mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-28 15:13:55 +08:00
2facba769d
The address stored in the next link address is a word address but when reading the OTP blocks, a byte address is used. Also if the blocks are full and the last link pointer is not zero, then none of the blocks are valid so return an error. The algorithm is simply valid blocks have a next address and that address's contents is zero. Using the wrong address for the next link address gets arbitrary data, obviously. In cases seen, the first block is considered valid when it is not. If the block has in fact been invalidated there may be old data or there may be no data, bad data, or partial data, there is no way of telling. Without this patch it is possible that a device with valid OTP data is unable to work. Signed-off-by: Jay Sternberg <jay.e.sternberg@intel.com> Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> CC: stable@kernel.org Signed-off-by: John W. Linville <linville@tuxdriver.com>
1087 lines
33 KiB
C
1087 lines
33 KiB
C
/******************************************************************************
|
|
*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* Copyright(c) 2008 - 2009 Intel Corporation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
|
|
* USA
|
|
*
|
|
* The full GNU General Public License is included in this distribution
|
|
* in the file called LICENSE.GPL.
|
|
*
|
|
* Contact Information:
|
|
* Intel Linux Wireless <ilw@linux.intel.com>
|
|
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2005 - 2009 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*****************************************************************************/
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
|
|
#include <net/mac80211.h>
|
|
|
|
#include "iwl-commands.h"
|
|
#include "iwl-dev.h"
|
|
#include "iwl-core.h"
|
|
#include "iwl-debug.h"
|
|
#include "iwl-eeprom.h"
|
|
#include "iwl-io.h"
|
|
|
|
/************************** EEPROM BANDS ****************************
|
|
*
|
|
* The iwl_eeprom_band definitions below provide the mapping from the
|
|
* EEPROM contents to the specific channel number supported for each
|
|
* band.
|
|
*
|
|
* For example, iwl_priv->eeprom.band_3_channels[4] from the band_3
|
|
* definition below maps to physical channel 42 in the 5.2GHz spectrum.
|
|
* The specific geography and calibration information for that channel
|
|
* is contained in the eeprom map itself.
|
|
*
|
|
* During init, we copy the eeprom information and channel map
|
|
* information into priv->channel_info_24/52 and priv->channel_map_24/52
|
|
*
|
|
* channel_map_24/52 provides the index in the channel_info array for a
|
|
* given channel. We have to have two separate maps as there is channel
|
|
* overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
|
|
* band_2
|
|
*
|
|
* A value of 0xff stored in the channel_map indicates that the channel
|
|
* is not supported by the hardware at all.
|
|
*
|
|
* A value of 0xfe in the channel_map indicates that the channel is not
|
|
* valid for Tx with the current hardware. This means that
|
|
* while the system can tune and receive on a given channel, it may not
|
|
* be able to associate or transmit any frames on that
|
|
* channel. There is no corresponding channel information for that
|
|
* entry.
|
|
*
|
|
*********************************************************************/
|
|
|
|
/* 2.4 GHz */
|
|
const u8 iwl_eeprom_band_1[14] = {
|
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
|
|
};
|
|
|
|
/* 5.2 GHz bands */
|
|
static const u8 iwl_eeprom_band_2[] = { /* 4915-5080MHz */
|
|
183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
|
|
};
|
|
|
|
static const u8 iwl_eeprom_band_3[] = { /* 5170-5320MHz */
|
|
34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
|
|
};
|
|
|
|
static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */
|
|
100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
|
|
};
|
|
|
|
static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */
|
|
145, 149, 153, 157, 161, 165
|
|
};
|
|
|
|
static const u8 iwl_eeprom_band_6[] = { /* 2.4 ht40 channel */
|
|
1, 2, 3, 4, 5, 6, 7
|
|
};
|
|
|
|
static const u8 iwl_eeprom_band_7[] = { /* 5.2 ht40 channel */
|
|
36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
|
|
};
|
|
|
|
/**
|
|
* struct iwl_txpwr_section: eeprom section information
|
|
* @offset: indirect address into eeprom image
|
|
* @count: number of "struct iwl_eeprom_enhanced_txpwr" in this section
|
|
* @band: band type for the section
|
|
* @is_common - true: common section, false: channel section
