds: 1246.4 25475.4
* 3 rounds: 1907.1 31295.1
* 4 rounds: 2042.3 31718.6
* Perfect: 2048 31744
* (32*64) (32*31/2 * 64)
*/
#define HASH_MIX(x, y, a) \
( x ^= (a), \
y ^= x, x = rol32(x, 7),\
x += y, y = rol32(y,20),\
y *= 9 )
static inline unsigned int fold_hash(unsigned long x, unsigned long y)
{
/* Use arch-optimized multiply if one exists */
return __hash_32(y ^ __hash_32(x));
}
#endif
/*
* Return the hash of a string of known length. This is carfully
* designed to match hash_name(), which is the more critical function.
* In particular, we must end by hashing a final word containing 0..7
* payload bytes, to match the way that hash_name() iterates until it
* finds the delimiter after the name.
*/
unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
{
unsigned long a, x = 0, y = (unsigned long)salt;
for (;;) {
if (!len)
goto done;
a = load_unaligned_zeropad(name);
if (len < sizeof(unsigned long))
break;
HASH_MIX(x, y, a);
name += sizeof(unsigned long);
len -= sizeof(unsigned long);
}
x ^= a & bytemask_from_count(len);
done:
return fold_hash(x, y);
}
EXPORT_SYMBOL(full_name_hash);
/* Return the "hash_len" (hash and length) of a null-terminated string */
u64 hashlen_string(const void *salt, const char *name)
{
unsigned long a = 0, x = 0, y = (unsigned long)salt;
unsigned long adata, mask, len;
const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
len = 0;
goto inside;
do {
HASH_MIX(x, y, a);
len += sizeof(unsigned long);
inside:
a = load_unaligned_zeropad(name+len);
} while (!has_zero(a, &adata, &constants));
adata = prep_zero_mask(a, adata, &constants);
mask = create_zero_mask(adata);
x ^= a & zero_bytemask(mask);
return hashlen_create(fold_hash(x, y), len + find_zero(mask));
}
EXPORT_SYMBOL(hashlen_string);
/*
* Calculate the length and hash of the path component, and
* return the "hash_len" as the result.
*/
static inline u64 hash_name(const void *salt, const char *name)
{
unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
unsigned long adata, bdata, mask, len;
const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
len = 0;
goto inside;
do {
HASH_MIX(x, y, a);
len += sizeof(unsigned long);
inside:
a = load_unaligned_zeropad(name+len);
b = a ^ REPEAT_BYTE('/');
} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
adata = prep_zero_mask(a, adata, &constants);
bdata = prep_zero_mask(b, bdata, &constants);
mask = create_zero_mask(adata | bdata);
x ^= a & zero_bytemask(mask);
return hashlen_create(fold_hash(x, y), len + find_zero(mask));
}
#else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
/* Return the hash of a string of known length */
unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
{
unsigned long hash = init_name_hash(salt);
while (len--)
hash = partial_name_hash((unsigned char)*name++, hash);
return end_name_hash(hash);
}
EXPORT_SYMBOL(full_name_hash);
/* Return the "hash_len" (hash and length) of a null-terminated string */
u64 hashlen_string(const void *salt, const char *name)
{
unsigned long hash = init_name_hash(salt);
unsigned long len = 0, c;
c = (unsigned char)*name;
while (c) {
len++;
hash = partial_name_hash(c, hash);
c = (unsigned char)name[len];
}
return hashlen_create(end_name_hash(hash), len);
}
EXPORT_SYMBOL(hashlen_string);
/*
* We know there's a real path component here of at least
* one character.
*/
static inline u64 hash_name(const void *salt, const char *name)
{
unsigned long hash = init_name_hash(salt);
unsigned long len = 0, c;
c = (unsigned char)*name;
do {
len++;
hash = partial_name_hash(c, hash);
c = (unsigned char)name[len];
} while (c && c != '/');
return hashlen_create(end_name_hash(hash), len);
}
#endif
/*
* Name resolution.
* This is the basic name resolution function, turning a pathname into
* the final dentry. We expect 'base' to be positive and a directory.
*
* Returns 0 and nd will have valid dentry and mnt on success.
* Returns error and drops reference to input namei data on failure.
*/
static int link_path_walk(const char *name, struct nameidata *nd)
{
int depth = 0; // depth <= nd->depth
int err;
nd->last_type = LAST_ROOT;
nd->flags |= LOOKUP_PARENT;
if (IS_ERR(name))
return PTR_ERR(name);
while (*name=='/')
name++;
if (!*name)
return 0;
/* At this point we know we have a real path component. */
for(;;) {
const char *link;
u64 hash_len;
int type;
err = may_lookup(nd);
if (err)
return err;
hash_len = hash_name(nd->path.dentry, name);
type = LAST_NORM;
if (name[0] == '.') switch (hashlen_len(hash_len)) {
case 2:
if (name[1] == '.') {
type = LAST_DOTDOT;
nd->flags |= LOOKUP_JUMPED;
}
break;
case 1:
type = LAST_DOT;
}
if (likely(type == LAST_NORM)) {
struct dentry *parent = nd->path.dentry;
nd->flags &= ~LOOKUP_JUMPED;
if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
struct qstr this = { { .hash_len = hash_len }, .name = name };
err = parent->d_op->d_hash(parent, &this);
if (err < 0)
return err;
hash_len = this.hash_len;
name = this.name;
}
}
nd->last.hash_len = hash_len;
nd->last.name = name;
nd->last_type = type;
name += hashlen_len(hash_len);
if (!*name)
goto OK;
/*
* If it wasn't NUL, we know it was '/'. Skip that
* slash, and continue until no more slashes.
*/
do {
name++;
} while (unlikely(*name == '/'));
if (unlikely(!*name)) {
OK:
/* pathname or trailing symlink, done */
if (!depth) {
nd->dir_uid = nd->inode->i_uid;
nd->dir_mode = nd->inode->i_mode;
nd->flags &= ~LOOKUP_PARENT;
return 0;
}
/* last component of nested symlink */
name = nd->stack[--depth].name;
link = walk_component(nd, 0);
} else {
/* not the last component */
link = walk_component(nd, WALK_MORE);
}
if (unlikely(link)) {
if (IS_ERR(link))
return PTR_ERR(link);
/* a symlink to follow */
nd->stack[depth++].name = name;
name = link;
continue;
}
if (unlikely(!d_can_lookup(nd->path.dentry))) {
if (nd->flags & LOOKUP_RCU) {
if (unlazy_walk(nd))
return -ECHILD;
}
return -ENOTDIR;
}
}
}
/* must be paired with terminate_walk() */
static const char *path_init(struct nameidata *nd, unsigned flags)
{
int error;
const char *s = nd->name->name;
if (!*s)
flags &= ~LOOKUP_RCU;
if (flags & LOOKUP_RCU)
rcu_read_lock();
nd->flags = flags | LOOKUP_JUMPED;
nd->depth = 0;
nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
smp_rmb();
if (flags & LOOKUP_ROOT) {
struct dentry *root = nd->root.dentry;
struct inode *inode = root->d_inode;
if (*s && unlikely(!d_can_lookup(root)))
return ERR_PTR(-ENOTDIR);
nd->path = nd->root;
nd->inode = inode;
if (flags & LOOKUP_RCU) {
nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
nd->root_seq = nd->seq;
} else {
path_get(&nd->path);
}
return s;
}
nd->root.mnt = NULL;
nd->path.mnt = NULL;
nd->path.dentry = NULL;
/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
error = nd_jump_root(nd);
if (unlikely(error))
return ERR_PTR(error);
return s;
}
/* Relative pathname -- get the starting-point it is relative to. */
if (nd->dfd == AT_FDCWD) {
if (flags & LOOKUP_RCU) {
struct fs_struct *fs = current->fs;
unsigned seq;
do {
seq = read_seqcount_begin(&fs->seq);
nd->path = fs->pwd;
nd->inode = nd->path.dentry->d_inode;
nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
} while (read_seqcount_retry(&fs->seq, seq));
} else {
get_fs_pwd(current->fs, &nd->path);
nd->inode = nd->path.dentry->d_inode;
}
} else {
/* Caller must check execute permissions on the starting path component */
struct fd f = fdget_raw(nd->dfd);
struct dentry *dentry;
if (!f.file)
return ERR_PTR(-EBADF);
dentry = f.file->f_path.dentry;
if (*s && unlikely(!d_can_lookup(dentry))) {
fdput(f);
return ERR_PTR(-ENOTDIR);
}
nd->path = f.file->f_path;
if (flags & LOOKUP_RCU) {
nd->inode = nd->path.dentry->d_inode;
nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
} else {
path_get(&nd->path);
nd->inode = nd->path.dentry->d_inode;
}
fdput(f);
}
/* For scoped-lookups we need to set the root to the dirfd as well. */
if (flags & LOOKUP_IS_SCOPED) {
nd->root = nd->path;
if (flags & LOOKUP_RCU) {
nd->root_seq = nd->seq;
} else {
path_get(&nd->root);
nd->flags |= LOOKUP_ROOT_GRABBED;
}
}
return s;
}
static inline const char *lookup_last(struct nameidata *nd)
{
if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
return walk_component(nd, WALK_TRAILING);
}
static int handle_lookup_down(struct nameidata *nd)
{
if (!(nd->flags & LOOKUP_RCU))
dget(nd->path.dentry);
return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
nd->path.dentry, nd->inode, nd->seq));
}
/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
{
const char *s = path_init(nd, flags);
int err;
if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
err = handle_lookup_down(nd);
if (unlikely(err < 0))
s = ERR_PTR(err);
}
while (!(err = link_path_walk(s, nd)) &&
(s = lookup_last(nd)) != NULL)
;
if (!err)
err = complete_walk(nd);
if (!err && nd->flags & LOOKUP_DIRECTORY)
if (!d_can_lookup(nd->path.dentry))
err = -ENOTDIR;
if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
err = handle_lookup_down(nd);
nd->flags &= ~LOOKUP_JUMPED; // no d_weak_revalidate(), please...
