mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-16 01:24:08 +08:00
4ea3c51d5b
This patch correctly sets BAU memory mapped registers to point to the sending activation descriptor table and target payload table. The "Broadcast Assist Unit" is used for TLB shootdown in UV. The memory mapped registers that point to sending and receiving memory structures contain node numbers. In one case the __pa() function did not provide the node id of memory on blade zero in configurations where that id is nonzero. In another case, it was assumed that memory was allocated on the local node. That assumption is not true in a configuration in which the node has no memory. Tested on the UV hardware simulator. [ Impact: fix possible runtime crash due to incorrect TLB logic ] Signed-off-by: Cliff Wickman <cpw@sgi.com> LKML-Reference: <E1LuR5Z-0007An-B8@eag09.americas.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
858 lines
23 KiB
C
858 lines
23 KiB
C
/*
|
|
* SGI UltraViolet TLB flush routines.
|
|
*
|
|
* (c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
|
|
*
|
|
* This code is released under the GNU General Public License version 2 or
|
|
* later.
|
|
*/
|
|
#include <linux/seq_file.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/kernel.h>
|
|
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/uv/uv.h>
|
|
#include <asm/uv/uv_mmrs.h>
|
|
#include <asm/uv/uv_hub.h>
|
|
#include <asm/uv/uv_bau.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/idle.h>
|
|
#include <asm/tsc.h>
|
|
#include <asm/irq_vectors.h>
|
|
|
|
static struct bau_control **uv_bau_table_bases __read_mostly;
|
|
static int uv_bau_retry_limit __read_mostly;
|
|
|
|
/* position of pnode (which is nasid>>1): */
|
|
static int uv_nshift __read_mostly;
|
|
/* base pnode in this partition */
|
|
static int uv_partition_base_pnode __read_mostly;
|
|
|
|
static unsigned long uv_mmask __read_mostly;
|
|
|
|
static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
|
|
static DEFINE_PER_CPU(struct bau_control, bau_control);
|
|
|
|
/*
|
|
* Determine the first node on a blade.
|
|
*/
|
|
static int __init blade_to_first_node(int blade)
|
|
{
|
|
int node, b;
|
|
|
|
for_each_online_node(node) {
|
|
b = uv_node_to_blade_id(node);
|
|
if (blade == b)
|
|
return node;
|
|
}
|
|
return -1; /* shouldn't happen */
|
|
}
|
|
|
|
/*
|
|
* Determine the apicid of the first cpu on a blade.
|
|
*/
|
|
static int __init blade_to_first_apicid(int blade)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_present_cpu(cpu)
|
|
if (blade == uv_cpu_to_blade_id(cpu))
|
|
return per_cpu(x86_cpu_to_apicid, cpu);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Free a software acknowledge hardware resource by clearing its Pending
|
|
* bit. This will return a reply to the sender.
|
|
* If the message has timed out, a reply has already been sent by the
|
|
* hardware but the resource has not been released. In that case our
|
|
* clear of the Timeout bit (as well) will free the resource. No reply will
|
|
* be sent (the hardware will only do one reply per message).
|
|
*/
|
|
static void uv_reply_to_message(int resource,
|
|
struct bau_payload_queue_entry *msg,
|
|
struct bau_msg_status *msp)
|
|
{
|
|
unsigned long dw;
|
|
|
|
dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
|
|
msg->replied_to = 1;
|
|
msg->sw_ack_vector = 0;
|
|
if (msp)
|
|
msp->seen_by.bits = 0;
|
|
uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
|
|
}
|
|
|
|
/*
|
|
* Do all the things a cpu should do for a TLB shootdown message.
|
|
* Other cpu's may come here at the same time for this message.
