2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 20:23:57 +08:00
linux-next/drivers/cpufreq/cpufreq_ondemand.c
Viresh Kumar 4d5dcc4211 cpufreq: governor: Implement per policy instances of governors
Currently, there can't be multiple instances of single governor_type.
If we have a multi-package system, where we have multiple instances
of struct policy (per package), we can't have multiple instances of
same governor. i.e. We can't have multiple instances of ondemand
governor for multiple packages.

Governors directory in sysfs is created at /sys/devices/system/cpu/cpufreq/
governor-name/. Which again reflects that there can be only one
instance of a governor_type in the system.

This is a bottleneck for multicluster system, where we want different
packages to use same governor type, but with different tunables.

This patch uses the infrastructure provided by earlier patch and
implements init/exit routines for ondemand and conservative
governors.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-04-01 01:11:34 +02:00

606 lines
17 KiB
C

/*
* drivers/cpufreq/cpufreq_ondemand.c
*
* Copyright (C) 2001 Russell King
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
* Jun Nakajima <jun.nakajima@intel.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/cpufreq.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/kobject.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu-defs.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/tick.h>
#include <linux/types.h>
#include "cpufreq_governor.h"
/* On-demand governor macros */
#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
#define DEF_FREQUENCY_UP_THRESHOLD (80)
#define DEF_SAMPLING_DOWN_FACTOR (1)
#define MAX_SAMPLING_DOWN_FACTOR (100000)
#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
#define MICRO_FREQUENCY_UP_THRESHOLD (95)
#define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
#define MIN_FREQUENCY_UP_THRESHOLD (11)
#define MAX_FREQUENCY_UP_THRESHOLD (100)
static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
static struct cpufreq_governor cpufreq_gov_ondemand;
#endif
static void ondemand_powersave_bias_init_cpu(int cpu)
{
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
dbs_info->freq_lo = 0;
}
/*
* Not all CPUs want IO time to be accounted as busy; this depends on how
* efficient idling at a higher frequency/voltage is.
* Pavel Machek says this is not so for various generations of AMD and old
* Intel systems.
* Mike Chan (android.com) claims this is also not true for ARM.
* Because of this, whitelist specific known (series) of CPUs by default, and
* leave all others up to the user.
*/
static int should_io_be_busy(void)
{
#if defined(CONFIG_X86)
/*
* For Intel, Core 2 (model 15) and later have an efficient idle.
*/
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
boot_cpu_data.x86 == 6 &&
boot_cpu_data.x86_model >= 15)
return 1;
#endif
return 0;
}
/*
* Find right freq to be set now with powersave_bias on.
* Returns the freq_hi to be used right now and will set freq_hi_jiffies,
* freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
*/
static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
unsigned int freq_next, unsigned int relation)
{
unsigned int freq_req, freq_reduc, freq_avg;
unsigned int freq_hi, freq_lo;
unsigned int index = 0;
unsigned int jiffies_total, jiffies_hi, jiffies_lo;
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
policy->cpu);
struct dbs_data *dbs_data = policy->governor_data;
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
if (!dbs_info->freq_table) {
dbs_info->freq_lo = 0;
dbs_info->freq_lo_jiffies = 0;
return freq_next;
}
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
relation, &index);
freq_req = dbs_info->freq_table[index].frequency;
freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
freq_avg = freq_req - freq_reduc;
/* Find freq bounds for freq_avg in freq_table */
index = 0;
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
CPUFREQ_RELATION_H, &index);
freq_lo = dbs_info->freq_table[index].frequency;
index = 0;
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
CPUFREQ_RELATION_L, &index);
freq_hi = dbs_info->freq_table[index].frequency;
/* Find out how long we have to be in hi and lo freqs */
if (freq_hi == freq_lo) {
dbs_info->freq_lo = 0;
dbs_info->freq_lo_jiffies = 0;
return freq_lo;
}
jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
jiffies_hi += ((freq_hi - freq_lo) / 2);
jiffies_hi /= (freq_hi - freq_lo);
jiffies_lo = jiffies_total - jiffies_hi;
dbs_info->freq_lo = freq_lo;
dbs_info->freq_lo_jiffies = jiffies_lo;
dbs_info->freq_hi_jiffies = jiffies_hi;
return freq_hi;
}
static void ondemand_powersave_bias_init(void)
{
int i;
for_each_online_cpu(i) {
ondemand_powersave_bias_init_cpu(i);
}
}
static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
{
struct dbs_data *dbs_data = p->governor_data;
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
if (od_tuners->powersave_bias)
freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
else if (p->cur == p->max)
return;