}
if (!err) {
*path = nd->path;
nd->path.mnt = NULL;
nd->path.dentry = NULL;
}
terminate_walk(nd);
return err;
}
int filename_lookup(int dfd, struct filename *name, unsigned flags,
struct path *path, struct path *root)
{
int retval;
struct nameidata nd;
if (IS_ERR(name))
return PTR_ERR(name);
if (unlikely(root)) {
nd.root = *root;
flags |= LOOKUP_ROOT;
}
set_nameidata(&nd, dfd, name);
retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
if (unlikely(retval == -ECHILD))
retval = path_lookupat(&nd, flags, path);
if (unlikely(retval == -ESTALE))
retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
if (likely(!retval))
audit_inode(name, path->dentry,
flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
restore_nameidata();
putname(name);
return retval;
}
/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
static int path_parentat(struct nameidata *nd, unsigned flags,
struct path *parent)
{
const char *s = path_init(nd, flags);
int err = link_path_walk(s, nd);
if (!err)
err = complete_walk(nd);
if (!err) {
*parent = nd->path;
nd->path.mnt = NULL;
nd->path.dentry = NULL;
}
terminate_walk(nd);
return err;
}
static struct filename *filename_parentat(int dfd, struct filename *name,
unsigned int flags, struct path *parent,
struct qstr *last, int *type)
{
int retval;
struct nameidata nd;
if (IS_ERR(name))
return name;
set_nameidata(&nd, dfd, name);
retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
if (unlikely(retval == -ECHILD))
retval = path_parentat(&nd, flags, parent);
if (unlikely(retval == -ESTALE))
retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
if (likely(!retval)) {
*last = nd.last;
*type = nd.last_type;
audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
} else {
putname(name);
name = ERR_PTR(retval);
}
restore_nameidata();
return name;
}
/* does lookup, returns the object with parent locked */
struct dentry *kern_path_locked(const char *name, struct path *path)
{
struct filename *filename;
struct dentry *d;
struct qstr last;
int type;
filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
&last, &type);
if (IS_ERR(filename))
return ERR_CAST(filename);
if (unlikely(type != LAST_NORM)) {
path_put(path);
putname(filename);
return ERR_PTR(-EINVAL);
}
inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
d = __lookup_hash(&last, path->dentry, 0);
if (IS_ERR(d)) {
inode_unlock(path->dentry->d_inode);
path_put(path);
}
putname(filename);
return d;
}
int kern_path(const char *name, unsigned int flags, struct path *path)
{
return filename_lookup(AT_FDCWD, getname_kernel(name),
flags, path, NULL);
}
EXPORT_SYMBOL(kern_path);
/**
* vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
* @dentry: pointer to dentry of the base directory
* @mnt: pointer to vfs mount of the base directory
* @name: pointer to file name
* @flags: lookup flags
* @path: pointer to struct path to fill
*/
int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
const char *name, unsigned int flags,
struct path *path)
{
struct path root = {.mnt = mnt, .dentry = dentry};
/* the first argument of filename_lookup() is ignored with root */
return filename_lookup(AT_FDCWD, getname_kernel(name),
flags , path, &root);
}
EXPORT_SYMBOL(vfs_path_lookup);
static int lookup_one_len_common(const char *name, struct dentry *base,
int len, struct qstr *this)
{
this->name = name;
this->len = len;
this->hash = full_name_hash(base, name, len);
if (!len)
return -EACCES;
if (unlikely(name[0] == '.')) {
if (len < 2 || (len == 2 && name[1] == '.'))
return -EACCES;
}
while (len--) {
unsigned int c = *(const unsigned char *)name++;
if (c == '/' || c == '\0')
return -EACCES;
}
/*
* See if the low-level filesystem might want
* to use its own hash..
*/
if (base->d_flags & DCACHE_OP_HASH) {
int err = base->d_op->d_hash(base, this);
if (err < 0)
return err;
}
return inode_permission(base->d_inode, MAY_EXEC);
}
/**
* try_lookup_one_len - filesystem helper to lookup single pathname component
* @name: pathname component to lookup
* @base: base directory to lookup from
* @len: maximum length @len should be interpreted to
*
* Look up a dentry by name in the dcache, returning NULL if it does not
* currently exist. The function does not try to create a dentry.
*
* Note that this routine is purely a helper for filesystem usage and should
* not be called by generic code.
*
* The caller must hold base->i_mutex.
*/
struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
{
struct qstr this;
int err;
WARN_ON_ONCE(!inode_is_locked(base->d_inode));
err = lookup_one_len_common(name, base, len, &this);
if (err)
return ERR_PTR(err);
return lookup_dcache(&this, base, 0);
}
EXPORT_SYMBOL(try_lookup_one_len);
/**
* lookup_one_len - filesystem helper to lookup single pathname component
* @name: pathname component to lookup
* @base: base directory to lookup from
* @len: maximum length @len should be interpreted to
*
* Note that this routine is purely a helper for filesystem usage and should
* not be called by generic code.
*
* The caller must hold base->i_mutex.
*/
struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
{
struct dentry *dentry;
struct qstr this;
int err;
WARN_ON_ONCE(!inode_is_locked(base->d_inode));
err = lookup_one_len_common(name, base, len, &this);
if (err)
return ERR_PTR(err);
dentry = lookup_dcache(&this, base, 0);
return dentry ? dentry : __lookup_slow(&this, base, 0);
}
EXPORT_SYMBOL(lookup_one_len);
/**
* lookup_one_len_unlocked - filesystem helper to lookup single pathname component
* @name: pathname component to lookup
* @base: base directory to lookup from
* @len: maximum length @len should be interpreted to
*
* Note that this routine is purely a helper for filesystem usage and should
* not be called by generic code.
*
* Unlike lookup_one_len, it should be called without the parent
* i_mutex held, and will take the i_mutex itself if necessary.
*/
struct dentry *lookup_one_len_unlocked(const char *name,
struct dentry *base, int len)
{
struct qstr this;
int err;
struct dentry *ret;
err = lookup_one_len_common(name, base, len, &this);
if (err)
return ERR_PTR(err);
ret = lookup_dcache(&this, base, 0);
if (!ret)
ret = lookup_slow(&this, base, 0);
return ret;
}
EXPORT_SYMBOL(lookup_one_len_unlocked);
/*
* Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
* on negatives. Returns known positive or ERR_PTR(); that's what
* most of the users want. Note that pinned negative with unlocked parent
* _can_ become positive at any time, so callers of lookup_one_len_unlocked()
* need to be very careful; pinned positives have ->d_inode stable, so
* this one avoids such problems.
*/
struct dentry *lookup_positive_unlocked(const char *name,
struct dentry *base, int len)
{
struct dentry *ret = lookup_one_len_unlocked(name, base, len);
if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
dput(ret);
ret = ERR_PTR(-ENOENT);
}
return ret;
}
EXPORT_SYMBOL(lookup_positive_unlocked);
#ifdef CONFIG_UNIX98_PTYS
int path_pts(struct path *path)
{
/* Find something mounted on "pts" in the same directory as
* the input path.