|
|
*/
|
|
static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
|
|
int msg_slot, int sw_ack_slot)
|
|
{
|
|
unsigned long this_cpu_mask;
|
|
struct bau_msg_status *msp;
|
|
int cpu;
|
|
|
|
msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
|
|
cpu = uv_blade_processor_id();
|
|
msg->number_of_cpus =
|
|
uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
|
|
this_cpu_mask = 1UL << cpu;
|
|
if (msp->seen_by.bits & this_cpu_mask)
|
|
return;
|
|
atomic_or_long(&msp->seen_by.bits, this_cpu_mask);
|
|
|
|
if (msg->replied_to == 1)
|
|
return;
|
|
|
|
if (msg->address == TLB_FLUSH_ALL) {
|
|
local_flush_tlb();
|
|
__get_cpu_var(ptcstats).alltlb++;
|
|
} else {
|
|
__flush_tlb_one(msg->address);
|
|
__get_cpu_var(ptcstats).onetlb++;
|
|
}
|
|
|
|
__get_cpu_var(ptcstats).requestee++;
|
|
|
|
atomic_inc_short(&msg->acknowledge_count);
|
|
if (msg->number_of_cpus == msg->acknowledge_count)
|
|
uv_reply_to_message(sw_ack_slot, msg, msp);
|
|
}
|
|
|
|
/*
|
|
* Examine the payload queue on one distribution node to see
|
|
* which messages have not been seen, and which cpu(s) have not seen them.
|
|
*
|
|
* Returns the number of cpu's that have not responded.
|
|
*/
|
|
static int uv_examine_destination(struct bau_control *bau_tablesp, int sender)
|
|
{
|
|
struct bau_payload_queue_entry *msg;
|
|
struct bau_msg_status *msp;
|
|
int count = 0;
|
|
int i;
|
|
int j;
|
|
|
|
for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE;
|
|
msg++, i++) {
|
|
if ((msg->sending_cpu == sender) && (!msg->replied_to)) {
|
|
msp = bau_tablesp->msg_statuses + i;
|
|
printk(KERN_DEBUG
|
|
"blade %d: address:%#lx %d of %d, not cpu(s): ",
|
|
i, msg->address, msg->acknowledge_count,
|
|
msg->number_of_cpus);
|
|
for (j = 0; j < msg->number_of_cpus; j++) {
|
|
if (!((1L << j) & msp->seen_by.bits)) {
|
|
count++;
|
|
printk("%d ", j);
|
|
}
|
|
}
|
|
printk("\n");
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Examine the payload queue on all the distribution nodes to see
|
|
* which messages have not been seen, and which cpu(s) have not seen them.
|
|
*
|
|
* Returns the number of cpu's that have not responded.
|
|
*/
|
|
static int uv_examine_destinations(struct bau_target_nodemask *distribution)
|
|
{
|
|
int sender;
|
|
int i;
|
|
int count = 0;
|
|
|
|
sender = smp_processor_id();
|
|
for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) {
|
|
if (!bau_node_isset(i, distribution))
|
|
continue;
|
|
count += uv_examine_destination(uv_bau_table_bases[i], sender);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* wait for completion of a broadcast message
|
|
*
|
|
* return COMPLETE, RETRY or GIVEUP
|
|
*/
|
|
static int uv_wait_completion(struct bau_desc *bau_desc,
|
|
unsigned long mmr_offset, int right_shift)
|
|
{
|
|
int exams = 0;
|
|
long destination_timeouts = 0;
|
|
long source_timeouts = 0;
|
|
unsigned long descriptor_status;
|
|
|
|
while ((descriptor_status = (((unsigned long)
|
|
uv_read_local_mmr(mmr_offset) >>
|
|
right_shift) & UV_ACT_STATUS_MASK)) !=
|
|
DESC_STATUS_IDLE) {
|
|
if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
|
|
source_timeouts++;
|
|
if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
|
|
source_timeouts = 0;
|
|
__get_cpu_var(ptcstats).s_retry++;
|
|
return FLUSH_RETRY;
|
|
}
|
|
/*
|
|
* spin here looking for progress at the destinations
|
|
*/
|
|
if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
|
|
destination_timeouts++;
|
|
if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
|
|
/*
|
|
* returns number of cpus not responding
|
|
*/
|
|
if (uv_examine_destinations
|
|
(&bau_desc->distribution) == 0) {
|
|
__get_cpu_var(ptcstats).d_retry++;
|
|
return FLUSH_RETRY;
|
|
}
|
|
exams++;
|
|
if (exams >= uv_bau_retry_limit) {
|
|
printk(KERN_DEBUG
|
|
"uv_flush_tlb_others");
|
|
printk("giving up on cpu %d\n",
|
|
smp_processor_id());
|
|
return FLUSH_GIVEUP;
|
|
}
|
|
/*
|
|
* delays can hang the simulator
|
|
udelay(1000);
|
|
*/
|
|
destination_timeouts = 0;
|
|
}
|
|
}
|
|
cpu_relax();
|
|
}
|
|
return FLUSH_COMPLETE;
|
|
}
|
|
|
|
/**
|
|
* uv_flush_send_and_wait
|
|
*
|
|
* Send a broadcast and wait for a broadcast message to complete.
