2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 19:53:59 +08:00
linux-next/crypto/aead.c
Herbert Xu caab94612a crypto: aead - Add multiple algorithm registration interface
This patch adds the helpers that allow the registration and removal
of multiple algorithms.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-06-03 10:48:35 +08:00

943 lines
24 KiB
C

/*
* AEAD: Authenticated Encryption with Associated Data
*
* This file provides API support for AEAD algorithms.
*
* Copyright (c) 2007 Herbert Xu <herbert@gondor.apana.org.au>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#include <crypto/internal/geniv.h>
#include <crypto/scatterwalk.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/rtnetlink.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/cryptouser.h>
#include <net/netlink.h>
#include "internal.h"
struct compat_request_ctx {
struct scatterlist src[2];
struct scatterlist dst[2];
struct scatterlist ivbuf[2];
struct scatterlist *ivsg;
struct aead_givcrypt_request subreq;
};
static int aead_null_givencrypt(struct aead_givcrypt_request *req);
static int aead_null_givdecrypt(struct aead_givcrypt_request *req);
static int setkey_unaligned(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
unsigned long alignmask = crypto_aead_alignmask(tfm);
int ret;
u8 *buffer, *alignbuffer;
unsigned long absize;
absize = keylen + alignmask;
buffer = kmalloc(absize, GFP_ATOMIC);
if (!buffer)
return -ENOMEM;
alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
memcpy(alignbuffer, key, keylen);
ret = tfm->setkey(tfm, alignbuffer, keylen);
memset(alignbuffer, 0, keylen);
kfree(buffer);
return ret;
}
int crypto_aead_setkey(struct crypto_aead *tfm,
const u8 *key, unsigned int keylen)
{
unsigned long alignmask = crypto_aead_alignmask(tfm);
tfm = tfm->child;
if ((unsigned long)key & alignmask)
return setkey_unaligned(tfm, key, keylen);
return tfm->setkey(tfm, key, keylen);
}
EXPORT_SYMBOL_GPL(crypto_aead_setkey);
int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
int err;
if (authsize > crypto_aead_maxauthsize(tfm))
return -EINVAL;
if (tfm->setauthsize) {
err = tfm->setauthsize(tfm->child, authsize);
if (err)
return err;
}
tfm->child->authsize = authsize;
tfm->authsize = authsize;
return 0;
}
EXPORT_SYMBOL_GPL(crypto_aead_setauthsize);
struct aead_old_request {
struct scatterlist srcbuf[2];
struct scatterlist dstbuf[2];
struct aead_request subreq;
};
unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
{
return tfm->reqsize + sizeof(struct aead_old_request);
}
EXPORT_SYMBOL_GPL(crypto_aead_reqsize);
static int old_crypt(struct aead_request *req,
int (*crypt)(struct aead_request *req))
{
struct aead_old_request *nreq = aead_request_ctx(req);
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct scatterlist *src, *dst;
if (req->old)
return crypt(req);
src = scatterwalk_ffwd(nreq->srcbuf, req->src, req->assoclen);
dst = req->src == req->dst ?