__cpufreq_driver_target(p, freq, od_tuners->powersave_bias ?
CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
}
/*
* Every sampling_rate, we check, if current idle time is less than 20%
* (default), then we try to increase frequency. Every sampling_rate, we look
* for the lowest frequency which can sustain the load while keeping idle time
* over 30%. If such a frequency exist, we try to decrease to this frequency.
*
* Any frequency increase takes it to the maximum frequency. Frequency reduction
* happens at minimum steps of 5% (default) of current frequency
*/
static void od_check_cpu(int cpu, unsigned int load_freq)
{
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
struct dbs_data *dbs_data = policy->governor_data;
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
dbs_info->freq_lo = 0;
/* Check for frequency increase */
if (load_freq > od_tuners->up_threshold * policy->cur) {
/* If switching to max speed, apply sampling_down_factor */
if (policy->cur < policy->max)
dbs_info->rate_mult =
od_tuners->sampling_down_factor;
dbs_freq_increase(policy, policy->max);
return;
}
/* Check for frequency decrease */
/* if we cannot reduce the frequency anymore, break out early */
if (policy->cur == policy->min)
return;
/*
* The optimal frequency is the frequency that is the lowest that can
* support the current CPU usage without triggering the up policy. To be
* safe, we focus 10 points under the threshold.
*/
if (load_freq < od_tuners->adj_up_threshold
* policy->cur) {
unsigned int freq_next;
freq_next = load_freq / od_tuners->adj_up_threshold;
/* No longer fully busy, reset rate_mult */
dbs_info->rate_mult = 1;
if (freq_next < policy->min)
freq_next = policy->min;
if (!od_tuners->powersave_bias) {
__cpufreq_driver_target(policy, freq_next,
CPUFREQ_RELATION_L);
} else {
int freq = powersave_bias_target(policy, freq_next,
CPUFREQ_RELATION_L);
__cpufreq_driver_target(policy, freq,
CPUFREQ_RELATION_L);
}
}
}
static void od_dbs_timer(struct work_struct *work)
{
struct delayed_work *dw = to_delayed_work(work);
struct od_cpu_dbs_info_s *dbs_info =
container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info,
cpu);
struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
int delay, sample_type = core_dbs_info->sample_type;
bool eval_load;
mutex_lock(&core_dbs_info->cdbs.timer_mutex);
eval_load = need_load_eval(&core_dbs_info->cdbs,
od_tuners->sampling_rate);
/* Common NORMAL_SAMPLE setup */
core_dbs_info->sample_type = OD_NORMAL_SAMPLE;
if (sample_type == OD_SUB_SAMPLE) {
delay = core_dbs_info->freq_lo_jiffies;
if (eval_load)
__cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
core_dbs_info->freq_lo,
CPUFREQ_RELATION_H);
} else {
if (eval_load)
dbs_check_cpu(dbs_data, cpu);
if (core_dbs_info->freq_lo) {
/* Setup timer for SUB_SAMPLE */
core_dbs_info->sample_type = OD_SUB_SAMPLE;
delay = core_dbs_info->freq_hi_jiffies;
} else {
delay = delay_for_sampling_rate(od_tuners->sampling_rate
* core_dbs_info->rate_mult);
}
}
schedule_delayed_work_on(smp_processor_id(), dw, delay);
mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
}
/************************** sysfs interface ************************/
static struct common_dbs_data od_dbs_cdata;
/**
* update_sampling_rate - update sampling rate effective immediately if needed.
* @new_rate: new sampling rate
*
* If new rate is smaller than the old, simply updating
* dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
* original sampling_rate was 1 second and the requested new sampling rate is 10
* ms because the user needs immediate reaction from ondemand governor, but not
* sure if higher frequency will be required or not, then, the governor may
* change the sampling rate too late; up to 1 second later. Thus, if we are
* reducing the sampling rate, we need to make the new value effective
* immediately.