|
|
*
|
|
* The flush_mask contains the cpus the broadcast was sent to.
|
|
*
|
|
* Returns NULL if all remote flushing was done. The mask is zeroed.
|
|
* Returns @flush_mask if some remote flushing remains to be done. The
|
|
* mask will have some bits still set.
|
|
*/
|
|
const struct cpumask *uv_flush_send_and_wait(int cpu, int this_pnode,
|
|
struct bau_desc *bau_desc,
|
|
struct cpumask *flush_mask)
|
|
{
|
|
int completion_status = 0;
|
|
int right_shift;
|
|
int tries = 0;
|
|
int pnode;
|
|
int bit;
|
|
unsigned long mmr_offset;
|
|
unsigned long index;
|
|
cycles_t time1;
|
|
cycles_t time2;
|
|
|
|
if (cpu < UV_CPUS_PER_ACT_STATUS) {
|
|
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
|
|
right_shift = cpu * UV_ACT_STATUS_SIZE;
|
|
} else {
|
|
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
|
|
right_shift =
|
|
((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
|
|
}
|
|
time1 = get_cycles();
|
|
do {
|
|
tries++;
|
|
index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
|
|
cpu;
|
|
uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
|
|
completion_status = uv_wait_completion(bau_desc, mmr_offset,
|
|
right_shift);
|
|
} while (completion_status == FLUSH_RETRY);
|
|
time2 = get_cycles();
|
|
__get_cpu_var(ptcstats).sflush += (time2 - time1);
|
|
if (tries > 1)
|
|
__get_cpu_var(ptcstats).retriesok++;
|
|
|
|
if (completion_status == FLUSH_GIVEUP) {
|
|
/*
|
|
* Cause the caller to do an IPI-style TLB shootdown on
|
|
* the cpu's, all of which are still in the mask.
|
|
*/
|
|
__get_cpu_var(ptcstats).ptc_i++;
|
|
return flush_mask;
|
|
}
|
|
|
|
/*
|
|
* Success, so clear the remote cpu's from the mask so we don't
|
|
* use the IPI method of shootdown on them.
|
|
*/
|
|
for_each_cpu(bit, flush_mask) {
|
|
pnode = uv_cpu_to_pnode(bit);
|
|
if (pnode == this_pnode)
|
|
continue;
|
|
cpumask_clear_cpu(bit, flush_mask);
|
|
}
|
|
if (!cpumask_empty(flush_mask))
|
|
return flush_mask;
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* uv_flush_tlb_others - globally purge translation cache of a virtual
|
|
* address or all TLB's
|
|
* @cpumask: mask of all cpu's in which the address is to be removed
|
|
* @mm: mm_struct containing virtual address range
|
|
* @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
|
|
* @cpu: the current cpu
|
|
*
|
|
* This is the entry point for initiating any UV global TLB shootdown.
|
|
*
|
|
* Purges the translation caches of all specified processors of the given
|
|
* virtual address, or purges all TLB's on specified processors.