*/
struct dentry *parent = dget_parent(path->dentry);
struct dentry *child;
struct qstr this = QSTR_INIT("pts", 3);
if (unlikely(!path_connected(path->mnt, parent))) {
dput(parent);
return -ENOENT;
}
dput(path->dentry);
path->dentry = parent;
child = d_hash_and_lookup(parent, &this);
if (!child)
return -ENOENT;
path->dentry = child;
dput(parent);
follow_down(path);
return 0;
}
#endif
int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
struct path *path, int *empty)
{
return filename_lookup(dfd, getname_flags(name, flags, empty),
flags, path, NULL);
}
EXPORT_SYMBOL(user_path_at_empty);
int __check_sticky(struct inode *dir, struct inode *inode)
{
kuid_t fsuid = current_fsuid();
if (uid_eq(inode->i_uid, fsuid))
return 0;
if (uid_eq(dir->i_uid, fsuid))
return 0;
return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
}
EXPORT_SYMBOL(__check_sticky);
/*
* Check whether we can remove a link victim from directory dir, check
* whether the type of victim is right.
* 1. We can't do it if dir is read-only (done in permission())
* 2. We should have write and exec permissions on dir
* 3. We can't remove anything from append-only dir
* 4. We can't do anything with immutable dir (done in permission())
* 5. If the sticky bit on dir is set we should either
* a. be owner of dir, or
* b. be owner of victim, or
* c. have CAP_FOWNER capability
* 6. If the victim is append-only or immutable we can't do antyhing with
* links pointing to it.
* 7. If the victim has an unknown uid or gid we can't change the inode.
* 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
* 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
* 10. We can't remove a root or mountpoint.
* 11. We don't allow removal of NFS sillyrenamed files; it's handled by
* nfs_async_unlink().
*/
static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
{
struct inode *inode = d_backing_inode(victim);
int error;
if (d_is_negative(victim))
return -ENOENT;
BUG_ON(!inode);
BUG_ON(victim->d_parent->d_inode != dir);
/* Inode writeback is not safe when the uid or gid are invalid. */
if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
return -EOVERFLOW;
audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
if (error)
return error;
if (IS_APPEND(dir))
return -EPERM;
if (check_sticky(dir, inode) || IS_APPEND(inode) ||
IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
return -EPERM;
if (isdir) {
if (!d_is_dir(victim))
return -ENOTDIR;
if (IS_ROOT(victim))
return -EBUSY;
} else if (d_is_dir(victim))
return -EISDIR;
if (IS_DEADDIR(dir))
return -ENOENT;
if (victim->d_flags & DCACHE_NFSFS_RENAMED)
return -EBUSY;
return 0;
}
/* Check whether we can create an object with dentry child in directory
* dir.
* 1. We can't do it if child already exists (open has special treatment for
* this case, but since we are inlined it's OK)
* 2. We can't do it if dir is read-only (done in permission())
* 3. We can't do it if the fs can't represent the fsuid or fsgid.
* 4. We should have write and exec permissions on dir
* 5. We can't do it if dir is immutable (done in permission())
*/
static inline int may_create(struct inode *dir, struct dentry *child)
{
struct user_namespace *s_user_ns;
audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
if (child->d_inode)
return -EEXIST;
if (IS_DEADDIR(dir))
return -ENOENT;
s_user_ns = dir->i_sb->s_user_ns;
if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
!kgid_has_mapping(s_user_ns, current_fsgid()))
return -EOVERFLOW;
return inode_permission(dir, MAY_WRITE | MAY_EXEC);
}
/*
* p1 and p2 should be directories on the same fs.
*/
struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
{
struct dentry *p;
if (p1 == p2) {
inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
return NULL;
}
mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
p = d_ancestor(p2, p1);
if (p) {
inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
return p;
}
p = d_ancestor(p1, p2);
if (p) {
inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
return p;
}
inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
return NULL;
}
EXPORT_SYMBOL(lock_rename);
void unlock_rename(struct dentry *p1, struct dentry *p2)
{
inode_unlock(p1->d_inode);
if (p1 != p2) {
inode_unlock(p2->d_inode);
mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
}
}
EXPORT_SYMBOL(unlock_rename);
int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
bool want_excl)
{
int error = may_create(dir, dentry);
if (error)
return error;
if (!dir->i_op->create)
return -EACCES; /* shouldn't it be ENOSYS? */
mode &= S_IALLUGO;
mode |= S_IFREG;
error = security_inode_create(dir, dentry, mode);
if (error)
return error;
error = dir->i_op->create(dir, dentry, mode, want_excl);
if (!error)
fsnotify_create(dir, dentry);
return error;
}
EXPORT_SYMBOL(vfs_create);
int vfs_mkobj(struct dentry *dentry, umode_t mode,
int (*f)(struct dentry *, umode_t, void *),
void *arg)
{
struct inode *dir = dentry->d_parent->d_inode;
int error = may_create(dir, dentry);
if (error)
return error;
mode &= S_IALLUGO;
mode |= S_IFREG;
error = security_inode_create(dir, dentry, mode);
if (error)
return error;
error = f(dentry, mode, arg);
if (!error)
fsnotify_create(dir, dentry);
return error;
}
EXPORT_SYMBOL(vfs_mkobj);
bool may_open_dev(const struct path *path)
{
return !(path->mnt->mnt_flags & MNT_NODEV) &&
!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
}
static int may_open(const struct path *path, int acc_mode, int flag)
{
struct dentry *dentry = path->dentry;
struct inode *inode = dentry->d_inode;
int error;
if (!inode)
return -ENOENT;
switch (inode->i_mode & S_IFMT) {
case S_IFLNK:
return -ELOOP;
case S_IFDIR:
if (acc_mode & MAY_WRITE)
return -EISDIR;
if (acc_mode & MAY_EXEC)
return -EACCES;
break;
case S_IFBLK:
case S_IFCHR:
if (!may_open_dev(path))
return -EACCES;
fallthrough;
case S_IFIFO:
case S_IFSOCK:
if (acc_mode & MAY_EXEC)
return -EACCES;
flag &= ~O_TRUNC;
break;
case S_IFREG:
if ((acc_mode & MAY_EXEC) && path_noexec(path))
return -EACCES;
break;
}
error = inode_permission(inode, MAY_OPEN | acc_mode);
if (error)
return error;
/*
* An append-only file must be opened in append mode for writing.
*/
if (IS_APPEND(inode)) {
if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
return -EPERM;
if (flag & O_TRUNC)
return -EPERM;
}
/* O_NOATIME can only be set by the owner or superuser */
if (flag & O_NOATIME && !inode_owner_or_capable(inode))
return -EPERM;
return 0;
}
static int handle_truncate(struct file *filp)
{
const struct path *path = &filp->f_path;
struct inode *inode = path->dentry->d_inode;
int error = get_write_access(inode);
if (error)
return error;
/*
* Refuse to truncate files with mandatory locks held on them.
*/
error = locks_verify_locked(filp);
if (!error)
error = security_path_truncate(path);
if (!error) {
error = do_truncate(path->dentry, 0,
ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
filp);
}
put_write_access(inode);
return error;
}
static inline int open_to_namei_flags(int flag)
{
if ((flag & O_ACCMODE) == 3)
flag--;
return flag;
}
static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
{
struct user_namespace *s_user_ns;
int error = security_path_mknod(dir, dentry, mode, 0);
if (error)
return error;
s_user_ns = dir->dentry->d_sb->s_user_ns;
if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
!kgid_has_mapping(s_user_ns, current_fsgid()))
return -EOVERFLOW;
error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
if (error)
return error;
return security_inode_create(dir->dentry->d_inode, dentry, mode);
}
/*
* Attempt to atomically look up, create and open a file from a negative
* dentry.
*
* Returns 0 if successful. The file will have been created and attached to
* @file by the filesystem calling finish_open().
*
* If the file was looked up only or didn't need creating, FMODE_OPENED won't
* be set. The caller will need to perform the open themselves. @path will
* have been updated to point to the new dentry. This may be negative.
*
* Returns an error code otherwise.