*/
static void update_sampling_rate(struct dbs_data *dbs_data,
unsigned int new_rate)
{
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
int cpu;
od_tuners->sampling_rate = new_rate = max(new_rate,
dbs_data->min_sampling_rate);
for_each_online_cpu(cpu) {
struct cpufreq_policy *policy;
struct od_cpu_dbs_info_s *dbs_info;
unsigned long next_sampling, appointed_at;
policy = cpufreq_cpu_get(cpu);
if (!policy)
continue;
if (policy->governor != &cpufreq_gov_ondemand) {
cpufreq_cpu_put(policy);
continue;
}
dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
cpufreq_cpu_put(policy);
mutex_lock(&dbs_info->cdbs.timer_mutex);
if (!delayed_work_pending(&dbs_info->cdbs.work)) {
mutex_unlock(&dbs_info->cdbs.timer_mutex);
continue;
}
next_sampling = jiffies + usecs_to_jiffies(new_rate);
appointed_at = dbs_info->cdbs.work.timer.expires;
if (time_before(next_sampling, appointed_at)) {
mutex_unlock(&dbs_info->cdbs.timer_mutex);
cancel_delayed_work_sync(&dbs_info->cdbs.work);
mutex_lock(&dbs_info->cdbs.timer_mutex);
schedule_delayed_work_on(cpu, &dbs_info->cdbs.work,
usecs_to_jiffies(new_rate));
}
mutex_unlock(&dbs_info->cdbs.timer_mutex);
}
}
static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
update_sampling_rate(dbs_data, input);
return count;
}
static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
size_t count)
{
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
od_tuners->io_is_busy = !!input;
return count;
}
static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
size_t count)
{
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
input < MIN_FREQUENCY_UP_THRESHOLD) {
return -EINVAL;
}
/* Calculate the new adj_up_threshold */
od_tuners->adj_up_threshold += input;
od_tuners->adj_up_threshold -= od_tuners->up_threshold;
od_tuners->up_threshold = input;
return count;
}
static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
const char *buf, size_t count)
{
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
unsigned int input, j;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
return -EINVAL;
od_tuners->sampling_down_factor = input;
/* Reset down sampling multiplier in case it was active */
for_each_online_cpu(j) {
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
j);
dbs_info->rate_mult = 1;
}
return count;
}
static ssize_t store_ignore_nice(struct dbs_data *dbs_data, const char *buf,
size_t count)
{
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
unsigned int input;
int ret;
unsigned int j;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
if (input > 1)
input = 1;
if (input == od_tuners->ignore_nice) { /* nothing to do */
return count;
}
od_tuners->ignore_nice = input;
/* we need to re-evaluate prev_cpu_idle */
for_each_online_cpu(j) {
struct od_cpu_dbs_info_s *dbs_info;
dbs_info = &per_cpu(od_cpu_dbs_info, j);
dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
&dbs_info->cdbs.prev_cpu_wall);
if (od_tuners->ignore_nice)
dbs_info->cdbs.prev_cpu_nice =
kcpustat_cpu(j).cpustat[CPUTIME_NICE];
}
return count;
}
static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
size_t count)
{
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
if (input > 1000)
input = 1000;
od_tuners->powersave_bias = input;
ondemand_powersave_bias_init();
return count;
}
show_store_one(od, sampling_rate);
show_store_one(od, io_is_busy);
show_store_one(od, up_threshold);
show_store_one(od, sampling_down_factor);
show_store_one(od, ignore_nice);
show_store_one(od, powersave_bias);
declare_show_sampling_rate_min(od);
gov_sys_pol_attr_rw(sampling_rate);
gov_sys_pol_attr_rw(io_is_busy);
gov_sys_pol_attr_rw(up_threshold);
gov_sys_pol_attr_rw(sampling_down_factor);
gov_sys_pol_attr_rw(ignore_nice);
gov_sys_pol_attr_rw(powersave_bias);
gov_sys_pol_attr_ro(sampling_rate_min);