|
|
*
|
|
* The caller has derived the cpumask from the mm_struct. This function
|
|
* is called only if there are bits set in the mask. (e.g. flush_tlb_page())
|
|
*
|
|
* The cpumask is converted into a nodemask of the nodes containing
|
|
* the cpus.
|
|
*
|
|
* Note that this function should be called with preemption disabled.
|
|
*
|
|
* Returns NULL if all remote flushing was done.
|
|
* Returns pointer to cpumask if some remote flushing remains to be
|
|
* done. The returned pointer is valid till preemption is re-enabled.
|
|
*/
|
|
const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
|
|
struct mm_struct *mm,
|
|
unsigned long va, unsigned int cpu)
|
|
{
|
|
static DEFINE_PER_CPU(cpumask_t, flush_tlb_mask);
|
|
struct cpumask *flush_mask = &__get_cpu_var(flush_tlb_mask);
|
|
int i;
|
|
int bit;
|
|
int pnode;
|
|
int uv_cpu;
|
|
int this_pnode;
|
|
int locals = 0;
|
|
struct bau_desc *bau_desc;
|
|
|
|
cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
|
|
|
|
uv_cpu = uv_blade_processor_id();
|
|
this_pnode = uv_hub_info->pnode;
|
|
bau_desc = __get_cpu_var(bau_control).descriptor_base;
|
|
bau_desc += UV_ITEMS_PER_DESCRIPTOR * uv_cpu;
|
|
|
|
bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
|
|
|
|
i = 0;
|
|
for_each_cpu(bit, flush_mask) {
|
|
pnode = uv_cpu_to_pnode(bit);
|
|
BUG_ON(pnode > (UV_DISTRIBUTION_SIZE - 1));
|
|
if (pnode == this_pnode) {
|
|
locals++;
|
|
continue;
|
|
}
|
|
bau_node_set(pnode - uv_partition_base_pnode,
|
|
&bau_desc->distribution);
|
|
i++;
|
|
}
|
|
if (i == 0) {
|
|
/*
|
|
* no off_node flushing; return status for local node
|
|
*/
|
|
if (locals)
|
|
return flush_mask;
|
|
else
|
|
return NULL;
|
|
}
|
|
__get_cpu_var(ptcstats).requestor++;
|
|
__get_cpu_var(ptcstats).ntargeted += i;
|
|
|
|
bau_desc->payload.address = va;
|
|
bau_desc->payload.sending_cpu = cpu;
|
|
|
|
return uv_flush_send_and_wait(uv_cpu, this_pnode, bau_desc, flush_mask);
|
|
}
|
|
|
|
/*
|
|
* The BAU message interrupt comes here. (registered by set_intr_gate)
|
|
* See entry_64.S
|
|
*
|
|
* We received a broadcast assist message.
|
|
*
|
|
* Interrupts may have been disabled; this interrupt could represent
|
|
* the receipt of several messages.
|
|
*
|
|
* All cores/threads on this node get this interrupt.
|
|
* The last one to see it does the s/w ack.