|
|
* @is_cck - true: cck section, false: not cck section
|
|
* @is_ht_40 - true: all channel in the section are HT40 channel,
|
|
* false: legacy or HT 20 MHz
|
|
* ignore if it is common section
|
|
* @iwl_eeprom_section_channel: channel array in the section,
|
|
* ignore if common section
|
|
*/
|
|
struct iwl_txpwr_section {
|
|
u32 offset;
|
|
u8 count;
|
|
enum ieee80211_band band;
|
|
bool is_common;
|
|
bool is_cck;
|
|
bool is_ht40;
|
|
u8 iwl_eeprom_section_channel[EEPROM_MAX_TXPOWER_SECTION_ELEMENTS];
|
|
};
|
|
|
|
/**
|
|
* section 1 - 3 are regulatory tx power apply to all channels based on
|
|
* modulation: CCK, OFDM
|
|
* Band: 2.4GHz, 5.2GHz
|
|
* section 4 - 10 are regulatory tx power apply to specified channels
|
|
* For example:
|
|
* 1L - Channel 1 Legacy
|
|
* 1HT - Channel 1 HT
|
|
* (1,+1) - Channel 1 HT40 "_above_"
|
|
*
|
|
* Section 1: all CCK channels
|
|
* Section 2: all 2.4 GHz OFDM (Legacy, HT and HT40) channels
|
|
* Section 3: all 5.2 GHz OFDM (Legacy, HT and HT40) channels
|
|
* Section 4: 2.4 GHz 20MHz channels: 1L, 1HT, 2L, 2HT, 10L, 10HT, 11L, 11HT
|
|
* Section 5: 2.4 GHz 40MHz channels: (1,+1) (2,+1) (6,+1) (7,+1) (9,+1)
|
|
* Section 6: 5.2 GHz 20MHz channels: 36L, 64L, 100L, 36HT, 64HT, 100HT
|
|
* Section 7: 5.2 GHz 40MHz channels: (36,+1) (60,+1) (100,+1)
|
|
* Section 8: 2.4 GHz channel: 13L, 13HT
|
|
* Section 9: 2.4 GHz channel: 140L, 140HT
|
|
* Section 10: 2.4 GHz 40MHz channels: (132,+1) (44,+1)
|
|
*
|
|
*/
|
|
static const struct iwl_txpwr_section enhinfo[] = {
|
|
{ EEPROM_LB_CCK_20_COMMON, 1, IEEE80211_BAND_2GHZ, true, true, false },
|
|
{ EEPROM_LB_OFDM_COMMON, 3, IEEE80211_BAND_2GHZ, true, false, false },
|
|
{ EEPROM_HB_OFDM_COMMON, 3, IEEE80211_BAND_5GHZ, true, false, false },
|
|
{ EEPROM_LB_OFDM_20_BAND, 8, IEEE80211_BAND_2GHZ,
|
|
false, false, false,
|
|
{1, 1, 2, 2, 10, 10, 11, 11 } },
|
|
{ EEPROM_LB_OFDM_HT40_BAND, 5, IEEE80211_BAND_2GHZ,
|
|
false, false, true,
|
|
{ 1, 2, 6, 7, 9 } },
|
|
{ EEPROM_HB_OFDM_20_BAND, 6, IEEE80211_BAND_5GHZ,
|
|
false, false, false,
|
|
{ 36, 64, 100, 36, 64, 100 } },
|
|
{ EEPROM_HB_OFDM_HT40_BAND, 3, IEEE80211_BAND_5GHZ,
|
|
false, false, true,
|
|
{ 36, 60, 100 } },
|
|
{ EEPROM_LB_OFDM_20_CHANNEL_13, 2, IEEE80211_BAND_2GHZ,
|
|
false, false, false,
|
|
{ 13, 13 } },
|
|
{ EEPROM_HB_OFDM_20_CHANNEL_140, 2, IEEE80211_BAND_5GHZ,
|
|
false, false, false,
|
|
{ 140, 140 } },
|
|
{ EEPROM_HB_OFDM_HT40_BAND_1, 2, IEEE80211_BAND_5GHZ,
|
|
false, false, true,
|
|
{ 132, 44 } },
|
|
};
|
|
|
|
/******************************************************************************
|
|
*
|
|
* EEPROM related functions
|
|
*
|
|
******************************************************************************/
|
|
|
|
int iwlcore_eeprom_verify_signature(struct iwl_priv *priv)
|
|
{
|
|
u32 gp = iwl_read32(priv, CSR_EEPROM_GP);
|
|
if ((gp & CSR_EEPROM_GP_VALID_MSK) == CSR_EEPROM_GP_BAD_SIGNATURE) {
|
|
IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
|
|
return -ENOENT;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(iwlcore_eeprom_verify_signature);
|
|
|
|
static void iwl_set_otp_access(struct iwl_priv *priv, enum iwl_access_mode mode)
|
|
{
|
|
u32 otpgp;
|
|
|
|
otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
|
|
if (mode == IWL_OTP_ACCESS_ABSOLUTE)
|
|
iwl_clear_bit(priv, CSR_OTP_GP_REG,
|
|
CSR_OTP_GP_REG_OTP_ACCESS_MODE);
|
|
else
|
|
iwl_set_bit(priv, CSR_OTP_GP_REG,
|
|
CSR_OTP_GP_REG_OTP_ACCESS_MODE);
|
|
}
|
|
|
|
static int iwlcore_get_nvm_type(struct iwl_priv *priv)
|
|
{
|
|
u32 otpgp;
|
|
int nvm_type;
|
|
|
|
/* OTP only valid for CP/PP and after */
|
|
switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) {
|
|
case CSR_HW_REV_TYPE_NONE:
|
|
IWL_ERR(priv, "Unknown hardware type\n");
|
|
return -ENOENT;
|
|
case CSR_HW_REV_TYPE_3945:
|
|
case CSR_HW_REV_TYPE_4965:
|
|
case CSR_HW_REV_TYPE_5300:
|
|
case CSR_HW_REV_TYPE_5350:
|
|
case CSR_HW_REV_TYPE_5100:
|
|
case CSR_HW_REV_TYPE_5150:
|
|
nvm_type = NVM_DEVICE_TYPE_EEPROM;
|
|
break;
|
|
default:
|
|
otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
|
|
if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
|
|
nvm_type = NVM_DEVICE_TYPE_OTP;
|
|
else
|
|
nvm_type = NVM_DEVICE_TYPE_EEPROM;
|
|
break;
|
|
}
|
|
return nvm_type;
|
|
}
|
|
|
|
/*
|
|
* The device's EEPROM semaphore prevents conflicts between driver and uCode
|
|
* when accessing the EEPROM; each access is a series of pulses to/from the
|
|
* EEPROM chip, not a single event, so even reads could conflict if they
|
|
* weren't arbitrated by the semaphore.