static struct attribute *dbs_attributes_gov_sys[] = {
&sampling_rate_min_gov_sys.attr,
&sampling_rate_gov_sys.attr,
&up_threshold_gov_sys.attr,
&sampling_down_factor_gov_sys.attr,
&ignore_nice_gov_sys.attr,
&powersave_bias_gov_sys.attr,
&io_is_busy_gov_sys.attr,
NULL
};
static struct attribute_group od_attr_group_gov_sys = {
.attrs = dbs_attributes_gov_sys,
.name = "ondemand",
};
static struct attribute *dbs_attributes_gov_pol[] = {
&sampling_rate_min_gov_pol.attr,
&sampling_rate_gov_pol.attr,
&up_threshold_gov_pol.attr,
&sampling_down_factor_gov_pol.attr,
&ignore_nice_gov_pol.attr,
&powersave_bias_gov_pol.attr,
&io_is_busy_gov_pol.attr,
NULL
};
static struct attribute_group od_attr_group_gov_pol = {
.attrs = dbs_attributes_gov_pol,
.name = "ondemand",
};
/************************** sysfs end ************************/
static int od_init(struct dbs_data *dbs_data)
{
struct od_dbs_tuners *tuners;
u64 idle_time;
int cpu;
tuners = kzalloc(sizeof(struct od_dbs_tuners), GFP_KERNEL);
if (!tuners) {
pr_err("%s: kzalloc failed\n", __func__);
return -ENOMEM;
}
cpu = get_cpu();
idle_time = get_cpu_idle_time_us(cpu, NULL);
put_cpu();
if (idle_time != -1ULL) {
/* Idle micro accounting is supported. Use finer thresholds */
tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
tuners->adj_up_threshold = MICRO_FREQUENCY_UP_THRESHOLD -
MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
/*
* In nohz/micro accounting case we set the minimum frequency
* not depending on HZ, but fixed (very low). The deferred
* timer might skip some samples if idle/sleeping as needed.
*/
dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
} else {
tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
tuners->adj_up_threshold = DEF_FREQUENCY_UP_THRESHOLD -
DEF_FREQUENCY_DOWN_DIFFERENTIAL;
/* For correct statistics, we need 10 ticks for each measure */
dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
jiffies_to_usecs(10);
}
tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
tuners->ignore_nice = 0;
tuners->powersave_bias = 0;
tuners->io_is_busy = should_io_be_busy();
dbs_data->tuners = tuners;
pr_info("%s: tuners %p\n", __func__, tuners);
mutex_init(&dbs_data->mutex);
return 0;
}
static void od_exit(struct dbs_data *dbs_data)
{
kfree(dbs_data->tuners);
}
define_get_cpu_dbs_routines(od_cpu_dbs_info);
static struct od_ops od_ops = {
.powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
.powersave_bias_target = powersave_bias_target,
.freq_increase = dbs_freq_increase,
};
static struct common_dbs_data od_dbs_cdata = {
.governor = GOV_ONDEMAND,
.attr_group_gov_sys = &od_attr_group_gov_sys,
.attr_group_gov_pol = &od_attr_group_gov_pol,
.get_cpu_cdbs = get_cpu_cdbs,
.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
.gov_dbs_timer = od_dbs_timer,
.gov_check_cpu = od_check_cpu,
.gov_ops = &od_ops,
.init = od_init,
.exit = od_exit,
};
static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
unsigned int event)
{
return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
}
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
static
#endif
struct cpufreq_governor cpufreq_gov_ondemand = {
.name = "ondemand",
.governor = od_cpufreq_governor_dbs,
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
.owner = THIS_MODULE,
};
static int __init cpufreq_gov_dbs_init(void)
{
return cpufreq_register_governor(&cpufreq_gov_ondemand);
}
static void __exit cpufreq_gov_dbs_exit(void)
{
cpufreq_unregister_governor(&cpufreq_gov_ondemand);
}
MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
"Low Latency Frequency Transition capable processors");
MODULE_LICENSE("GPL");
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
fs_initcall(cpufreq_gov_dbs_init);
#else
module_init(cpufreq_gov_dbs_init);
#endif
module_exit(cpufreq_gov_dbs_exit);