|
|
* (the resource will not be freed until noninterruptable cpus see this
|
|
* interrupt; hardware will timeout the s/w ack and reply ERROR)
|
|
*/
|
|
void uv_bau_message_interrupt(struct pt_regs *regs)
|
|
{
|
|
struct bau_payload_queue_entry *va_queue_first;
|
|
struct bau_payload_queue_entry *va_queue_last;
|
|
struct bau_payload_queue_entry *msg;
|
|
struct pt_regs *old_regs = set_irq_regs(regs);
|
|
cycles_t time1;
|
|
cycles_t time2;
|
|
int msg_slot;
|
|
int sw_ack_slot;
|
|
int fw;
|
|
int count = 0;
|
|
unsigned long local_pnode;
|
|
|
|
ack_APIC_irq();
|
|
exit_idle();
|
|
irq_enter();
|
|
|
|
time1 = get_cycles();
|
|
|
|
local_pnode = uv_blade_to_pnode(uv_numa_blade_id());
|
|
|
|
va_queue_first = __get_cpu_var(bau_control).va_queue_first;
|
|
va_queue_last = __get_cpu_var(bau_control).va_queue_last;
|
|
|
|
msg = __get_cpu_var(bau_control).bau_msg_head;
|
|
while (msg->sw_ack_vector) {
|
|
count++;
|
|
fw = msg->sw_ack_vector;
|
|
msg_slot = msg - va_queue_first;
|
|
sw_ack_slot = ffs(fw) - 1;
|
|
|
|
uv_bau_process_message(msg, msg_slot, sw_ack_slot);
|
|
|
|
msg++;
|
|
if (msg > va_queue_last)
|
|
msg = va_queue_first;
|
|
__get_cpu_var(bau_control).bau_msg_head = msg;
|
|
}
|
|
if (!count)
|
|
__get_cpu_var(ptcstats).nomsg++;
|
|
else if (count > 1)
|
|
__get_cpu_var(ptcstats).multmsg++;
|
|
|
|
time2 = get_cycles();
|
|
__get_cpu_var(ptcstats).dflush += (time2 - time1);
|
|
|
|
irq_exit();
|
|
set_irq_regs(old_regs);
|
|
}
|
|
|
|
/*
|
|
* uv_enable_timeouts
|
|
*
|
|
* Each target blade (i.e. blades that have cpu's) needs to have
|
|
* shootdown message timeouts enabled. The timeout does not cause
|
|
* an interrupt, but causes an error message to be returned to
|
|
* the sender.
|
|
*/
|
|
static void uv_enable_timeouts(void)
|
|
{
|
|
int blade;
|
|
int nblades;
|
|
int pnode;
|
|
unsigned long mmr_image;
|
|
|
|
nblades = uv_num_possible_blades();
|
|
|
|
for (blade = 0; blade < nblades; blade++) {
|
|
if (!uv_blade_nr_possible_cpus(blade))
|
|
continue;
|
|
|
|
pnode = uv_blade_to_pnode(blade);
|
|
mmr_image =
|
|
uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
|
|
/*
|
|
* Set the timeout period and then lock it in, in three
|
|
* steps; captures and locks in the period.
|
|
*
|
|
* To program the period, the SOFT_ACK_MODE must be off.
|
|
*/
|
|
mmr_image &= ~((unsigned long)1 <<
|
|
UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
|
|
uv_write_global_mmr64
|
|
(pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
|
|
/*
|
|
* Set the 4-bit period.
|
|
*/
|
|
mmr_image &= ~((unsigned long)0xf <<
|
|
UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
|
|
mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
|
|
UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
|
|
uv_write_global_mmr64
|
|
(pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
|
|
/*
|
|
* Subsequent reversals of the timebase bit (3) cause an
|
|
* immediate timeout of one or all INTD resources as
|
|
* indicated in bits 2:0 (7 causes all of them to timeout).