|
|
*/
|
|
int iwlcore_eeprom_acquire_semaphore(struct iwl_priv *priv)
|
|
{
|
|
u16 count;
|
|
int ret;
|
|
|
|
for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
|
|
/* Request semaphore */
|
|
iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
|
|
CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
|
|
|
|
/* See if we got it */
|
|
ret = iwl_poll_direct_bit(priv, CSR_HW_IF_CONFIG_REG,
|
|
CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
|
|
EEPROM_SEM_TIMEOUT);
|
|
if (ret >= 0) {
|
|
IWL_DEBUG_IO(priv, "Acquired semaphore after %d tries.\n",
|
|
count+1);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(iwlcore_eeprom_acquire_semaphore);
|
|
|
|
void iwlcore_eeprom_release_semaphore(struct iwl_priv *priv)
|
|
{
|
|
iwl_clear_bit(priv, CSR_HW_IF_CONFIG_REG,
|
|
CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
|
|
|
|
}
|
|
EXPORT_SYMBOL(iwlcore_eeprom_release_semaphore);
|
|
|
|
const u8 *iwlcore_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
|
|
{
|
|
BUG_ON(offset >= priv->cfg->eeprom_size);
|
|
return &priv->eeprom[offset];
|
|
}
|
|
EXPORT_SYMBOL(iwlcore_eeprom_query_addr);
|
|
|
|
static int iwl_init_otp_access(struct iwl_priv *priv)
|
|
{
|
|
int ret;
|
|
|
|
/* Enable 40MHz radio clock */
|
|
_iwl_write32(priv, CSR_GP_CNTRL,
|
|
_iwl_read32(priv, CSR_GP_CNTRL) |
|
|
CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
|
|
|
|
/* wait for clock to be ready */
|
|
ret = iwl_poll_direct_bit(priv, CSR_GP_CNTRL,
|
|
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
|
|
25000);
|
|
if (ret < 0)
|
|
IWL_ERR(priv, "Time out access OTP\n");
|
|
else {
|
|
iwl_set_bits_prph(priv, APMG_PS_CTRL_REG,
|
|
APMG_PS_CTRL_VAL_RESET_REQ);
|
|
udelay(5);
|
|
iwl_clear_bits_prph(priv, APMG_PS_CTRL_REG,
|
|
APMG_PS_CTRL_VAL_RESET_REQ);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int iwl_read_otp_word(struct iwl_priv *priv, u16 addr, u16 *eeprom_data)
|
|
{
|
|
int ret = 0;
|
|
u32 r;
|
|
u32 otpgp;
|
|
|
|
_iwl_write32(priv, CSR_EEPROM_REG,
|
|
CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
|
|
ret = iwl_poll_direct_bit(priv, CSR_EEPROM_REG,
|
|
CSR_EEPROM_REG_READ_VALID_MSK,
|
|
IWL_EEPROM_ACCESS_TIMEOUT);
|
|
if (ret < 0) {
|
|
IWL_ERR(priv, "Time out reading OTP[%d]\n", addr);
|
|
return ret;
|
|
}
|
|
r = _iwl_read_direct32(priv, CSR_EEPROM_REG);
|
|
/* check for ECC errors: */
|
|
otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
|
|
if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
|
|
/* stop in this case */
|
|
/* set the uncorrectable OTP ECC bit for acknowledgement */
|
|
iwl_set_bit(priv, CSR_OTP_GP_REG,
|
|
CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
|
|
IWL_ERR(priv, "Uncorrectable OTP ECC error, abort OTP read\n");
|
|
return -EINVAL;
|
|
}
|
|
if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
|
|
/* continue in this case */
|
|
/* set the correctable OTP ECC bit for acknowledgement */
|
|
iwl_set_bit(priv, CSR_OTP_GP_REG,
|
|
CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
|
|
IWL_ERR(priv, "Correctable OTP ECC error, continue read\n");
|
|
}
|
|
*eeprom_data = le16_to_cpu((__force __le16)(r >> 16));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* iwl_is_otp_empty: check for empty OTP
|
|
*/
|
|
static bool iwl_is_otp_empty(struct iwl_priv *priv)
|
|
{
|
|
u16 next_link_addr = 0, link_value;
|
|
bool is_empty = false;
|
|
|
|
/* locate the beginning of OTP link list */
|
|
if (!iwl_read_otp_word(priv, next_link_addr, &link_value)) {
|
|
if (!link_value) {
|
|
IWL_ERR(priv, "OTP is empty\n");
|
|
is_empty = true;
|
|
}
|
|
} else {
|
|
IWL_ERR(priv, "Unable to read first block of OTP list.\n");
|
|
is_empty = true;
|
|
}
|
|
|
|
return is_empty;
|
|
}
|
|
|
|
|
|
/*
|
|
* iwl_find_otp_image: find EEPROM image in OTP
|
|
* finding the OTP block that contains the EEPROM image.
|
|
* the last valid block on the link list (the block _before_ the last block)
|
|
* is the block we should read and used to configure the device.
|
|
* If all the available OTP blocks are full, the last block will be the block
|
|
* we should read and used to configure the device.
|
|
* only perform this operation if shadow RAM is disabled
|
|
*/
|
|
static int iwl_find_otp_image(struct iwl_priv *priv,
|
|
u16 *validblockaddr)
|
|
{
|
|
u16 next_link_addr = 0, link_value = 0, valid_addr;
|
|
int usedblocks = 0;
|
|
|
|
/* set addressing mode to absolute to traverse the link list */
|
|
iwl_set_otp_access(priv, IWL_OTP_ACCESS_ABSOLUTE);
|
|
|
|
/* checking for empty OTP or error */
|
|
if (iwl_is_otp_empty(priv))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* start traverse link list
|
|
* until reach the max number of OTP blocks
|
|
* different devices have different number of OTP blocks
|
|
*/
|
|
do {
|
|
/* save current valid block address
|
|
* check for more block on the link list
|
|
*/
|
|
valid_addr = next_link_addr;
|
|
next_link_addr = link_value * sizeof(u16);
|
|
IWL_DEBUG_INFO(priv, "OTP blocks %d addr 0x%x\n",
|
|
usedblocks, next_link_addr);
|
|
if (iwl_read_otp_word(priv, next_link_addr, &link_value))
|
|
return -EINVAL;
|
|
if (!link_value) {
|
|
/*
|
|
* reach the end of link list, return success and
|
|
* set address point to the starting address
|
|
* of the image
|
|
*/
|
|
*validblockaddr = valid_addr;
|
|
/* skip first 2 bytes (link list pointer) */
|
|
*validblockaddr += 2;
|
|
return 0;
|
|
}
|
|
/* more in the link list, continue */
|
|
usedblocks++;
|
|
} while (usedblocks <= priv->cfg->max_ll_items);
|
|
|
|
/* OTP has no valid blocks */
|
|
IWL_DEBUG_INFO(priv, "OTP has no valid blocks\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* iwl_eeprom_init - read EEPROM contents
|
|
*
|
|
* Load the EEPROM contents from adapter into priv->eeprom
|
|
*
|
|
* NOTE: This routine uses the non-debug IO access functions.