*/
static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
struct file *file,
int open_flag, umode_t mode)
{
struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
struct inode *dir = nd->path.dentry->d_inode;
int error;
if (nd->flags & LOOKUP_DIRECTORY)
open_flag |= O_DIRECTORY;
file->f_path.dentry = DENTRY_NOT_SET;
file->f_path.mnt = nd->path.mnt;
error = dir->i_op->atomic_open(dir, dentry, file,
open_to_namei_flags(open_flag), mode);
d_lookup_done(dentry);
if (!error) {
if (file->f_mode & FMODE_OPENED) {
if (unlikely(dentry != file->f_path.dentry)) {
dput(dentry);
dentry = dget(file->f_path.dentry);
}
} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
error = -EIO;
} else {
if (file->f_path.dentry) {
dput(dentry);
dentry = file->f_path.dentry;
}
if (unlikely(d_is_negative(dentry)))
error = -ENOENT;
}
}
if (error) {
dput(dentry);
dentry = ERR_PTR(error);
}
return dentry;
}
/*
* Look up and maybe create and open the last component.
*
* Must be called with parent locked (exclusive in O_CREAT case).
*
* Returns 0 on success, that is, if
* the file was successfully atomically created (if necessary) and opened, or
* the file was not completely opened at this time, though lookups and
* creations were performed.
* These case are distinguished by presence of FMODE_OPENED on file->f_mode.
* In the latter case dentry returned in @path might be negative if O_CREAT
* hadn't been specified.
*
* An error code is returned on failure.
*/
static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
const struct open_flags *op,
bool got_write)
{
struct dentry *dir = nd->path.dentry;
struct inode *dir_inode = dir->d_inode;
int open_flag = op->open_flag;
struct dentry *dentry;
int error, create_error = 0;
umode_t mode = op->mode;
DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
if (unlikely(IS_DEADDIR(dir_inode)))
return ERR_PTR(-ENOENT);
file->f_mode &= ~FMODE_CREATED;
dentry = d_lookup(dir, &nd->last);
for (;;) {
if (!dentry) {
dentry = d_alloc_parallel(dir, &nd->last, &wq);
if (IS_ERR(dentry))
return dentry;
}
if (d_in_lookup(dentry))
break;
error = d_revalidate(dentry, nd->flags);
if (likely(error > 0))
break;
if (error)
goto out_dput;
d_invalidate(dentry);
dput(dentry);
dentry = NULL;
}
if (dentry->d_inode) {
/* Cached positive dentry: will open in f_op->open */
return dentry;
}
/*
* Checking write permission is tricky, bacuse we don't know if we are
* going to actually need it: O_CREAT opens should work as long as the
* file exists. But checking existence breaks atomicity. The trick is
* to check access and if not granted clear O_CREAT from the flags.
*
* Another problem is returing the "right" error value (e.g. for an
* O_EXCL open we want to return EEXIST not EROFS).
*/
if (unlikely(!got_write))
open_flag &= ~O_TRUNC;
if (open_flag & O_CREAT) {
if (open_flag & O_EXCL)
open_flag &= ~O_TRUNC;
if (!IS_POSIXACL(dir->d_inode))
mode &= ~current_umask();
if (likely(got_write))
create_error = may_o_create(&nd->path, dentry, mode);
else
create_error = -EROFS;
}
if (create_error)
open_flag &= ~O_CREAT;
if (dir_inode->i_op->atomic_open) {
dentry = atomic_open(nd, dentry, file, open_flag, mode);
if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
dentry = ERR_PTR(create_error);
return dentry;
}
if (d_in_lookup(dentry)) {
struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
nd->flags);
d_lookup_done(dentry);
if (unlikely(res)) {
if (IS_ERR(res)) {
error = PTR_ERR(res);
goto out_dput;
}
dput(dentry);
dentry = res;
}
}
/* Negative dentry, just create the file */
if (!dentry->d_inode && (open_flag & O_CREAT)) {
file->f_mode |= FMODE_CREATED;
audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
if (!dir_inode->i_op->create) {
error = -EACCES;
goto out_dput;
}
error = dir_inode->i_op->create(dir_inode, dentry, mode,
open_flag & O_EXCL);
if (error)
goto out_dput;
}
if (unlikely(create_error) && !dentry->d_inode) {
error = create_error;
goto out_dput;
}
return dentry;
out_dput:
dput(dentry);
return ERR_PTR(error);
}
static const char *open_last_lookups(struct nameidata *nd,
struct file *file, const struct open_flags *op)
{
struct dentry *dir = nd->path.dentry;
int open_flag = op->open_flag;
bool got_write = false;
unsigned seq;
struct inode *inode;
struct dentry *dentry;
const char *res;
int error;
nd->flags |= op->intent;
if (nd->last_type != LAST_NORM) {
if (nd->depth)
put_link(nd);
return handle_dots(nd, nd->last_type);
}
if (!(open_flag & O_CREAT)) {
if (nd->last.name[nd->last.len])
nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
/* we _can_ be in RCU mode here */
dentry = lookup_fast(nd, &inode, &seq);
if (IS_ERR(dentry))
return ERR_CAST(dentry);
if (likely(dentry))
goto finish_lookup;
BUG_ON(nd->flags & LOOKUP_RCU);
} else {
/* create side of things */
if (nd->flags & LOOKUP_RCU) {
error = unlazy_walk(nd);
if (unlikely(error))
return ERR_PTR(error);
}
audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
/* trailing slashes? */
if (unlikely(nd->last.name[nd->last.len]))
return ERR_PTR(-EISDIR);
}
if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
error = mnt_want_write(nd->path.mnt);
if (!error)
got_write = true;
/*
* do _not_ fail yet - we might not need that or fail with
* a different error; let lookup_open() decide; we'll be
* dropping this one anyway.
*/
}
if (open_flag & O_CREAT)
inode_lock(dir->d_inode);
else
inode_lock_shared(dir->d_inode);
dentry = lookup_open(nd, file, op, got_write);
if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
fsnotify_create(dir->d_inode, dentry);
if (open_flag & O_CREAT)
inode_unlock(dir->d_inode);
else
inode_unlock_shared(dir->d_inode);
if (got_write)
mnt_drop_write(nd->path.mnt);
if (IS_ERR(dentry))
return ERR_CAST(dentry);
if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
dput(nd->path.dentry);
nd->path.dentry = dentry;
return NULL;
}
finish_lookup:
if (nd->depth)
put_link(nd);
res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
if (unlikely(res))
nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
return res;
}
/*
* Handle the last step of open()
*/
static int do_open(struct nameidata *nd,
struct file *file, const struct open_flags *op)
{
int open_flag = op->open_flag;
bool do_truncate;
int acc_mode;
int error;
if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
error = complete_walk(nd);
if (error)
return error;
}
if (!(file->f_mode & FMODE_CREATED))
audit_inode(nd->name, nd->path.dentry, 0);
if (open_flag & O_CREAT) {
if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
return -EEXIST;
if (d_is_dir(nd->path.dentry))
return -EISDIR;
error = may_create_in_sticky(nd->dir_mode, nd->dir_uid,
d_backing_inode(nd->path.dentry));
if (unlikely(error))
return error;
}
if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
return -ENOTDIR;
do_truncate = false;
acc_mode = op->acc_mode;
if (file->f_mode & FMODE_CREATED) {
/* Don't check for write permission, don't truncate */
open_flag &= ~O_TRUNC;
acc_mode = 0;
} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
error = mnt_want_write(nd->path.mnt);
if (error)
return error;
do_truncate = true;
}
error = may_open(&nd->path, acc_mode, open_flag);
if (!error && !(file->f_mode & FMODE_OPENED))
error = vfs_open(&nd->path, file);
if (!error)
error = ima_file_check(file, op->acc_mode);
if (!error && do_truncate)
error = handle_truncate(file);
if (unlikely(error > 0)) {
WARN_ON(1);
error = -EINVAL;
}
if (do_truncate)
mnt_drop_write(nd->path.mnt);
return error;
}
struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
{
struct dentry *child = NULL;
struct inode *dir = dentry->d_inode;
struct inode *inode;
int error;
/* we want directory to be writable */
error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
if (error)
goto out_err;
error = -EOPNOTSUPP;
if (!dir->i_op->tmpfile)
goto out_err;
error = -ENOMEM;
child = d_alloc(dentry, &slash_name);
if (unlikely(!child))
goto out_err;
error = dir->i_op->tmpfile(dir, child, mode);
if (error)
goto out_err;
error = -ENOENT;
inode = child->d_inode;
if (unlikely(!inode))
goto out_err;