|
|
*/
|
|
mmr_image |= ((unsigned long)1 <<
|
|
UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
|
|
uv_write_global_mmr64
|
|
(pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
|
|
}
|
|
}
|
|
|
|
static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
|
|
{
|
|
if (*offset < num_possible_cpus())
|
|
return offset;
|
|
return NULL;
|
|
}
|
|
|
|
static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
|
|
{
|
|
(*offset)++;
|
|
if (*offset < num_possible_cpus())
|
|
return offset;
|
|
return NULL;
|
|
}
|
|
|
|
static void uv_ptc_seq_stop(struct seq_file *file, void *data)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Display the statistics thru /proc
|
|
* data points to the cpu number
|
|
*/
|
|
static int uv_ptc_seq_show(struct seq_file *file, void *data)
|
|
{
|
|
struct ptc_stats *stat;
|
|
int cpu;
|
|
|
|
cpu = *(loff_t *)data;
|
|
|
|
if (!cpu) {
|
|
seq_printf(file,
|
|
"# cpu requestor requestee one all sretry dretry ptc_i ");
|
|
seq_printf(file,
|
|
"sw_ack sflush dflush sok dnomsg dmult starget\n");
|
|
}
|
|
if (cpu < num_possible_cpus() && cpu_online(cpu)) {
|
|
stat = &per_cpu(ptcstats, cpu);
|
|
seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
|
|
cpu, stat->requestor,
|
|
stat->requestee, stat->onetlb, stat->alltlb,
|
|
stat->s_retry, stat->d_retry, stat->ptc_i);
|
|
seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
|
|
uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
|
|
UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
|
|
stat->sflush, stat->dflush,
|
|
stat->retriesok, stat->nomsg,
|
|
stat->multmsg, stat->ntargeted);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* 0: display meaning of the statistics
|
|
* >0: retry limit
|
|
*/
|
|
static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
|
|
size_t count, loff_t *data)
|
|
{
|
|
long newmode;
|
|
char optstr[64];
|
|
|
|
if (count == 0 || count > sizeof(optstr))
|
|
return -EINVAL;
|
|
if (copy_from_user(optstr, user, count))
|
|
return -EFAULT;
|
|
optstr[count - 1] = '\0';
|
|
if (strict_strtoul(optstr, 10, &newmode) < 0) {
|
|
printk(KERN_DEBUG "%s is invalid\n", optstr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (newmode == 0) {
|
|
printk(KERN_DEBUG "# cpu: cpu number\n");
|
|
printk(KERN_DEBUG
|
|
"requestor: times this cpu was the flush requestor\n");
|
|
printk(KERN_DEBUG
|
|
"requestee: times this cpu was requested to flush its TLBs\n");
|
|
printk(KERN_DEBUG
|
|
"one: times requested to flush a single address\n");
|
|
printk(KERN_DEBUG
|
|
"all: times requested to flush all TLB's\n");
|
|
printk(KERN_DEBUG
|
|
"sretry: number of retries of source-side timeouts\n");
|
|
printk(KERN_DEBUG
|
|
"dretry: number of retries of destination-side timeouts\n");
|
|
printk(KERN_DEBUG
|
|
"ptc_i: times UV fell through to IPI-style flushes\n");
|
|
printk(KERN_DEBUG
|
|
"sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
|
|
printk(KERN_DEBUG
|
|
"sflush_us: cycles spent in uv_flush_tlb_others()\n");
|
|
printk(KERN_DEBUG
|
|
"dflush_us: cycles spent in handling flush requests\n");
|
|
printk(KERN_DEBUG "sok: successes on retry\n");
|
|
printk(KERN_DEBUG "dnomsg: interrupts with no message\n");
|
|
printk(KERN_DEBUG
|
|
"dmult: interrupts with multiple messages\n");
|
|
printk(KERN_DEBUG "starget: nodes targeted\n");
|
|
} else {
|
|
uv_bau_retry_limit = newmode;
|
|
printk(KERN_DEBUG "timeout retry limit:%d\n",
|
|