|
|
*/
|
|
int iwl_eeprom_init(struct iwl_priv *priv)
|
|
{
|
|
u16 *e;
|
|
u32 gp = iwl_read32(priv, CSR_EEPROM_GP);
|
|
int sz;
|
|
int ret;
|
|
u16 addr;
|
|
u16 validblockaddr = 0;
|
|
u16 cache_addr = 0;
|
|
|
|
priv->nvm_device_type = iwlcore_get_nvm_type(priv);
|
|
if (priv->nvm_device_type == -ENOENT)
|
|
return -ENOENT;
|
|
/* allocate eeprom */
|
|
IWL_DEBUG_INFO(priv, "NVM size = %d\n", priv->cfg->eeprom_size);
|
|
sz = priv->cfg->eeprom_size;
|
|
priv->eeprom = kzalloc(sz, GFP_KERNEL);
|
|
if (!priv->eeprom) {
|
|
ret = -ENOMEM;
|
|
goto alloc_err;
|
|
}
|
|
e = (u16 *)priv->eeprom;
|
|
|
|
ret = priv->cfg->ops->lib->eeprom_ops.verify_signature(priv);
|
|
if (ret < 0) {
|
|
IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
|
|
ret = -ENOENT;
|
|
goto err;
|
|
}
|
|
|
|
/* Make sure driver (instead of uCode) is allowed to read EEPROM */
|
|
ret = priv->cfg->ops->lib->eeprom_ops.acquire_semaphore(priv);
|
|
if (ret < 0) {
|
|
IWL_ERR(priv, "Failed to acquire EEPROM semaphore.\n");
|
|
ret = -ENOENT;
|
|
goto err;
|
|
}
|
|
if (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP) {
|
|
ret = iwl_init_otp_access(priv);
|
|
if (ret) {
|
|
IWL_ERR(priv, "Failed to initialize OTP access.\n");
|
|
ret = -ENOENT;
|
|
goto done;
|
|
}
|
|
_iwl_write32(priv, CSR_EEPROM_GP,
|
|
iwl_read32(priv, CSR_EEPROM_GP) &
|
|
~CSR_EEPROM_GP_IF_OWNER_MSK);
|
|
|
|
iwl_set_bit(priv, CSR_OTP_GP_REG,
|
|
CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
|
|
CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
|
|
/* traversing the linked list if no shadow ram supported */
|
|
if (!priv->cfg->shadow_ram_support) {
|
|
if (iwl_find_otp_image(priv, &validblockaddr)) {
|
|
ret = -ENOENT;
|
|
goto done;
|
|
}
|
|
}
|
|
for (addr = validblockaddr; addr < validblockaddr + sz;
|
|
addr += sizeof(u16)) {
|
|
u16 eeprom_data;
|
|
|
|
ret = iwl_read_otp_word(priv, addr, &eeprom_data);
|
|
if (ret)
|
|
goto done;
|
|
e[cache_addr / 2] = eeprom_data;
|
|
cache_addr += sizeof(u16);
|
|
}
|
|
} else {
|
|
/* eeprom is an array of 16bit values */
|
|
for (addr = 0; addr < sz; addr += sizeof(u16)) {
|
|
u32 r;
|
|
|
|
_iwl_write32(priv, CSR_EEPROM_REG,
|
|
CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
|
|
|
|
ret = iwl_poll_direct_bit(priv, CSR_EEPROM_REG,
|
|
CSR_EEPROM_REG_READ_VALID_MSK,
|
|
IWL_EEPROM_ACCESS_TIMEOUT);
|
|
if (ret < 0) {
|
|
IWL_ERR(priv, "Time out reading EEPROM[%d]\n", addr);
|
|
goto done;
|
|
}
|
|
r = _iwl_read_direct32(priv, CSR_EEPROM_REG);
|
|
e[addr / 2] = le16_to_cpu((__force __le16)(r >> 16));
|
|
}
|
|
}
|
|
ret = 0;
|
|
done:
|
|
priv->cfg->ops->lib->eeprom_ops.release_semaphore(priv);
|
|
err:
|
|
if (ret)
|
|
iwl_eeprom_free(priv);
|
|
alloc_err:
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(iwl_eeprom_init);
|
|
|
|
void iwl_eeprom_free(struct iwl_priv *priv)
|
|
{
|
|
kfree(priv->eeprom);
|
|
priv->eeprom = NULL;
|
|
}
|
|
EXPORT_SYMBOL(iwl_eeprom_free);
|
|
|
|
int iwl_eeprom_check_version(struct iwl_priv *priv)
|
|
{
|
|
u16 eeprom_ver;
|
|
u16 calib_ver;
|
|
|
|
eeprom_ver = iwl_eeprom_query16(priv, EEPROM_VERSION);
|
|
calib_ver = priv->cfg->ops->lib->eeprom_ops.calib_version(priv);
|
|
|
|
if (eeprom_ver < priv->cfg->eeprom_ver ||
|
|
calib_ver < priv->cfg->eeprom_calib_ver)
|
|
goto err;
|
|
|
|
return 0;
|
|
err:
|
|
IWL_ERR(priv, "Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n",
|
|
eeprom_ver, priv->cfg->eeprom_ver,
|
|
calib_ver, priv->cfg->eeprom_calib_ver);
|
|
return -EINVAL;
|
|
|
|
}
|
|
EXPORT_SYMBOL(iwl_eeprom_check_version);
|
|
|
|
const u8 *iwl_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
|
|
{
|
|
return priv->cfg->ops->lib->eeprom_ops.query_addr(priv, offset);