if (!(open_flag & O_EXCL)) {
spin_lock(&inode->i_lock);
inode->i_state |= I_LINKABLE;
spin_unlock(&inode->i_lock);
}
ima_post_create_tmpfile(inode);
return child;
out_err:
dput(child);
return ERR_PTR(error);
}
EXPORT_SYMBOL(vfs_tmpfile);
static int do_tmpfile(struct nameidata *nd, unsigned flags,
const struct open_flags *op,
struct file *file)
{
struct dentry *child;
struct path path;
int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
if (unlikely(error))
return error;
error = mnt_want_write(path.mnt);
if (unlikely(error))
goto out;
child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
error = PTR_ERR(child);
if (IS_ERR(child))
goto out2;
dput(path.dentry);
path.dentry = child;
audit_inode(nd->name, child, 0);
/* Don't check for other permissions, the inode was just created */
error = may_open(&path, 0, op->open_flag);
if (error)
goto out2;
file->f_path.mnt = path.mnt;
error = finish_open(file, child, NULL);
out2:
mnt_drop_write(path.mnt);
out:
path_put(&path);
return error;
}
static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
{
struct path path;
int error = path_lookupat(nd, flags, &path);
if (!error) {
audit_inode(nd->name, path.dentry, 0);
error = vfs_open(&path, file);
path_put(&path);
}
return error;
}
static struct file *path_openat(struct nameidata *nd,
const struct open_flags *op, unsigned flags)
{
struct file *file;
int error;
file = alloc_empty_file(op->open_flag, current_cred());
if (IS_ERR(file))
return file;
if (unlikely(file->f_flags & __O_TMPFILE)) {
error = do_tmpfile(nd, flags, op, file);
} else if (unlikely(file->f_flags & O_PATH)) {
error = do_o_path(nd, flags, file);
} else {
const char *s = path_init(nd, flags);
while (!(error = link_path_walk(s, nd)) &&
(s = open_last_lookups(nd, file, op)) != NULL)
;
if (!error)
error = do_open(nd, file, op);
terminate_walk(nd);
}
if (likely(!error)) {
if (likely(file->f_mode & FMODE_OPENED))
return file;
WARN_ON(1);
error = -EINVAL;
}
fput(file);
if (error == -EOPENSTALE) {
if (flags & LOOKUP_RCU)
error = -ECHILD;
else
error = -ESTALE;
}
return ERR_PTR(error);
}
struct file *do_filp_open(int dfd, struct filename *pathname,
const struct open_flags *op)
{
struct nameidata nd;
int flags = op->lookup_flags;
struct file *filp;
set_nameidata(&nd, dfd, pathname);
filp = path_openat(&nd, op, flags | LOOKUP_RCU);
if (unlikely(filp == ERR_PTR(-ECHILD)))
filp = path_openat(&nd, op, flags);
if (unlikely(filp == ERR_PTR(-ESTALE)))
filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
restore_nameidata();
return filp;
}
struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
const char *name, const struct open_flags *op)
{
struct nameidata nd;
struct file *file;
struct filename *filename;
int flags = op->lookup_flags | LOOKUP_ROOT;
nd.root.mnt = mnt;
nd.root.dentry = dentry;
if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
return ERR_PTR(-ELOOP);
filename = getname_kernel(name);
if (IS_ERR(filename))
return ERR_CAST(filename);
set_nameidata(&nd, -1, filename);
file = path_openat(&nd, op, flags | LOOKUP_RCU);
if (unlikely(file == ERR_PTR(-ECHILD)))
file = path_openat(&nd, op, flags);
if (unlikely(file == ERR_PTR(-ESTALE)))
file = path_openat(&nd, op, flags | LOOKUP_REVAL);
restore_nameidata();
putname(filename);
return file;
}
static struct dentry *filename_create(int dfd, struct filename *name,
struct path *path, unsigned int lookup_flags)
{
struct dentry *dentry = ERR_PTR(-EEXIST);
struct qstr last;
int type;
int err2;
int error;
bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
/*
* Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
* other flags passed in are ignored!
*/
lookup_flags &= LOOKUP_REVAL;
name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
if (IS_ERR(name))
return ERR_CAST(name);
/*
* Yucky last component or no last component at all?
* (foo/., foo/.., /////)
*/
if (unlikely(type != LAST_NORM))
goto out;
/* don't fail immediately if it's r/o, at least try to report other errors */
err2 = mnt_want_write(path->mnt);
/*
* Do the final lookup.
*/
lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
dentry = __lookup_hash(&last, path->dentry, lookup_flags);
if (IS_ERR(dentry))
goto unlock;
error = -EEXIST;
if (d_is_positive(dentry))
goto fail;
/*
* Special case - lookup gave negative, but... we had foo/bar/
* From the vfs_mknod() POV we just have a negative dentry -
* all is fine. Let's be bastards - you had / on the end, you've
* been asking for (non-existent) directory. -ENOENT for you.
*/
if (unlikely(!is_dir && last.name[last.len])) {
error = -ENOENT;
goto fail;
}
if (unlikely(err2)) {
error = err2;
goto fail;
}
putname(name);
return dentry;
fail:
dput(dentry);
dentry = ERR_PTR(error);
unlock:
inode_unlock(path->dentry->d_inode);
if (!err2)
mnt_drop_write(path->mnt);
out:
path_put(path);
putname(name);
return dentry;
}
struct dentry *kern_path_create(int dfd, const char *pathname,
struct path *path, unsigned int lookup_flags)
{
return filename_create(dfd, getname_kernel(pathname),
path, lookup_flags);
}
EXPORT_SYMBOL(kern_path_create);
void done_path_create(struct path *path, struct dentry *dentry)
{
dput(dentry);
inode_unlock(path->dentry->d_inode);
mnt_drop_write(path->mnt);
path_put(path);
}
EXPORT_SYMBOL(done_path_create);
inline struct dentry *user_path_create(int dfd, const char __user *pathname,
struct path *path, unsigned int lookup_flags)
{
return filename_create(dfd, getname(pathname), path, lookup_flags);
}
EXPORT_SYMBOL(user_path_create);
int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
{
bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
int error = may_create(dir, dentry);
if (error)
return error;
if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
!capable(CAP_MKNOD))
return -EPERM;
if (!dir->i_op->mknod)
return -EPERM;
error = devcgroup_inode_mknod(mode, dev);
if (error)
return error;
error = security_inode_mknod(dir, dentry, mode, dev);
if (error)
return error;
error = dir->i_op->mknod(dir, dentry, mode, dev);
if (!error)
fsnotify_create(dir, dentry);
return error;
}
EXPORT_SYMBOL(vfs_mknod);
static int may_mknod(umode_t mode)
{
switch (mode & S_IFMT) {
case S_IFREG:
case S_IFCHR:
case S_IFBLK:
case S_IFIFO:
case S_IFSOCK:
case 0: /* zero mode translates to S_IFREG */
return 0;
case S_IFDIR:
return -EPERM;
default:
return -EINVAL;
}
}
static long do_mknodat(int dfd, const char __user *filename, umode_t mode,
unsigned int dev)
{
struct dentry *dentry;
struct path path;
int error;
unsigned int lookup_flags = 0;
error = may_mknod(mode);
if (error)
return error;
retry:
dentry = user_path_create(dfd, filename, &path, lookup_flags);
if (IS_ERR(dentry))
return PTR_ERR(dentry);
if (!IS_POSIXACL(path.dentry->d_inode))
mode &= ~current_umask();
error = security_path_mknod(&path, dentry, mode, dev);
if (error)
goto out;
switch (mode & S_IFMT) {
case 0: case S_IFREG:
error = vfs_create(path.dentry->d_inode,dentry,mode,true);
if (!error)
ima_post_path_mknod(dentry);
break;
case S_IFCHR: case S_IFBLK:
error = vfs_mknod(path.dentry->d_inode,dentry,mode,
new_decode_dev(dev));
break;
case S_IFIFO: case S_IFSOCK:
error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
break;
}
out:
done_path_create(&path, dentry);
if (retry_estale(error, lookup_flags)) {
lookup_flags |= LOOKUP_REVAL;
goto retry;
}
return error;
}
SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
unsigned int, dev)
{
return do_mknodat(dfd, filename, mode, dev);
}
SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
{
return do_mknodat(AT_FDCWD, filename, mode, dev);
}
int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
{
int error = may_create(dir, dentry);
unsigned max_links = dir->i_sb->s_max_links;
if (error)
return error;
if (!dir->i_op->mkdir)
return -EPERM;
mode &= (S_IRWXUGO|S_ISVTX);
error = security_inode_mkdir(dir, dentry, mode);
if (error)
return error;
if (max_links && dir->i_nlink >= max_links)
return -EMLINK;
error = dir->i_op->mkdir(dir, dentry, mode);
if (!error)
fsnotify_mkdir(dir, dentry);
return error;
}
EXPORT_SYMBOL(vfs_mkdir);