uv_bau_retry_limit);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static const struct seq_operations uv_ptc_seq_ops = {
|
|
.start = uv_ptc_seq_start,
|
|
.next = uv_ptc_seq_next,
|
|
.stop = uv_ptc_seq_stop,
|
|
.show = uv_ptc_seq_show
|
|
};
|
|
|
|
static int uv_ptc_proc_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open(file, &uv_ptc_seq_ops);
|
|
}
|
|
|
|
static const struct file_operations proc_uv_ptc_operations = {
|
|
.open = uv_ptc_proc_open,
|
|
.read = seq_read,
|
|
.write = uv_ptc_proc_write,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release,
|
|
};
|
|
|
|
static int __init uv_ptc_init(void)
|
|
{
|
|
struct proc_dir_entry *proc_uv_ptc;
|
|
|
|
if (!is_uv_system())
|
|
return 0;
|
|
|
|
proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
|
|
if (!proc_uv_ptc) {
|
|
printk(KERN_ERR "unable to create %s proc entry\n",
|
|
UV_PTC_BASENAME);
|
|
return -EINVAL;
|
|
}
|
|
proc_uv_ptc->proc_fops = &proc_uv_ptc_operations;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* begin the initialization of the per-blade control structures
|
|
*/
|
|
static struct bau_control * __init uv_table_bases_init(int blade, int node)
|
|
{
|
|
int i;
|
|
struct bau_msg_status *msp;
|
|
struct bau_control *bau_tabp;
|
|
|
|
bau_tabp =
|
|
kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
|
|
BUG_ON(!bau_tabp);
|
|
|
|
bau_tabp->msg_statuses =
|
|
kmalloc_node(sizeof(struct bau_msg_status) *
|
|
DEST_Q_SIZE, GFP_KERNEL, node);
|
|
BUG_ON(!bau_tabp->msg_statuses);
|
|
|
|
for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++)
|
|
bau_cpubits_clear(&msp->seen_by, (int)
|
|
uv_blade_nr_possible_cpus(blade));
|
|
|
|
uv_bau_table_bases[blade] = bau_tabp;
|
|
|
|
return bau_tabp;
|
|
}
|
|
|
|
/*
|
|
* finish the initialization of the per-blade control structures
|
|
*/
|
|
static void __init
|
|
uv_table_bases_finish(int blade,
|
|
struct bau_control *bau_tablesp,
|
|
struct bau_desc *adp)
|
|
{
|
|
struct bau_control *bcp;
|
|
int cpu;
|
|
|
|
for_each_present_cpu(cpu) {
|
|
if (blade != uv_cpu_to_blade_id(cpu))
|
|
continue;
|
|
|
|
bcp = (struct bau_control *)&per_cpu(bau_control, cpu);
|
|
bcp->bau_msg_head = bau_tablesp->va_queue_first;
|
|
bcp->va_queue_first = bau_tablesp->va_queue_first;
|
|
bcp->va_queue_last = bau_tablesp->va_queue_last;
|
|
bcp->msg_statuses = bau_tablesp->msg_statuses;
|
|
bcp->descriptor_base = adp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* initialize the sending side's sending buffers
|
|
*/
|
|
static struct bau_desc * __init
|
|
uv_activation_descriptor_init(int node, int pnode)
|
|
{
|
|
int i;
|
|
unsigned long pa;
|
|
unsigned long m;
|
|
unsigned long n;
|
|
unsigned long mmr_image;
|
|
struct bau_desc *adp;
|
|
struct bau_desc *ad2;
|
|
|
|
adp = (struct bau_desc *)kmalloc_node(16384, GFP_KERNEL, node);
|
|
BUG_ON(!adp);
|
|
|
|
pa = uv_gpa(adp); /* need the real nasid*/
|
|
n = pa >> uv_nshift;
|
|
m = pa & uv_mmask;
|
|
|
|
mmr_image = uv_read_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE);
|
|
if (mmr_image) {
|
|
uv_write_global_mmr64(pnode, (unsigned long)
|
|
UVH_LB_BAU_SB_DESCRIPTOR_BASE,
|
|
(n << UV_DESC_BASE_PNODE_SHIFT | m));
|
|
}
|
|
|
|
for (i = 0, ad2 = adp; i < UV_ACTIVATION_DESCRIPTOR_SIZE; i++, ad2++) {
|
|
memset(ad2, 0, sizeof(struct bau_desc));
|
|
ad2->header.sw_ack_flag = 1;
|
|
/*
|
|
* base_dest_nodeid is the first node in the partition, so
|
|
* the bit map will indicate partition-relative node numbers.
|
|
* note that base_dest_nodeid is actually a nasid.