|
|
}
|
|
EXPORT_SYMBOL(iwl_eeprom_query_addr);
|
|
|
|
u16 iwl_eeprom_query16(const struct iwl_priv *priv, size_t offset)
|
|
{
|
|
if (!priv->eeprom)
|
|
return 0;
|
|
return (u16)priv->eeprom[offset] | ((u16)priv->eeprom[offset + 1] << 8);
|
|
}
|
|
EXPORT_SYMBOL(iwl_eeprom_query16);
|
|
|
|
void iwl_eeprom_get_mac(const struct iwl_priv *priv, u8 *mac)
|
|
{
|
|
const u8 *addr = priv->cfg->ops->lib->eeprom_ops.query_addr(priv,
|
|
EEPROM_MAC_ADDRESS);
|
|
memcpy(mac, addr, ETH_ALEN);
|
|
}
|
|
EXPORT_SYMBOL(iwl_eeprom_get_mac);
|
|
|
|
static void iwl_init_band_reference(const struct iwl_priv *priv,
|
|
int eep_band, int *eeprom_ch_count,
|
|
const struct iwl_eeprom_channel **eeprom_ch_info,
|
|
const u8 **eeprom_ch_index)
|
|
{
|
|
u32 offset = priv->cfg->ops->lib->
|
|
eeprom_ops.regulatory_bands[eep_band - 1];
|
|
switch (eep_band) {
|
|
case 1: /* 2.4GHz band */
|
|
*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
|
|
*eeprom_ch_info = (struct iwl_eeprom_channel *)
|
|
iwl_eeprom_query_addr(priv, offset);
|
|
*eeprom_ch_index = iwl_eeprom_band_1;
|
|
break;
|
|
case 2: /* 4.9GHz band */
|
|
*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
|
|
*eeprom_ch_info = (struct iwl_eeprom_channel *)
|
|
iwl_eeprom_query_addr(priv, offset);
|
|
*eeprom_ch_index = iwl_eeprom_band_2;
|
|
break;
|
|
case 3: /* 5.2GHz band */
|
|
*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
|
|
*eeprom_ch_info = (struct iwl_eeprom_channel *)
|
|
iwl_eeprom_query_addr(priv, offset);
|
|
*eeprom_ch_index = iwl_eeprom_band_3;
|
|
break;
|
|
case 4: /* 5.5GHz band */
|
|
*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
|
|
*eeprom_ch_info = (struct iwl_eeprom_channel *)
|
|
iwl_eeprom_query_addr(priv, offset);
|
|
*eeprom_ch_index = iwl_eeprom_band_4;
|
|
break;
|
|
case 5: /* 5.7GHz band */
|
|
*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
|
|
*eeprom_ch_info = (struct iwl_eeprom_channel *)
|
|
iwl_eeprom_query_addr(priv, offset);
|
|
*eeprom_ch_index = iwl_eeprom_band_5;
|
|
break;
|
|
case 6: /* 2.4GHz ht40 channels */
|
|
*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
|
|
*eeprom_ch_info = (struct iwl_eeprom_channel *)
|
|
iwl_eeprom_query_addr(priv, offset);
|
|
*eeprom_ch_index = iwl_eeprom_band_6;
|
|
break;
|
|
case 7: /* 5 GHz ht40 channels */
|
|
*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
|
|
*eeprom_ch_info = (struct iwl_eeprom_channel *)
|
|
iwl_eeprom_query_addr(priv, offset);
|
|
*eeprom_ch_index = iwl_eeprom_band_7;
|
|
break;
|
|
default:
|
|
BUG();
|
|
return;
|
|
}
|
|
}
|
|
|
|
#define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
|
|
? # x " " : "")
|
|
|
|
/**
|
|
* iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv.
|
|
*
|
|
* Does not set up a command, or touch hardware.
|
|
*/
|
|
static int iwl_mod_ht40_chan_info(struct iwl_priv *priv,
|
|
enum ieee80211_band band, u16 channel,
|
|
const struct iwl_eeprom_channel *eeprom_ch,
|
|
u8 clear_ht40_extension_channel)
|
|
{
|
|
struct iwl_channel_info *ch_info;
|
|
|
|
ch_info = (struct iwl_channel_info *)
|
|
iwl_get_channel_info(priv, band, channel);
|
|
|
|
if (!is_channel_valid(ch_info))
|
|
return -1;
|
|
|
|
IWL_DEBUG_INFO(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
|
|
" Ad-Hoc %ssupported\n",
|
|
ch_info->channel,
|
|
is_channel_a_band(ch_info) ?
|
|
"5.2" : "2.4",
|
|
CHECK_AND_PRINT(IBSS),
|
|
CHECK_AND_PRINT(ACTIVE),
|
|
CHECK_AND_PRINT(RADAR),
|
|
CHECK_AND_PRINT(WIDE),
|
|
CHECK_AND_PRINT(DFS),
|
|
eeprom_ch->flags,
|
|
eeprom_ch->max_power_avg,
|
|
((eeprom_ch->flags & EEPROM_CHANNEL_IBSS)
|
|
&& !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ?