static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
{
struct dentry *dentry;
struct path path;
int error;
unsigned int lookup_flags = LOOKUP_DIRECTORY;
retry:
dentry = user_path_create(dfd, pathname, &path, lookup_flags);
if (IS_ERR(dentry))
return PTR_ERR(dentry);
if (!IS_POSIXACL(path.dentry->d_inode))
mode &= ~current_umask();
error = security_path_mkdir(&path, dentry, mode);
if (!error)
error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
done_path_create(&path, dentry);
if (retry_estale(error, lookup_flags)) {
lookup_flags |= LOOKUP_REVAL;
goto retry;
}
return error;
}
SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
{
return do_mkdirat(dfd, pathname, mode);
}
SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
{
return do_mkdirat(AT_FDCWD, pathname, mode);
}
int vfs_rmdir(struct inode *dir, struct dentry *dentry)
{
int error = may_delete(dir, dentry, 1);
if (error)
return error;
if (!dir->i_op->rmdir)
return -EPERM;
dget(dentry);
inode_lock(dentry->d_inode);
error = -EBUSY;
if (is_local_mountpoint(dentry))
goto out;
error = security_inode_rmdir(dir, dentry);
if (error)
goto out;
error = dir->i_op->rmdir(dir, dentry);
if (error)
goto out;
shrink_dcache_parent(dentry);
dentry->d_inode->i_flags |= S_DEAD;
dont_mount(dentry);
detach_mounts(dentry);
fsnotify_rmdir(dir, dentry);
out:
inode_unlock(dentry->d_inode);
dput(dentry);
if (!error)
d_delete(dentry);
return error;
}
EXPORT_SYMBOL(vfs_rmdir);
long do_rmdir(int dfd, struct filename *name)
{
int error = 0;
struct dentry *dentry;
struct path path;
struct qstr last;
int type;
unsigned int lookup_flags = 0;
retry:
name = filename_parentat(dfd, name, lookup_flags,
&path, &last, &type);
if (IS_ERR(name))
return PTR_ERR(name);
switch (type) {
case LAST_DOTDOT:
error = -ENOTEMPTY;
goto exit1;
case LAST_DOT:
error = -EINVAL;
goto exit1;
case LAST_ROOT:
error = -EBUSY;
goto exit1;
}
error = mnt_want_write(path.mnt);
if (error)
goto exit1;
inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
dentry = __lookup_hash(&last, path.dentry, lookup_flags);
error = PTR_ERR(dentry);
if (IS_ERR(dentry))
goto exit2;
if (!dentry->d_inode) {
error = -ENOENT;
goto exit3;
}
error = security_path_rmdir(&path, dentry);
if (error)
goto exit3;
error = vfs_rmdir(path.dentry->d_inode, dentry);
exit3:
dput(dentry);
exit2:
inode_unlock(path.dentry->d_inode);
mnt_drop_write(path.mnt);
exit1:
path_put(&path);
if (retry_estale(error, lookup_flags)) {
lookup_flags |= LOOKUP_REVAL;
goto retry;
}
putname(name);
return error;
}
SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
{
return do_rmdir(AT_FDCWD, getname(pathname));
}
/**
* vfs_unlink - unlink a filesystem object
* @dir: parent directory
* @dentry: victim
* @delegated_inode: returns victim inode, if the inode is delegated.
*
* The caller must hold dir->i_mutex.
*
* If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
* return a reference to the inode in delegated_inode. The caller
* should then break the delegation on that inode and retry. Because
* breaking a delegation may take a long time, the caller should drop
* dir->i_mutex before doing so.
*
* Alternatively, a caller may pass NULL for delegated_inode. This may
* be appropriate for callers that expect the underlying filesystem not
* to be NFS exported.
*/
int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
{
struct inode *target = dentry->d_inode;
int error = may_delete(dir, dentry, 0);
if (error)
return error;
if (!dir->i_op->unlink)
return -EPERM;
inode_lock(target);
if (is_local_mountpoint(dentry))
error = -EBUSY;
else {
error = security_inode_unlink(dir, dentry);
if (!error) {
error = try_break_deleg(target, delegated_inode);
if (error)
goto out;
error = dir->i_op->unlink(dir, dentry);
if (!error) {
dont_mount(dentry);
detach_mounts(dentry);
fsnotify_unlink(dir, dentry);
}
}
}
out:
inode_unlock(target);
/* We don't d_delete() NFS sillyrenamed files--they still exist. */
if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
fsnotify_link_count(target);
d_delete(dentry);
}
return error;
}
EXPORT_SYMBOL(vfs_unlink);
/*
* Make sure that the actual truncation of the file will occur outside its
* directory's i_mutex. Truncate can take a long time if there is a lot of
* writeout happening, and we don't want to prevent access to the directory
* while waiting on the I/O.
*/
long do_unlinkat(int dfd, struct filename *name)
{
int error;
struct dentry *dentry;
struct path path;
struct qstr last;
int type;
struct inode *inode = NULL;
struct inode *delegated_inode = NULL;
unsigned int lookup_flags = 0;
retry:
name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
if (IS_ERR(name))
return PTR_ERR(name);
error = -EISDIR;
if (type != LAST_NORM)
goto exit1;
error = mnt_want_write(path.mnt);
if (error)
goto exit1;
retry_deleg:
inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
dentry = __lookup_hash(&last, path.dentry, lookup_flags);
error = PTR_ERR(dentry);
if (!IS_ERR(dentry)) {
/* Why not before? Because we want correct error value */
if (last.name[last.len])
goto slashes;
inode = dentry->d_inode;
if (d_is_negative(dentry))
goto slashes;
ihold(inode);
error = security_path_unlink(&path, dentry);
if (error)
goto exit2;
error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
exit2:
dput(dentry);
}
inode_unlock(path.dentry->d_inode);
if (inode)
iput(inode); /* truncate the inode here */
inode = NULL;
if (delegated_inode) {
error = break_deleg_wait(&delegated_inode);
if (!error)
goto retry_deleg;
}
mnt_drop_write(path.mnt);
exit1:
path_put(&path);
if (retry_estale(error, lookup_flags)) {
lookup_flags |= LOOKUP_REVAL;
inode = NULL;
goto retry;
}
putname(name);
return error;
slashes:
if (d_is_negative(dentry))
error = -ENOENT;
else if (d_is_dir(dentry))
error = -EISDIR;
else
error = -ENOTDIR;
goto exit2;
}
SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
{
if ((flag & ~AT_REMOVEDIR) != 0)
return -EINVAL;
if (flag & AT_REMOVEDIR)
return do_rmdir(dfd, getname(pathname));
return do_unlinkat(dfd, getname(pathname));
}
SYSCALL_DEFINE1(unlink, const char __user *, pathname)
{
return do_unlinkat(AT_FDCWD, getname(pathname));
}
int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
{
int error = may_create(dir, dentry);
if (error)
return error;
if (!dir->i_op->symlink)
return -EPERM;
error = security_inode_symlink(dir, dentry, oldname);
if (error)
return error;
error = dir->i_op->symlink(dir, dentry, oldname);
if (!error)
fsnotify_create(dir, dentry);
return error;
}
EXPORT_SYMBOL(vfs_symlink);
static long do_symlinkat(const char __user *oldname, int newdfd,
const char __user *newname)
{
int error;
struct filename *from;
struct dentry *dentry;
struct path path;
unsigned int lookup_flags = 0;
from = getname(oldname);
if (IS_ERR(from))
return PTR_ERR(from);
retry:
dentry = user_path_create(newdfd, newname, &path, lookup_flags);
error = PTR_ERR(dentry);
if (IS_ERR(dentry))
goto out_putname;
error = security_path_symlink(&path, dentry, from->name);
if (!error)
error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
done_path_create(&path, dentry);
if (retry_estale(error, lookup_flags)) {
lookup_flags |= LOOKUP_REVAL;
goto retry;
}
out_putname:
putname(from);
return error;
}
SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
int, newdfd, const char __user *, newname)
{
return do_symlinkat(oldname, newdfd, newname);
}
SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
{
return do_symlinkat(oldname, AT_FDCWD, newname);
}
/**
* vfs_link - create a new link
* @old_dentry: object to be linked
* @dir: new parent
* @new_dentry: where to create the new link
* @delegated_inode: returns inode needing a delegation break
*
* The caller must hold dir->i_mutex
*
* If vfs_link discovers a delegation on the to-be-linked file in need
* of breaking, it will return -EWOULDBLOCK and return a reference to the
* inode in delegated_inode. The caller should then break the delegation
* and retry. Because breaking a delegation may take a long time, the
* caller should drop the i_mutex before doing so.