src : scatterwalk_ffwd(nreq->dstbuf, req->dst, req->assoclen);
aead_request_set_tfm(&nreq->subreq, aead);
aead_request_set_callback(&nreq->subreq, aead_request_flags(req),
req->base.complete, req->base.data);
aead_request_set_crypt(&nreq->subreq, src, dst, req->cryptlen,
req->iv);
aead_request_set_assoc(&nreq->subreq, req->src, req->assoclen);
return crypt(&nreq->subreq);
}
static int old_encrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct old_aead_alg *alg = crypto_old_aead_alg(aead);
return old_crypt(req, alg->encrypt);
}
static int old_decrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct old_aead_alg *alg = crypto_old_aead_alg(aead);
return old_crypt(req, alg->decrypt);
}
static int no_givcrypt(struct aead_givcrypt_request *req)
{
return -ENOSYS;
}
static int crypto_old_aead_init_tfm(struct crypto_tfm *tfm)
{
struct old_aead_alg *alg = &tfm->__crt_alg->cra_aead;
struct crypto_aead *crt = __crypto_aead_cast(tfm);
if (max(alg->maxauthsize, alg->ivsize) > PAGE_SIZE / 8)
return -EINVAL;
crt->setkey = alg->setkey;
crt->setauthsize = alg->setauthsize;
crt->encrypt = old_encrypt;
crt->decrypt = old_decrypt;
if (alg->ivsize) {
crt->givencrypt = alg->givencrypt ?: no_givcrypt;
crt->givdecrypt = alg->givdecrypt ?: no_givcrypt;
} else {
crt->givencrypt = aead_null_givencrypt;
crt->givdecrypt = aead_null_givdecrypt;
}
crt->child = __crypto_aead_cast(tfm);
crt->authsize = alg->maxauthsize;
return 0;
}
static void crypto_aead_exit_tfm(struct crypto_tfm *tfm)
{
struct crypto_aead *aead = __crypto_aead_cast(tfm);
struct aead_alg *alg = crypto_aead_alg(aead);
alg->exit(aead);
}
static int crypto_aead_init_tfm(struct crypto_tfm *tfm)
{
struct crypto_aead *aead = __crypto_aead_cast(tfm);
struct aead_alg *alg = crypto_aead_alg(aead);
if (crypto_old_aead_alg(aead)->encrypt)
return crypto_old_aead_init_tfm(tfm);
aead->setkey = alg->setkey;
aead->setauthsize = alg->setauthsize;
aead->encrypt = alg->encrypt;
aead->decrypt = alg->decrypt;
aead->child = __crypto_aead_cast(tfm);
aead->authsize = alg->maxauthsize;
if (alg->exit)
aead->base.exit = crypto_aead_exit_tfm;
if (alg->init)
return alg->init(aead);
return 0;
}
#ifdef CONFIG_NET
static int crypto_old_aead_report(struct sk_buff *skb, struct crypto_alg *alg)
{
struct crypto_report_aead raead;
struct old_aead_alg *aead = &alg->cra_aead;
strncpy(raead.type, "aead", sizeof(raead.type));
strncpy(raead.geniv, aead->geniv ?: "<built-in>", sizeof(raead.geniv));
raead.blocksize = alg->cra_blocksize;
raead.maxauthsize = aead->maxauthsize;
raead.ivsize = aead->ivsize;
if (nla_put(skb, CRYPTOCFGA_REPORT_AEAD,
sizeof(struct crypto_report_aead), &raead))
goto nla_put_failure;
return 0;
nla_put_failure:
return -EMSGSIZE;
}
#else
static int crypto_old_aead_report(struct sk_buff *skb, struct crypto_alg *alg)
{
return -ENOSYS;
}
#endif
static void crypto_old_aead_show(struct seq_file *m, struct crypto_alg *alg)
__attribute__ ((unused));
static void crypto_old_aead_show(struct seq_file *m, struct crypto_alg *alg)
{
struct old_aead_alg *aead = &alg->cra_aead;
seq_printf(m, "type : aead\n");
seq_printf(m, "async : %s\n", alg->cra_flags & CRYPTO_ALG_ASYNC ?
"yes" : "no");
seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
seq_printf(m, "ivsize : %u\n", aead->ivsize);
seq_printf(m, "maxauthsize : %u\n", aead->maxauthsize);
seq_printf(m, "geniv : %s\n", aead->geniv ?: "<built-in>");
}
const struct crypto_type crypto_aead_type = {
.extsize = crypto_alg_extsize,
.init_tfm = crypto_aead_init_tfm,
#ifdef CONFIG_PROC_FS
.show = crypto_old_aead_show,
#endif
.report = crypto_old_aead_report,
.lookup = crypto_lookup_aead,
.maskclear = ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV),
.maskset = CRYPTO_ALG_TYPE_MASK,
.type = CRYPTO_ALG_TYPE_AEAD,
.tfmsize = offsetof(struct crypto_aead, base),
};
EXPORT_SYMBOL_GPL(crypto_aead_type);
#ifdef CONFIG_NET
static int crypto_aead_report(struct sk_buff *skb, struct crypto_alg *alg)
{
struct crypto_report_aead raead;
struct aead_alg *aead = container_of(alg, struct aead_alg, base);
strncpy(raead.type, "aead", sizeof(raead.type));
strncpy(raead.geniv, "<none>", sizeof(raead.geniv));
raead.blocksize = alg->cra_blocksize;
raead.maxauthsize = aead->maxauthsize;
raead.ivsize = aead->ivsize;
if (nla_put(skb, CRYPTOCFGA_REPORT_AEAD,
sizeof(struct crypto_report_aead), &raead))
goto nla_put_failure;
return 0;
nla_put_failure:
return -EMSGSIZE;
}
#else
static int crypto_aead_report(struct sk_buff *skb, struct crypto_alg *alg)
{
return -ENOSYS;
}
#endif
static void crypto_aead_show(struct seq_file *m, struct crypto_alg *alg)
__attribute__ ((unused));
static void crypto_aead_show(struct seq_file *m, struct crypto_alg *alg)
{
struct aead_alg *aead = container_of(alg, struct aead_alg, base);
seq_printf(m, "type : aead\n");
seq_printf(m, "async : %s\n", alg->cra_flags & CRYPTO_ALG_ASYNC ?