|
|
"" : "not ");
|
|
|
|
ch_info->ht40_eeprom = *eeprom_ch;
|
|
ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
|
|
ch_info->ht40_curr_txpow = eeprom_ch->max_power_avg;
|
|
ch_info->ht40_min_power = 0;
|
|
ch_info->ht40_scan_power = eeprom_ch->max_power_avg;
|
|
ch_info->ht40_flags = eeprom_ch->flags;
|
|
ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* iwl_get_max_txpower_avg - get the highest tx power from all chains.
|
|
* find the highest tx power from all chains for the channel
|
|
*/
|
|
static s8 iwl_get_max_txpower_avg(struct iwl_priv *priv,
|
|
struct iwl_eeprom_enhanced_txpwr *enhanced_txpower, int element)
|
|
{
|
|
s8 max_txpower_avg = 0; /* (dBm) */
|
|
|
|
IWL_DEBUG_INFO(priv, "%d - "
|
|
"chain_a: %d dB chain_b: %d dB "
|
|
"chain_c: %d dB mimo2: %d dB mimo3: %d dB\n",
|
|
element,
|
|
enhanced_txpower[element].chain_a_max >> 1,
|
|
enhanced_txpower[element].chain_b_max >> 1,
|
|
enhanced_txpower[element].chain_c_max >> 1,
|
|
enhanced_txpower[element].mimo2_max >> 1,
|
|
enhanced_txpower[element].mimo3_max >> 1);
|
|
/* Take the highest tx power from any valid chains */
|
|
if ((priv->cfg->valid_tx_ant & ANT_A) &&
|
|
(enhanced_txpower[element].chain_a_max > max_txpower_avg))
|
|
max_txpower_avg = enhanced_txpower[element].chain_a_max;
|
|
if ((priv->cfg->valid_tx_ant & ANT_B) &&
|
|
(enhanced_txpower[element].chain_b_max > max_txpower_avg))
|
|
max_txpower_avg = enhanced_txpower[element].chain_b_max;
|
|
if ((priv->cfg->valid_tx_ant & ANT_C) &&
|
|
(enhanced_txpower[element].chain_c_max > max_txpower_avg))
|
|
max_txpower_avg = enhanced_txpower[element].chain_c_max;
|
|
if (((priv->cfg->valid_tx_ant == ANT_AB) |
|
|
(priv->cfg->valid_tx_ant == ANT_BC) |
|
|
(priv->cfg->valid_tx_ant == ANT_AC)) &&
|
|
(enhanced_txpower[element].mimo2_max > max_txpower_avg))
|
|
max_txpower_avg = enhanced_txpower[element].mimo2_max;
|
|
if ((priv->cfg->valid_tx_ant == ANT_ABC) &&
|
|
(enhanced_txpower[element].mimo3_max > max_txpower_avg))
|
|
max_txpower_avg = enhanced_txpower[element].mimo3_max;
|
|
|
|
/* max. tx power in EEPROM is in 1/2 dBm format
|
|
* convert from 1/2 dBm to dBm
|
|
*/
|
|
return max_txpower_avg >> 1;
|
|
}
|
|
|
|
/**
|
|
* iwl_update_common_txpower: update channel tx power
|
|
* update tx power per band based on EEPROM enhanced tx power info.
|
|
*/
|
|
static s8 iwl_update_common_txpower(struct iwl_priv *priv,
|
|
struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
|
|
int section, int element)
|
|
{
|
|
struct iwl_channel_info *ch_info;
|
|
int ch;
|
|
bool is_ht40 = false;
|
|
s8 max_txpower_avg; /* (dBm) */
|
|
|
|
/* it is common section, contain all type (Legacy, HT and HT40)
|
|
* based on the element in the section to determine
|
|
* is it HT 40 or not
|
|
*/
|
|
if (element == EEPROM_TXPOWER_COMMON_HT40_INDEX)
|
|
is_ht40 = true;
|
|
max_txpower_avg =
|
|
iwl_get_max_txpower_avg(priv, enhanced_txpower, element);
|
|
ch_info = priv->channel_info;
|
|
|
|
for (ch = 0; ch < priv->channel_count; ch++) {
|
|
/* find matching band and update tx power if needed */
|
|
if ((ch_info->band == enhinfo[section].band) &&
|
|
(ch_info->max_power_avg < max_txpower_avg) && (!is_ht40)) {
|
|
/* Update regulatory-based run-time data */
|
|
ch_info->max_power_avg = ch_info->curr_txpow =
|
|
max_txpower_avg;
|
|
ch_info->scan_power = max_txpower_avg;
|
|
}
|
|
if ((ch_info->band == enhinfo[section].band) && is_ht40 &&
|
|
ch_info->ht40_max_power_avg &&
|
|
(ch_info->ht40_max_power_avg < max_txpower_avg)) {
|
|
/* Update regulatory-based run-time data */
|
|
ch_info->ht40_max_power_avg = max_txpower_avg;
|
|
ch_info->ht40_curr_txpow = max_txpower_avg;
|
|
ch_info->ht40_scan_power = max_txpower_avg;
|
|
}
|
|
ch_info++;
|
|
}
|
|
return max_txpower_avg;
|
|
}
|
|
|
|
/**
|
|
* iwl_update_channel_txpower: update channel tx power
|
|
* update channel tx power based on EEPROM enhanced tx power info.