*
* Alternatively, a caller may pass NULL for delegated_inode. This may
* be appropriate for callers that expect the underlying filesystem not
* to be NFS exported.
*/
int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
{
struct inode *inode = old_dentry->d_inode;
unsigned max_links = dir->i_sb->s_max_links;
int error;
if (!inode)
return -ENOENT;
error = may_create(dir, new_dentry);
if (error)
return error;
if (dir->i_sb != inode->i_sb)
return -EXDEV;
/*
* A link to an append-only or immutable file cannot be created.
*/
if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
return -EPERM;
/*
* Updating the link count will likely cause i_uid and i_gid to
* be writen back improperly if their true value is unknown to
* the vfs.
*/
if (HAS_UNMAPPED_ID(inode))
return -EPERM;
if (!dir->i_op->link)
return -EPERM;
if (S_ISDIR(inode->i_mode))
return -EPERM;
error = security_inode_link(old_dentry, dir, new_dentry);
if (error)
return error;
inode_lock(inode);
/* Make sure we don't allow creating hardlink to an unlinked file */
if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
error = -ENOENT;
else if (max_links && inode->i_nlink >= max_links)
error = -EMLINK;
else {
error = try_break_deleg(inode, delegated_inode);
if (!error)
error = dir->i_op->link(old_dentry, dir, new_dentry);
}
if (!error && (inode->i_state & I_LINKABLE)) {
spin_lock(&inode->i_lock);
inode->i_state &= ~I_LINKABLE;
spin_unlock(&inode->i_lock);
}
inode_unlock(inode);
if (!error)
fsnotify_link(dir, inode, new_dentry);
return error;
}
EXPORT_SYMBOL(vfs_link);
/*
* Hardlinks are often used in delicate situations. We avoid
* security-related surprises by not following symlinks on the
* newname. --KAB
*
* We don't follow them on the oldname either to be compatible
* with linux 2.0, and to avoid hard-linking to directories
* and other special files. --ADM
*/
static int do_linkat(int olddfd, const char __user *oldname, int newdfd,
const char __user *newname, int flags)
{
struct dentry *new_dentry;
struct path old_path, new_path;
struct inode *delegated_inode = NULL;
int how = 0;
int error;
if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
return -EINVAL;
/*
* To use null names we require CAP_DAC_READ_SEARCH
* This ensures that not everyone will be able to create
* handlink using the passed filedescriptor.
*/
if (flags & AT_EMPTY_PATH) {
if (!capable(CAP_DAC_READ_SEARCH))
return -ENOENT;
how = LOOKUP_EMPTY;
}
if (flags & AT_SYMLINK_FOLLOW)
how |= LOOKUP_FOLLOW;
retry:
error = user_path_at(olddfd, oldname, how, &old_path);
if (error)
return error;
new_dentry = user_path_create(newdfd, newname, &new_path,
(how & LOOKUP_REVAL));
error = PTR_ERR(new_dentry);
if (IS_ERR(new_dentry))
goto out;
error = -EXDEV;
if (old_path.mnt != new_path.mnt)
goto out_dput;
error = may_linkat(&old_path);
if (unlikely(error))
goto out_dput;
error = security_path_link(old_path.dentry, &new_path, new_dentry);
if (error)
goto out_dput;
error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
out_dput:
done_path_create(&new_path, new_dentry);
if (delegated_inode) {
error = break_deleg_wait(&delegated_inode);
if (!error) {
path_put(&old_path);
goto retry;
}
}
if (retry_estale(error, how)) {
path_put(&old_path);
how |= LOOKUP_REVAL;
goto retry;
}
out:
path_put(&old_path);
return error;
}
SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
int, newdfd, const char __user *, newname, int, flags)
{
return do_linkat(olddfd, oldname, newdfd, newname, flags);
}
SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
{
return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
}
/**
* vfs_rename - rename a filesystem object
* @old_dir: parent of source
* @old_dentry: source
* @new_dir: parent of destination
* @new_dentry: destination
* @delegated_inode: returns an inode needing a delegation break
* @flags: rename flags
*
* The caller must hold multiple mutexes--see lock_rename()).
*
* If vfs_rename discovers a delegation in need of breaking at either
* the source or destination, it will return -EWOULDBLOCK and return a
* reference to the inode in delegated_inode. The caller should then
* break the delegation and retry. Because breaking a delegation may
* take a long time, the caller should drop all locks before doing
* so.
*
* Alternatively, a caller may pass NULL for delegated_inode. This may
* be appropriate for callers that expect the underlying filesystem not
* to be NFS exported.
*
* The worst of all namespace operations - renaming directory. "Perverted"
* doesn't even start to describe it. Somebody in UCB had a heck of a trip...
* Problems:
*
* a) we can get into loop creation.
* b) race potential - two innocent renames can create a loop together.
* That's where 4.4 screws up. Current fix: serialization on
* sb->s_vfs_rename_mutex. We might be more accurate, but that's another
* story.
* c) we have to lock _four_ objects - parents and victim (if it exists),
* and source (if it is not a directory).
* And that - after we got ->i_mutex on parents (until then we don't know
* whether the target exists). Solution: try to be smart with locking
* order for inodes. We rely on the fact that tree topology may change
* only under ->s_vfs_rename_mutex _and_ that parent of the object we
* move will be locked. Thus we can rank directories by the tree
* (ancestors first) and rank all non-directories after them.
* That works since everybody except rename does "lock parent, lookup,
* lock child" and rename is under ->s_vfs_rename_mutex.
* HOWEVER, it relies on the assumption that any object with ->lookup()
* has no more than 1 dentry. If "hybrid" objects will ever appear,
* we'd better make sure that there's no link(2) for them.
* d) conversion from fhandle to dentry may come in the wrong moment - when
* we are removing the target. Solution: we will have to grab ->i_mutex
* in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
* ->i_mutex on parents, which works but leads to some truly excessive
* locking].
*/
int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry,
struct inode **delegated_inode, unsigned int flags)
{
int error;
bool is_dir = d_is_dir(old_dentry);
struct inode *source = old_dentry->d_inode;
struct inode *target = new_dentry->d_inode;
bool new_is_dir = false;
unsigned max_links = new_dir->i_sb->s_max_links;
struct name_snapshot old_name;
if (source == target)
return 0;
error = may_delete(old_dir, old_dentry, is_dir);
if (error)
return error;
if (!target) {
error = may_create(new_dir, new_dentry);
} else {
new_is_dir = d_is_dir(new_dentry);
if (!(flags & RENAME_EXCHANGE))
error = may_delete(new_dir, new_dentry, is_dir);
else
error = may_delete(new_dir, new_dentry, new_is_dir);
}
if (error)
return error;
if (!old_dir->i_op->rename)
return -EPERM;
/*
* If we are going to change the parent - check write permissions,
* we'll need to flip '..'.