"yes" : "no");
seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
seq_printf(m, "ivsize : %u\n", aead->ivsize);
seq_printf(m, "maxauthsize : %u\n", aead->maxauthsize);
seq_printf(m, "geniv : <none>\n");
}
static const struct crypto_type crypto_new_aead_type = {
.extsize = crypto_alg_extsize,
.init_tfm = crypto_aead_init_tfm,
#ifdef CONFIG_PROC_FS
.show = crypto_aead_show,
#endif
.report = crypto_aead_report,
.maskclear = ~CRYPTO_ALG_TYPE_MASK,
.maskset = CRYPTO_ALG_TYPE_MASK,
.type = CRYPTO_ALG_TYPE_AEAD,
.tfmsize = offsetof(struct crypto_aead, base),
};
static int aead_null_givencrypt(struct aead_givcrypt_request *req)
{
return crypto_aead_encrypt(&req->areq);
}
static int aead_null_givdecrypt(struct aead_givcrypt_request *req)
{
return crypto_aead_decrypt(&req->areq);
}
#ifdef CONFIG_NET
static int crypto_nivaead_report(struct sk_buff *skb, struct crypto_alg *alg)
{
struct crypto_report_aead raead;
struct old_aead_alg *aead = &alg->cra_aead;
strncpy(raead.type, "nivaead", sizeof(raead.type));
strncpy(raead.geniv, aead->geniv, sizeof(raead.geniv));
raead.blocksize = alg->cra_blocksize;
raead.maxauthsize = aead->maxauthsize;
raead.ivsize = aead->ivsize;
if (nla_put(skb, CRYPTOCFGA_REPORT_AEAD,
sizeof(struct crypto_report_aead), &raead))
goto nla_put_failure;
return 0;
nla_put_failure:
return -EMSGSIZE;
}
#else
static int crypto_nivaead_report(struct sk_buff *skb, struct crypto_alg *alg)
{
return -ENOSYS;
}
#endif
static void crypto_nivaead_show(struct seq_file *m, struct crypto_alg *alg)
__attribute__ ((unused));
static void crypto_nivaead_show(struct seq_file *m, struct crypto_alg *alg)
{
struct old_aead_alg *aead = &alg->cra_aead;
seq_printf(m, "type : nivaead\n");
seq_printf(m, "async : %s\n", alg->cra_flags & CRYPTO_ALG_ASYNC ?