|
|
*/
|
|
static s8 iwl_update_channel_txpower(struct iwl_priv *priv,
|
|
struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
|
|
int section, int element)
|
|
{
|
|
struct iwl_channel_info *ch_info;
|
|
int ch;
|
|
u8 channel;
|
|
s8 max_txpower_avg; /* (dBm) */
|
|
|
|
channel = enhinfo[section].iwl_eeprom_section_channel[element];
|
|
max_txpower_avg =
|
|
iwl_get_max_txpower_avg(priv, enhanced_txpower, element);
|
|
|
|
ch_info = priv->channel_info;
|
|
for (ch = 0; ch < priv->channel_count; ch++) {
|
|
/* find matching channel and update tx power if needed */
|
|
if (ch_info->channel == channel) {
|
|
if ((ch_info->max_power_avg < max_txpower_avg) &&
|
|
(!enhinfo[section].is_ht40)) {
|
|
/* Update regulatory-based run-time data */
|
|
ch_info->max_power_avg = max_txpower_avg;
|
|
ch_info->curr_txpow = max_txpower_avg;
|
|
ch_info->scan_power = max_txpower_avg;
|
|
}
|
|
if ((enhinfo[section].is_ht40) &&
|
|
(ch_info->ht40_max_power_avg) &&
|
|
(ch_info->ht40_max_power_avg < max_txpower_avg)) {
|
|
/* Update regulatory-based run-time data */
|
|
ch_info->ht40_max_power_avg = max_txpower_avg;
|
|
ch_info->ht40_curr_txpow = max_txpower_avg;
|
|
ch_info->ht40_scan_power = max_txpower_avg;
|
|
}
|
|
break;
|
|
}
|
|
ch_info++;
|
|
}
|
|
return max_txpower_avg;
|
|
}
|
|
|
|
/**
|
|
* iwlcore_eeprom_enhanced_txpower: process enhanced tx power info
|
|
*/
|
|
void iwlcore_eeprom_enhanced_txpower(struct iwl_priv *priv)
|
|
{
|
|
int eeprom_section_count = 0;
|
|
int section, element;
|
|
struct iwl_eeprom_enhanced_txpwr *enhanced_txpower;
|
|
u32 offset;
|
|
s8 max_txpower_avg; /* (dBm) */
|
|
|
|
/* Loop through all the sections
|
|
* adjust bands and channel's max tx power
|
|
* Set the tx_power_user_lmt to the highest power
|
|
* supported by any channels and chains
|
|
*/
|
|
for (section = 0; section < ARRAY_SIZE(enhinfo); section++) {
|
|
eeprom_section_count = enhinfo[section].count;
|
|
offset = enhinfo[section].offset;
|
|
enhanced_txpower = (struct iwl_eeprom_enhanced_txpwr *)
|
|
iwl_eeprom_query_addr(priv, offset);
|
|
|
|
for (element = 0; element < eeprom_section_count; element++) {
|
|
if (enhinfo[section].is_common)
|
|
max_txpower_avg =
|
|
iwl_update_common_txpower(priv,
|
|
enhanced_txpower, section, element);
|
|
else
|
|
max_txpower_avg =
|
|
iwl_update_channel_txpower(priv,
|
|
enhanced_txpower, section, element);
|
|
|
|
/* Update the tx_power_user_lmt to the highest power
|
|
* supported by any channel */
|
|
if (max_txpower_avg > priv->tx_power_user_lmt)
|
|
priv->tx_power_user_lmt = max_txpower_avg;
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(iwlcore_eeprom_enhanced_txpower);
|
|
|
|
#define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
|
|
? # x " " : "")
|
|
|
|
/**
|
|
* iwl_init_channel_map - Set up driver's info for all possible channels
|
|
*/
|
|
int iwl_init_channel_map(struct iwl_priv *priv)
|
|
{
|
|
int eeprom_ch_count = 0;
|
|
const u8 *eeprom_ch_index = NULL;
|
|
const struct iwl_eeprom_channel *eeprom_ch_info = NULL;
|
|
int band, ch;
|
|
struct iwl_channel_info *ch_info;
|
|
|
|
if (priv->channel_count) {
|
|
IWL_DEBUG_INFO(priv, "Channel map already initialized.\n");
|
|
return 0;
|
|
}
|
|
|
|
IWL_DEBUG_INFO(priv, "Initializing regulatory info from EEPROM\n");
|
|
|
|
priv->channel_count =
|
|
ARRAY_SIZE(iwl_eeprom_band_1) +
|
|
ARRAY_SIZE(iwl_eeprom_band_2) +
|
|
ARRAY_SIZE(iwl_eeprom_band_3) +
|
|
ARRAY_SIZE(iwl_eeprom_band_4) +
|
|
ARRAY_SIZE(iwl_eeprom_band_5);
|
|
|
|
IWL_DEBUG_INFO(priv, "Parsing data for %d channels.\n", priv->channel_count);
|
|
|
|
priv->channel_info = kzalloc(sizeof(struct iwl_channel_info) *
|
|
priv->channel_count, GFP_KERNEL);
|
|
if (!priv->channel_info) {
|
|
IWL_ERR(priv, "Could not allocate channel_info\n");
|
|
priv->channel_count = 0;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ch_info = priv->channel_info;
|
|
|
|
/* Loop through the 5 EEPROM bands adding them in order to the
|
|
* channel map we maintain (that contains additional information than
|
|
* what just in the EEPROM) */
|
|
for (band = 1; band <= 5; band++) {
|
|
|
|
iwl_init_band_reference(priv, band, &eeprom_ch_count,
|
|
&eeprom_ch_info, &eeprom_ch_index);
|
|
|
|
/* Loop through each band adding each of the channels */
|
|
for (ch = 0; ch < eeprom_ch_count; ch++) {
|
|
ch_info->channel = eeprom_ch_index[ch];
|
|
ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ :
|
|
IEEE80211_BAND_5GHZ;
|
|
|
|
/* permanently store EEPROM's channel regulatory flags
|
|
* and max power in channel info database. */
|
|
ch_info->eeprom = eeprom_ch_info[ch];
|
|
|
|
/* Copy the run-time flags so they are there even on
|
|
* invalid channels */
|
|
ch_info->flags = eeprom_ch_info[ch].flags;
|
|
/* First write that ht40 is not enabled, and then enable
|
|
* one by one */
|
|
ch_info->ht40_extension_channel =
|
|
IEEE80211_CHAN_NO_HT40;
|
|
|
|
if (!(is_channel_valid(ch_info))) {
|
|
IWL_DEBUG_INFO(priv, "Ch. %d Flags %x [%sGHz] - "
|
|
"No traffic\n",
|
|
ch_info->channel,
|
|
ch_info->flags,
|
|
is_channel_a_band(ch_info) ?
