mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-21 03:33:59 +08:00
Mainline Linux tree for various devices, only for fun :)
4bd02d9012
Currently we group delayed dir index items for deletion in a single batch (single btree operation) as long as they all exist in the same leaf and as long as their keys are sequential in the key space. For example if we have a leaf that has dir index items with offsets: 2, 3, 4, 6, 7, 10 And we have delayed dir index items for deleting all these indexes, and no delayed items for any other index keys in between, then we end up deleting in 3 batches: 1) First batch for indexes 2, 3 and 4; 2) Second batch for indexes 6 and 7; 3) Third batch for index 10. This is a waste because we can delete all the index keys in a single batch. What matters is that each consecutive delayed index key matches each consecutive dir index key in a leaf. So update the logic at btrfs_batch_delete_items() to check only for a key match between delayed dir index items and dir index items in a leaf. Also avoid the useless first iteration on comparing the key of the first slot to delete with the key of the first delayed item, as it's silly since they always match, as the delayed item's key was used for the btree search that gave us the path we have. This is more efficient and reduces runtime of running delayed items, as well as lock contention on the subvolume's tree. For example, the following test script: $ cat test.sh #!/bin/bash DEV=/dev/sdj MNT=/mnt/sdj mkfs.btrfs -f $DEV mount $DEV $MNT NUM_FILES=1000 mkdir $MNT/testdir for ((i = 1; i <= $NUM_FILES; i++)); do echo -n > $MNT/testdir/file_$i done # Now delete every other file, to create gaps in the dir index keys. for ((i = 1; i <= $NUM_FILES; i += 2)); do rm -f $MNT/testdir/file_$i done # Sync to force any delayed items to be flushed to the tree. sync start=$(date +%s%N) rm -fr $MNT/testdir end=$(date +%s%N) dur=$(( (end - start) / 1000000 )) echo -e "\nrm -fr took $dur milliseconds" umount $MNT Running that test script while having the following bpftrace script running in another shell: $ cat bpf-measure.sh #!/usr/bin/bpftrace /* Add 'noinline' to btrfs_delete_delayed_items()'s definition. */ k:btrfs_delete_delayed_items { @start_delete_delayed_items[tid] = nsecs; } k:btrfs_del_items /@start_delete_delayed_items[tid]/ { @delete_batches = count(); } kr:btrfs_delete_delayed_items /@start_delete_delayed_items[tid]/ { $dur = (nsecs - @start_delete_delayed_items[tid]) / 1000; @btrfs_delete_delayed_items_total_time = sum($dur); delete(@start_delete_delayed_items[tid]); } Before this change: @btrfs_delete_delayed_items_total_time: 9563 @delete_batches: 1001 After this change: @btrfs_delete_delayed_items_total_time: 7328 @delete_batches: 509 Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
---|---|---|
arch | ||
block | ||
certs | ||
crypto | ||
Documentation | ||
drivers | ||
fs | ||
include | ||
init | ||
ipc | ||
kernel | ||
lib | ||
LICENSES | ||
mm | ||
net | ||
samples | ||
scripts | ||
security | ||
sound | ||
tools | ||
usr | ||
virt | ||
.clang-format | ||
.cocciconfig | ||
.get_maintainer.ignore | ||
.gitattributes | ||
.gitignore | ||
.mailmap | ||
COPYING | ||
CREDITS | ||
Kbuild | ||
Kconfig | ||
MAINTAINERS | ||
Makefile | ||
README |
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the Restructured Text markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.