"yes" : "no");
seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
seq_printf(m, "ivsize : %u\n", aead->ivsize);
seq_printf(m, "maxauthsize : %u\n", aead->maxauthsize);
seq_printf(m, "geniv : %s\n", aead->geniv);
}
const struct crypto_type crypto_nivaead_type = {
.extsize = crypto_alg_extsize,
.init_tfm = crypto_aead_init_tfm,
#ifdef CONFIG_PROC_FS
.show = crypto_nivaead_show,
#endif
.report = crypto_nivaead_report,
.maskclear = ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV),
.maskset = CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV,
.type = CRYPTO_ALG_TYPE_AEAD,
.tfmsize = offsetof(struct crypto_aead, base),
};
EXPORT_SYMBOL_GPL(crypto_nivaead_type);
static int crypto_grab_nivaead(struct crypto_aead_spawn *spawn,
const char *name, u32 type, u32 mask)
{
spawn->base.frontend = &crypto_nivaead_type;
return crypto_grab_spawn(&spawn->base, name, type, mask);
}
static int aead_geniv_setkey(struct crypto_aead *tfm,
const u8 *key, unsigned int keylen)
{
struct aead_geniv_ctx *ctx = crypto_aead_ctx(tfm);
return crypto_aead_setkey(ctx->child, key, keylen);
}
static int aead_geniv_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
struct aead_geniv_ctx *ctx = crypto_aead_ctx(tfm);
return crypto_aead_setauthsize(ctx->child, authsize);
}
static void compat_encrypt_complete2(struct aead_request *req, int err)
{
struct compat_request_ctx *rctx = aead_request_ctx(req);
struct aead_givcrypt_request *subreq = &rctx->subreq;
struct crypto_aead *geniv;
if (err == -EINPROGRESS)
return;
if (err)
goto out;
geniv = crypto_aead_reqtfm(req);
scatterwalk_map_and_copy(subreq->giv, rctx->ivsg, 0,
crypto_aead_ivsize(geniv), 1);
out:
kzfree(subreq->giv);
}
static void compat_encrypt_complete(struct crypto_async_request *base, int err)
{
struct aead_request *req = base->data;
compat_encrypt_complete2(req, err);
aead_request_complete(req, err);
}
static int compat_encrypt(struct aead_request *req)
{
struct crypto_aead *geniv = crypto_aead_reqtfm(req);
struct aead_geniv_ctx *ctx = crypto_aead_ctx(geniv);
struct compat_request_ctx *rctx = aead_request_ctx(req);
struct aead_givcrypt_request *subreq = &rctx->subreq;
unsigned int ivsize = crypto_aead_ivsize(geniv);
struct scatterlist *src, *dst;
crypto_completion_t compl;
void *data;
u8 *info;
__be64 seq;
int err;
if (req->cryptlen < ivsize)
return -EINVAL;
compl = req->base.complete;
data = req->base.data;
rctx->ivsg = scatterwalk_ffwd(rctx->ivbuf, req->dst, req->assoclen);
info = PageHighMem(sg_page(rctx->ivsg)) ? NULL : sg_virt(rctx->ivsg);
if (!info) {
info = kmalloc(ivsize, req->base.flags &
CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL:
GFP_ATOMIC);
if (!info)
return -ENOMEM;
compl = compat_encrypt_complete;
data = req;
}
memcpy(&seq, req->iv + ivsize - sizeof(seq), sizeof(seq));
src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen + ivsize);
dst = req->src == req->dst ?
src : scatterwalk_ffwd(rctx->dst, rctx->ivsg, ivsize);
aead_givcrypt_set_tfm(subreq, ctx->child);
aead_givcrypt_set_callback(subreq, req->base.flags,
req->base.complete, req->base.data);
aead_givcrypt_set_crypt(subreq, src, dst,
req->cryptlen - ivsize, req->iv);
aead_givcrypt_set_assoc(subreq, req->src, req->assoclen);
aead_givcrypt_set_giv(subreq, info, be64_to_cpu(seq));
err = crypto_aead_givencrypt(subreq);
if (unlikely(PageHighMem(sg_page(rctx->ivsg))))
compat_encrypt_complete2(req, err);
return err;
}
static int compat_decrypt(struct aead_request *req)
{
struct crypto_aead *geniv = crypto_aead_reqtfm(req);
struct aead_geniv_ctx *ctx = crypto_aead_ctx(geniv);
struct compat_request_ctx *rctx = aead_request_ctx(req);
struct aead_request *subreq = &rctx->subreq.areq;
unsigned int ivsize = crypto_aead_ivsize(geniv);
struct scatterlist *src, *dst;
crypto_completion_t compl;
void *data;
if (req->cryptlen < ivsize)
return -EINVAL;
aead_request_set_tfm(subreq, ctx->child);
compl = req->base.complete;
data = req->base.data;
src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen + ivsize);
dst = req->src == req->dst ?