|
|
"5.2" : "2.4");
|
|
ch_info++;
|
|
continue;
|
|
}
|
|
|
|
/* Initialize regulatory-based run-time data */
|
|
ch_info->max_power_avg = ch_info->curr_txpow =
|
|
eeprom_ch_info[ch].max_power_avg;
|
|
ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
|
|
ch_info->min_power = 0;
|
|
|
|
IWL_DEBUG_INFO(priv, "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm):"
|
|
" Ad-Hoc %ssupported\n",
|
|
ch_info->channel,
|
|
is_channel_a_band(ch_info) ?
|
|
"5.2" : "2.4",
|
|
CHECK_AND_PRINT_I(VALID),
|
|
CHECK_AND_PRINT_I(IBSS),
|
|
CHECK_AND_PRINT_I(ACTIVE),
|
|
CHECK_AND_PRINT_I(RADAR),
|
|
CHECK_AND_PRINT_I(WIDE),
|
|
CHECK_AND_PRINT_I(DFS),
|
|
eeprom_ch_info[ch].flags,
|
|
eeprom_ch_info[ch].max_power_avg,
|
|
((eeprom_ch_info[ch].
|
|
flags & EEPROM_CHANNEL_IBSS)
|
|
&& !(eeprom_ch_info[ch].
|
|
flags & EEPROM_CHANNEL_RADAR))
|
|
? "" : "not ");
|
|
|
|
/* Set the tx_power_user_lmt to the highest power
|
|
* supported by any channel */
|
|
if (eeprom_ch_info[ch].max_power_avg >
|
|
priv->tx_power_user_lmt)
|
|
priv->tx_power_user_lmt =
|
|
eeprom_ch_info[ch].max_power_avg;
|
|
|
|
ch_info++;
|
|
}
|
|
}
|
|
|
|
/* Check if we do have HT40 channels */
|
|
if (priv->cfg->ops->lib->eeprom_ops.regulatory_bands[5] ==
|
|
EEPROM_REGULATORY_BAND_NO_HT40 &&
|
|
priv->cfg->ops->lib->eeprom_ops.regulatory_bands[6] ==
|
|
EEPROM_REGULATORY_BAND_NO_HT40)
|
|
return 0;
|
|
|
|
/* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
|
|
for (band = 6; band <= 7; band++) {
|
|
enum ieee80211_band ieeeband;
|
|
|
|
iwl_init_band_reference(priv, band, &eeprom_ch_count,
|
|
&eeprom_ch_info, &eeprom_ch_index);
|
|
|
|
/* EEPROM band 6 is 2.4, band 7 is 5 GHz */
|
|
ieeeband =
|
|
(band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
|
|
|
|
/* Loop through each band adding each of the channels */
|
|
for (ch = 0; ch < eeprom_ch_count; ch++) {
|
|
/* Set up driver's info for lower half */
|
|
iwl_mod_ht40_chan_info(priv, ieeeband,
|
|
eeprom_ch_index[ch],
|
|
&eeprom_ch_info[ch],
|
|
IEEE80211_CHAN_NO_HT40PLUS);
|
|
|
|
/* Set up driver's info for upper half */
|
|
iwl_mod_ht40_chan_info(priv, ieeeband,
|
|
eeprom_ch_index[ch] + 4,
|
|
&eeprom_ch_info[ch],
|
|
IEEE80211_CHAN_NO_HT40MINUS);
|
|
}
|
|
}
|
|
|
|
/* for newer device (6000 series and up)
|
|
* EEPROM contain enhanced tx power information
|
|
* driver need to process addition information
|
|
* to determine the max channel tx power limits
|
|
*/
|
|
if (priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower)
|
|
priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower(priv);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(iwl_init_channel_map);
|
|
|
|
/*
|
|
* iwl_free_channel_map - undo allocations in iwl_init_channel_map
|
|
*/
|
|
void iwl_free_channel_map(struct iwl_priv *priv)
|
|
{
|
|
kfree(priv->channel_info);
|
|
priv->channel_count = 0;
|
|
}
|
|
EXPORT_SYMBOL(iwl_free_channel_map);
|
|
|
|
/**
|
|
* iwl_get_channel_info - Find driver's private channel info
|
|
*
|
|
* Based on band and channel number.
|
|
*/
|
|
const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv,
|
|
enum ieee80211_band band, u16 channel)
|
|
{
|
|
int i;
|
|
|
|
switch (band) {
|
|
case IEEE80211_BAND_5GHZ:
|
|
for (i = 14; i < priv->channel_count; i++) {
|
|
if (priv->channel_info[i].channel == channel)
|
|
return &priv->channel_info[i];
|
|
}
|
|
break;
|
|
case IEEE80211_BAND_2GHZ:
|
|
if (channel >= 1 && channel <= 14)
|
|
return &priv->channel_info[channel - 1];
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(iwl_get_channel_info);
|
|
|