|
|
*/
|
|
ad2->header.base_dest_nodeid = uv_partition_base_pnode << 1;
|
|
ad2->header.command = UV_NET_ENDPOINT_INTD;
|
|
ad2->header.int_both = 1;
|
|
/*
|
|
* all others need to be set to zero:
|
|
* fairness chaining multilevel count replied_to
|
|
*/
|
|
}
|
|
return adp;
|
|
}
|
|
|
|
/*
|
|
* initialize the destination side's receiving buffers
|
|
*/
|
|
static struct bau_payload_queue_entry * __init
|
|
uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp)
|
|
{
|
|
struct bau_payload_queue_entry *pqp;
|
|
unsigned long pa;
|
|
int pn;
|
|
char *cp;
|
|
|
|
pqp = (struct bau_payload_queue_entry *) kmalloc_node(
|
|
(DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
|
|
GFP_KERNEL, node);
|
|
BUG_ON(!pqp);
|
|
|
|
cp = (char *)pqp + 31;
|
|
pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
|
|
bau_tablesp->va_queue_first = pqp;
|
|
/*
|
|
* need the pnode of where the memory was really allocated
|
|
*/
|
|
pa = uv_gpa(pqp);
|
|
pn = pa >> uv_nshift;
|
|
uv_write_global_mmr64(pnode,
|
|
UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
|
|
((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) |
|
|
uv_physnodeaddr(pqp));
|
|
uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
|
|
uv_physnodeaddr(pqp));
|
|
bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
|
|
uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
|
|
(unsigned long)
|
|
uv_physnodeaddr(bau_tablesp->va_queue_last));
|
|
memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
|
|
|
|
return pqp;
|
|
}
|
|
|
|
/*
|
|
* Initialization of each UV blade's structures
|
|
*/
|
|
static int __init uv_init_blade(int blade)
|
|
{
|
|
int node;
|
|
int pnode;
|
|
unsigned long pa;
|
|
unsigned long apicid;
|
|
struct bau_desc *adp;
|
|
struct bau_payload_queue_entry *pqp;
|
|
struct bau_control *bau_tablesp;
|
|
|
|
node = blade_to_first_node(blade);
|
|
bau_tablesp = uv_table_bases_init(blade, node);
|
|
pnode = uv_blade_to_pnode(blade);
|
|
adp = uv_activation_descriptor_init(node, pnode);
|
|
pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
|
|
uv_table_bases_finish(blade, bau_tablesp, adp);
|
|
/*
|
|
* the below initialization can't be in firmware because the
|
|
* messaging IRQ will be determined by the OS
|
|
*/
|
|
apicid = blade_to_first_apicid(blade);
|
|
pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
|
|
if ((pa & 0xff) != UV_BAU_MESSAGE) {
|
|
uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
|
|
((apicid << 32) | UV_BAU_MESSAGE));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialization of BAU-related structures
|
|
*/
|
|
static int __init uv_bau_init(void)
|
|
{
|
|
int blade;
|
|
int nblades;
|
|
int cur_cpu;
|
|
|
|
if (!is_uv_system())
|
|
return 0;
|
|
|
|
uv_bau_retry_limit = 1;
|
|
uv_nshift = uv_hub_info->n_val;
|
|
uv_mmask = (1UL << uv_hub_info->n_val) - 1;
|
|
nblades = uv_num_possible_blades();
|
|
|
|
uv_bau_table_bases = (struct bau_control **)
|
|
kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
|
|
BUG_ON(!uv_bau_table_bases);
|
|
|
|
uv_partition_base_pnode = 0x7fffffff;
|
|
for (blade = 0; blade < nblades; blade++)
|
|
if (uv_blade_nr_possible_cpus(blade) &&
|
|
(uv_blade_to_pnode(blade) < uv_partition_base_pnode))
|
|
uv_partition_base_pnode = uv_blade_to_pnode(blade);
|
|
for (blade = 0; blade < nblades; blade++)
|
|
if (uv_blade_nr_possible_cpus(blade))
|
|
uv_init_blade(blade);
|
|
|
|
alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
|
|
uv_enable_timeouts();
|
|
|
|
return 0;
|
|
}
|
|
__initcall(uv_bau_init);
|
|
__initcall(uv_ptc_init);
|