src : scatterwalk_ffwd(rctx->dst, req->dst,
req->assoclen + ivsize);
aead_request_set_callback(subreq, req->base.flags, compl, data);
aead_request_set_crypt(subreq, src, dst,
req->cryptlen - ivsize, req->iv);
aead_request_set_assoc(subreq, req->src, req->assoclen);
scatterwalk_map_and_copy(req->iv, req->src, req->assoclen, ivsize, 0);
return crypto_aead_decrypt(subreq);
}
static int compat_encrypt_first(struct aead_request *req)
{
struct crypto_aead *geniv = crypto_aead_reqtfm(req);
struct aead_geniv_ctx *ctx = crypto_aead_ctx(geniv);
int err = 0;
spin_lock_bh(&ctx->lock);
if (geniv->encrypt != compat_encrypt_first)
goto unlock;
geniv->encrypt = compat_encrypt;
unlock:
spin_unlock_bh(&ctx->lock);
if (err)
return err;
return compat_encrypt(req);
}
static int aead_geniv_init_compat(struct crypto_tfm *tfm)
{
struct crypto_aead *geniv = __crypto_aead_cast(tfm);
struct aead_geniv_ctx *ctx = crypto_aead_ctx(geniv);
int err;
spin_lock_init(&ctx->lock);
crypto_aead_set_reqsize(geniv, sizeof(struct compat_request_ctx));
err = aead_geniv_init(tfm);
ctx->child = geniv->child;
geniv->child = geniv;
return err;
}
static void aead_geniv_exit_compat(struct crypto_tfm *tfm)
{
struct crypto_aead *geniv = __crypto_aead_cast(tfm);
struct aead_geniv_ctx *ctx = crypto_aead_ctx(geniv);
crypto_free_aead(ctx->child);
}
struct aead_instance *aead_geniv_alloc(struct crypto_template *tmpl,
struct rtattr **tb, u32 type, u32 mask)
{
const char *name;
struct crypto_aead_spawn *spawn;
struct crypto_attr_type *algt;
struct aead_instance *inst;
struct aead_alg *alg;
unsigned int ivsize;
unsigned int maxauthsize;
int err;
algt = crypto_get_attr_type(tb);
if (IS_ERR(algt))
return ERR_CAST(algt);
if ((algt->type ^ (CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_GENIV)) &
algt->mask)
return ERR_PTR(-EINVAL);
name = crypto_attr_alg_name(tb[1]);
if (IS_ERR(name))
return ERR_CAST(name);
inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
if (!inst)
return ERR_PTR(-ENOMEM);
spawn = aead_instance_ctx(inst);
/* Ignore async algorithms if necessary. */
mask |= crypto_requires_sync(algt->type, algt->mask);
crypto_set_aead_spawn(spawn, aead_crypto_instance(inst));
err = (algt->mask & CRYPTO_ALG_GENIV) ?
crypto_grab_nivaead(spawn, name, type, mask) :
crypto_grab_aead(spawn, name, type, mask);
if (err)
goto err_free_inst;
alg = crypto_spawn_aead_alg(spawn);
ivsize = crypto_aead_alg_ivsize(alg);
maxauthsize = crypto_aead_alg_maxauthsize(alg);
err = -EINVAL;
if (ivsize < sizeof(u64))
goto err_drop_alg;
/*
* This is only true if we're constructing an algorithm with its
* default IV generator. For the default generator we elide the
* template name and double-check the IV generator.