*/
if (new_dir != old_dir) {
if (is_dir) {
error = inode_permission(source, MAY_WRITE);
if (error)
return error;
}
if ((flags & RENAME_EXCHANGE) && new_is_dir) {
error = inode_permission(target, MAY_WRITE);
if (error)
return error;
}
}
error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
flags);
if (error)
return error;
take_dentry_name_snapshot(&old_name, old_dentry);
dget(new_dentry);
if (!is_dir || (flags & RENAME_EXCHANGE))
lock_two_nondirectories(source, target);
else if (target)
inode_lock(target);
error = -EBUSY;
if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
goto out;
if (max_links && new_dir != old_dir) {
error = -EMLINK;
if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
goto out;
if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
old_dir->i_nlink >= max_links)
goto out;
}
if (!is_dir) {
error = try_break_deleg(source, delegated_inode);
if (error)
goto out;
}
if (target && !new_is_dir) {
error = try_break_deleg(target, delegated_inode);
if (error)
goto out;
}
error = old_dir->i_op->rename(old_dir, old_dentry,
new_dir, new_dentry, flags);
if (error)
goto out;
if (!(flags & RENAME_EXCHANGE) && target) {
if (is_dir) {
shrink_dcache_parent(new_dentry);
target->i_flags |= S_DEAD;
}
dont_mount(new_dentry);
detach_mounts(new_dentry);
}
if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
if (!(flags & RENAME_EXCHANGE))
d_move(old_dentry, new_dentry);
else
d_exchange(old_dentry, new_dentry);
}
out:
if (!is_dir || (flags & RENAME_EXCHANGE))
unlock_two_nondirectories(source, target);
else if (target)
inode_unlock(target);
dput(new_dentry);
if (!error) {
fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
!(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
if (flags & RENAME_EXCHANGE) {
fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
new_is_dir, NULL, new_dentry);
}
}
release_dentry_name_snapshot(&old_name);
return error;
}
EXPORT_SYMBOL(vfs_rename);
static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
const char __user *newname, unsigned int flags)
{
struct dentry *old_dentry, *new_dentry;
struct dentry *trap;
struct path old_path, new_path;
struct qstr old_last, new_last;
int old_type, new_type;
struct inode *delegated_inode = NULL;
struct filename *from;
struct filename *to;
unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
bool should_retry = false;
int error;
if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
return -EINVAL;
if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
(flags & RENAME_EXCHANGE))
return -EINVAL;
if (flags & RENAME_EXCHANGE)
target_flags = 0;
retry:
from = filename_parentat(olddfd, getname(oldname), lookup_flags,
&old_path, &old_last, &old_type);
if (IS_ERR(from)) {
error = PTR_ERR(from);
goto exit;
}
to = filename_parentat(newdfd, getname(newname), lookup_flags,
&new_path, &new_last, &new_type);
if (IS_ERR(to)) {
error = PTR_ERR(to);
goto exit1;
}
error = -EXDEV;
if (old_path.mnt != new_path.mnt)
goto exit2;
error = -EBUSY;
if (old_type != LAST_NORM)
goto exit2;
if (flags & RENAME_NOREPLACE)
error = -EEXIST;
if (new_type != LAST_NORM)
goto exit2;
error = mnt_want_write(old_path.mnt);
if (error)
goto exit2;
retry_deleg:
trap = lock_rename(new_path.dentry, old_path.dentry);
old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
error = PTR_ERR(old_dentry);
if (IS_ERR(old_dentry))
goto exit3;
/* source must exist */
error = -ENOENT;
if (d_is_negative(old_dentry))
goto exit4;
new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
error = PTR_ERR(new_dentry);
if (IS_ERR(new_dentry))
goto exit4;
error = -EEXIST;
if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
goto exit5;
if (flags & RENAME_EXCHANGE) {
error = -ENOENT;
if (d_is_negative(new_dentry))
goto exit5;
if (!d_is_dir(new_dentry)) {
error = -ENOTDIR;
if (new_last.name[new_last.len])
goto exit5;
}
}
/* unless the source is a directory trailing slashes give -ENOTDIR */
if (!d_is_dir(old_dentry)) {
error = -ENOTDIR;
if (old_last.name[old_last.len])
goto exit5;
if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
goto exit5;
}
/* source should not be ancestor of target */
error = -EINVAL;
if (old_dentry == trap)
goto exit5;
/* target should not be an ancestor of source */
if (!(flags & RENAME_EXCHANGE))
error = -ENOTEMPTY;
if (new_dentry == trap)
goto exit5;
error = security_path_rename(&old_path, old_dentry,
&new_path, new_dentry, flags);
if (error)
goto exit5;
error = vfs_rename(old_path.dentry->d_inode, old_dentry,
new_path.dentry->d_inode, new_dentry,
&delegated_inode, flags);
exit5:
dput(new_dentry);
exit4:
dput(old_dentry);
exit3:
unlock_rename(new_path.dentry, old_path.dentry);
if (delegated_inode) {
error = break_deleg_wait(&delegated_inode);
if (!error)
goto retry_deleg;
}
mnt_drop_write(old_path.mnt);
exit2:
if (retry_estale(error, lookup_flags))
should_retry = true;
path_put(&new_path);
putname(to);
exit1:
path_put(&old_path);
putname(from);
if (should_retry) {
should_retry = false;
lookup_flags |= LOOKUP_REVAL;
goto retry;
}
exit:
return error;
}
SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
int, newdfd, const char __user *, newname, unsigned int, flags)
{
return do_renameat2(olddfd, oldname, newdfd, newname, flags);
}
SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
int, newdfd, const char __user *, newname)
{
return do_renameat2(olddfd, oldname, newdfd, newname, 0);
}
SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
{
return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
}
int readlink_copy(char __user *buffer, int buflen, const char *link)
{
int len = PTR_ERR(link);
if (IS_ERR(link))
goto out;
len = strlen(link);
if (len > (unsigned) buflen)
len = buflen;
if (copy_to_user(buffer, link, len))
len = -EFAULT;
out:
return len;
}
/**
* vfs_readlink - copy symlink body into userspace buffer
* @dentry: dentry on which to get symbolic link
* @buffer: user memory pointer
* @buflen: size of buffer
*
* Does not touch atime. That's up to the caller if necessary
*
* Does not call security hook.
*/
int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
{
struct inode *inode = d_inode(dentry);
DEFINE_DELAYED_CALL(done);
const char *link;
int res;
if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
if (unlikely(inode->i_op->readlink))
return inode->i_op->readlink(dentry, buffer, buflen);
if (!d_is_symlink(dentry))
return -EINVAL;
spin_lock(&inode->i_lock);
inode->i_opflags |= IOP_DEFAULT_READLINK;
spin_unlock(&inode->i_lock);
}
link = READ_ONCE(inode->i_link);
if (!link) {
link = inode->i_op->get_link(dentry, inode, &done);
if (IS_ERR(link))
return PTR_ERR(link);
}
res = readlink_copy(buffer, buflen, link);
do_delayed_call(&done);
return res;
}
EXPORT_SYMBOL(vfs_readlink);
/**
* vfs_get_link - get symlink body
* @dentry: dentry on which to get symbolic link
* @done: caller needs to free returned data with this
*
* Calls security hook and i_op->get_link() on the supplied inode.
*
* It does not touch atime. That's up to the caller if necessary.
*
* Does not work on "special" symlinks like /proc/$$/fd/N
*/
const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
{
const char *res = ERR_PTR(-EINVAL);
struct inode *inode = d_inode(dentry);
if (d_is_symlink(dentry)) {
res = ERR_PTR(security_inode_readlink(dentry));
if (!res)
res = inode->i_op->get_link(dentry, inode, done);
}
return res;
}
EXPORT_SYMBOL(vfs_get_link);
/* get the link contents into pagecache */
const char *page_get_link(struct dentry *dentry, struct inode *inode,
struct delayed_call *callback)
{
char *kaddr;
struct page *page;
struct address_space *mapping = inode->i_mapping;
if (!dentry) {
page = find_get_page(mapping, 0);
if (!page)
return ERR_PTR(-ECHILD);
if (!PageUptodate(page)) {
put_page(page);
return ERR_PTR(-ECHILD);
}
} else {
page = read_mapping_page(mapping, 0, NULL);
if (IS_ERR(page))
return (char*)page;
}
set_delayed_call(callback, page_put_link, page);
BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
kaddr = page_address(page);
nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
return kaddr;
}
EXPORT_SYMBOL(page_get_link);
void page_put_link(void *arg)
{
put_page(arg);
}
EXPORT_SYMBOL(page_put_link);
int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
{
DEFINE_DELAYED_CALL(done);
int res = readlink_copy(buffer, buflen,
page_get_link(dentry, d_inode(dentry),
&done));
do_delayed_call(&done);
return res;
}
EXPORT_SYMBOL(page_readlink);
/*
* The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
*/
int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
{
struct address_space *mapping = inode->i_mapping;
struct page *page;
void *fsdata;
int err;
unsigned int flags = 0;
if (nofs)
flags |= AOP_FLAG_NOFS;
retry:
err = pagecache_write_begin(NULL, mapping, 0, len-1,
flags, &page, &fsdata);
if (err)
goto fail;
memcpy(page_address(page), symname, len-1);
err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
page, fsdata);
if (err < 0)
goto fail;
if (err < len-1)
goto retry;
mark_inode_dirty(inode);
return 0;
fail:
return err;
}
EXPORT_SYMBOL(__page_symlink);
int page_symlink(struct inode *inode, const char *symname, int len)
{
return __page_symlink(inode, symname, len,
!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
}
EXPORT_SYMBOL(page_symlink);
const struct inode_operations page_symlink_inode_operations = {
.get_link = page_get_link,
};
EXPORT_SYMBOL(page_symlink_inode_operations);