*/
if (algt->mask & CRYPTO_ALG_GENIV) {
if (!alg->base.cra_aead.encrypt)
goto err_drop_alg;
if (strcmp(tmpl->name, alg->base.cra_aead.geniv))
goto err_drop_alg;
memcpy(inst->alg.base.cra_name, alg->base.cra_name,
CRYPTO_MAX_ALG_NAME);
memcpy(inst->alg.base.cra_driver_name,
alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME);
inst->alg.base.cra_flags = CRYPTO_ALG_TYPE_AEAD |
CRYPTO_ALG_GENIV;
inst->alg.base.cra_flags |= alg->base.cra_flags &
CRYPTO_ALG_ASYNC;
inst->alg.base.cra_priority = alg->base.cra_priority;
inst->alg.base.cra_blocksize = alg->base.cra_blocksize;
inst->alg.base.cra_alignmask = alg->base.cra_alignmask;
inst->alg.base.cra_type = &crypto_aead_type;
inst->alg.base.cra_aead.ivsize = ivsize;
inst->alg.base.cra_aead.maxauthsize = maxauthsize;
inst->alg.base.cra_aead.setkey = alg->base.cra_aead.setkey;
inst->alg.base.cra_aead.setauthsize =
alg->base.cra_aead.setauthsize;
inst->alg.base.cra_aead.encrypt = alg->base.cra_aead.encrypt;
inst->alg.base.cra_aead.decrypt = alg->base.cra_aead.decrypt;
goto out;
}
err = -ENAMETOOLONG;
if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
"%s(%s)", tmpl->name, alg->base.cra_name) >=
CRYPTO_MAX_ALG_NAME)
goto err_drop_alg;
if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
"%s(%s)", tmpl->name, alg->base.cra_driver_name) >=
CRYPTO_MAX_ALG_NAME)
goto err_drop_alg;
inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
inst->alg.base.cra_priority = alg->base.cra_priority;
inst->alg.base.cra_blocksize = alg->base.cra_blocksize;
inst->alg.base.cra_alignmask = alg->base.cra_alignmask;
inst->alg.base.cra_ctxsize = sizeof(struct aead_geniv_ctx);
inst->alg.setkey = aead_geniv_setkey;
inst->alg.setauthsize = aead_geniv_setauthsize;
inst->alg.ivsize = ivsize;
inst->alg.maxauthsize = maxauthsize;
inst->alg.encrypt = compat_encrypt_first;
inst->alg.decrypt = compat_decrypt;
inst->alg.base.cra_init = aead_geniv_init_compat;
inst->alg.base.cra_exit = aead_geniv_exit_compat;
out:
return inst;
err_drop_alg:
crypto_drop_aead(spawn);
err_free_inst:
kfree(inst);
inst = ERR_PTR(err);
goto out;
}
EXPORT_SYMBOL_GPL(aead_geniv_alloc);
void aead_geniv_free(struct aead_instance *inst)
{
crypto_drop_aead(aead_instance_ctx(inst));
kfree(inst);
}
EXPORT_SYMBOL_GPL(aead_geniv_free);
int aead_geniv_init(struct crypto_tfm *tfm)
{
struct crypto_instance *inst = (void *)tfm->__crt_alg;
struct crypto_aead *child;
struct crypto_aead *aead;
aead = __crypto_aead_cast(tfm);
child = crypto_spawn_aead(crypto_instance_ctx(inst));
if (IS_ERR(child))
return PTR_ERR(child);
aead->child = child;
aead->reqsize += crypto_aead_reqsize(child);
return 0;
}
EXPORT_SYMBOL_GPL(aead_geniv_init);
void aead_geniv_exit(struct crypto_tfm *tfm)
{
crypto_free_aead(__crypto_aead_cast(tfm)->child);
}
EXPORT_SYMBOL_GPL(aead_geniv_exit);
static int crypto_nivaead_default(struct crypto_alg *alg, u32 type, u32 mask)
{
struct rtattr *tb[3];
struct {
struct rtattr attr;
struct crypto_attr_type data;
} ptype;
struct {
struct rtattr attr;
struct crypto_attr_alg data;
} palg;
struct crypto_template *tmpl;
struct crypto_instance *inst;
struct crypto_alg *larval;
const char *geniv;
int err;
larval = crypto_larval_lookup(alg->cra_driver_name,
CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_GENIV,
CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
err = PTR_ERR(larval);
if (IS_ERR(larval))
goto out;
err = -EAGAIN;
if (!crypto_is_larval(larval))
goto drop_larval;
ptype.attr.rta_len = sizeof(ptype);
ptype.attr.rta_type = CRYPTOA_TYPE;
ptype.data.type = type | CRYPTO_ALG_GENIV;
/* GENIV tells the template that we're making a default geniv. */
ptype.data.mask = mask | CRYPTO_ALG_GENIV;
tb[0] = &ptype.attr;
palg.attr.rta_len = sizeof(palg);
palg.attr.rta_type = CRYPTOA_ALG;
/* Must use the exact name to locate ourselves. */
memcpy(palg.data.name, alg->cra_driver_name, CRYPTO_MAX_ALG_NAME);
tb[1] = &palg.attr;
tb[2] = NULL;
geniv = alg->cra_aead.geniv;
tmpl = crypto_lookup_template(geniv);
err = -ENOENT;
if (!tmpl)
goto kill_larval;
if (tmpl->create) {
err = tmpl->create(tmpl, tb);
if (err)
goto put_tmpl;
goto ok;
}
inst = tmpl->alloc(tb);
err = PTR_ERR(inst);
if (IS_ERR(inst))
goto put_tmpl;
err = crypto_register_instance(tmpl, inst);
if (err) {
tmpl->free(inst);
goto put_tmpl;
}
ok:
/* Redo the lookup to use the instance we just registered. */
err = -EAGAIN;
put_tmpl:
crypto_tmpl_put(tmpl);
kill_larval:
crypto_larval_kill(larval);
drop_larval:
crypto_mod_put(larval);
out:
crypto_mod_put(alg);
return err;
}
struct crypto_alg *crypto_lookup_aead(const char *name, u32 type, u32 mask)
{
struct crypto_alg *alg;
alg = crypto_alg_mod_lookup(name, type, mask);
if (IS_ERR(alg))
return alg;
if (alg->cra_type == &crypto_aead_type)
return alg;
if (!alg->cra_aead.ivsize)
return alg;
crypto_mod_put(alg);
alg = crypto_alg_mod_lookup(name, type | CRYPTO_ALG_TESTED,
mask & ~CRYPTO_ALG_TESTED);
if (IS_ERR(alg))
return alg;
if (alg->cra_type == &crypto_aead_type) {
if (~alg->cra_flags & (type ^ ~mask) & CRYPTO_ALG_TESTED) {
crypto_mod_put(alg);
alg = ERR_PTR(-ENOENT);
}
return alg;
}
BUG_ON(!alg->cra_aead.ivsize);
return ERR_PTR(crypto_nivaead_default(alg, type, mask));
}
EXPORT_SYMBOL_GPL(crypto_lookup_aead);
int crypto_grab_aead(struct crypto_aead_spawn *spawn, const char *name,
u32 type, u32 mask)
{
spawn->base.frontend = &crypto_aead_type;
return crypto_grab_spawn(&spawn->base, name, type, mask);
}
EXPORT_SYMBOL_GPL(crypto_grab_aead);
struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask)
{
return crypto_alloc_tfm(alg_name, &crypto_aead_type, type, mask);
}
EXPORT_SYMBOL_GPL(crypto_alloc_aead);
static int aead_prepare_alg(struct aead_alg *alg)
{
struct crypto_alg *base = &alg->base;
if (max(alg->maxauthsize, alg->ivsize) > PAGE_SIZE / 8)
return -EINVAL;
base->cra_type = &crypto_new_aead_type;
base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
base->cra_flags |= CRYPTO_ALG_TYPE_AEAD;
return 0;
}
int crypto_register_aead(struct aead_alg *alg)
{
struct crypto_alg *base = &alg->base;
int err;
err = aead_prepare_alg(alg);
if (err)
return err;
return crypto_register_alg(base);
}
EXPORT_SYMBOL_GPL(crypto_register_aead);
void crypto_unregister_aead(struct aead_alg *alg)
{
crypto_unregister_alg(&alg->base);
}
EXPORT_SYMBOL_GPL(crypto_unregister_aead);
int crypto_register_aeads(struct aead_alg *algs, int count)
{
int i, ret;
for (i = 0; i < count; i++) {
ret = crypto_register_aead(&algs[i]);
if (ret)
goto err;
}
return 0;
err:
for (--i; i >= 0; --i)
crypto_unregister_aead(&algs[i]);
return ret;
}
EXPORT_SYMBOL_GPL(crypto_register_aeads);
void crypto_unregister_aeads(struct aead_alg *algs, int count)
{
int i;
for (i = count - 1; i >= 0; --i)
crypto_unregister_aead(&algs[i]);
}
EXPORT_SYMBOL_GPL(crypto_unregister_aeads);
int aead_register_instance(struct crypto_template *tmpl,
struct aead_instance *inst)
{
int err;
err = aead_prepare_alg(&inst->alg);
if (err)
return err;
return crypto_register_instance(tmpl, aead_crypto_instance(inst));
}
EXPORT_SYMBOL_GPL(aead_register_instance);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Authenticated Encryption with Associated Data (AEAD)");