2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 11:43:54 +08:00
linux-next/drivers/clocksource/samsung_pwm_timer.c
afzal mohammed cc2550b421 clocksource: Replace setup_irq() by request_irq()
request_irq() is preferred over setup_irq(). The early boot setup_irq()
invocations happen either via 'init_IRQ()' or 'time_init()', while
memory allocators are ready by 'mm_init()'.

Per tglx[1], setup_irq() existed in olden days when allocators were not
ready by the time early interrupts were initialized.

Hence replace setup_irq() by request_irq().

Seldom remove_irq() usage has been observed coupled with setup_irq(),
wherever that has been found, it too has been replaced by free_irq().

A build error that was reported by kbuild test robot <lkp@intel.com>
in the previous version of the patch also has been fixed.

[1] https://lkml.kernel.org/r/alpine.DEB.2.20.1710191609480.1971@nanos

Signed-off-by: afzal mohammed <afzal.mohd.ma@gmail.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/91961c77c1cf93d41523f5e1ac52043f32f97077.1582799709.git.afzal.mohd.ma@gmail.com
2020-02-27 12:15:24 +01:00

502 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2011 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* samsung - Common hr-timer support (s3c and s5p)
*/
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/sched_clock.h>
#include <clocksource/samsung_pwm.h>
/*
* Clocksource driver
*/
#define REG_TCFG0 0x00
#define REG_TCFG1 0x04
#define REG_TCON 0x08
#define REG_TINT_CSTAT 0x44
#define REG_TCNTB(chan) (0x0c + 12 * (chan))
#define REG_TCMPB(chan) (0x10 + 12 * (chan))
#define TCFG0_PRESCALER_MASK 0xff
#define TCFG0_PRESCALER1_SHIFT 8
#define TCFG1_SHIFT(x) ((x) * 4)
#define TCFG1_MUX_MASK 0xf
/*
* Each channel occupies 4 bits in TCON register, but there is a gap of 4
* bits (one channel) after channel 0, so channels have different numbering
* when accessing TCON register.
*
* In addition, the location of autoreload bit for channel 4 (TCON channel 5)
* in its set of bits is 2 as opposed to 3 for other channels.
*/
#define TCON_START(chan) (1 << (4 * (chan) + 0))
#define TCON_MANUALUPDATE(chan) (1 << (4 * (chan) + 1))
#define TCON_INVERT(chan) (1 << (4 * (chan) + 2))
#define _TCON_AUTORELOAD(chan) (1 << (4 * (chan) + 3))
#define _TCON_AUTORELOAD4(chan) (1 << (4 * (chan) + 2))
#define TCON_AUTORELOAD(chan) \
((chan < 5) ? _TCON_AUTORELOAD(chan) : _TCON_AUTORELOAD4(chan))
DEFINE_SPINLOCK(samsung_pwm_lock);
EXPORT_SYMBOL(samsung_pwm_lock);
struct samsung_pwm_clocksource {
void __iomem *base;
void __iomem *source_reg;
unsigned int irq[SAMSUNG_PWM_NUM];
struct samsung_pwm_variant variant;
struct clk *timerclk;
unsigned int event_id;
unsigned int source_id;
unsigned int tcnt_max;
unsigned int tscaler_div;
unsigned int tdiv;
unsigned long clock_count_per_tick;
};
static struct samsung_pwm_clocksource pwm;
static void samsung_timer_set_prescale(unsigned int channel, u16 prescale)
{
unsigned long flags;
u8 shift = 0;
u32 reg;
if (channel >= 2)
shift = TCFG0_PRESCALER1_SHIFT;
spin_lock_irqsave(&samsung_pwm_lock, flags);
reg = readl(pwm.base + REG_TCFG0);
reg &= ~(TCFG0_PRESCALER_MASK << shift);
reg |= (prescale - 1) << shift;
writel(reg, pwm.base + REG_TCFG0);
spin_unlock_irqrestore(&samsung_pwm_lock, flags);
}
static void samsung_timer_set_divisor(unsigned int channel, u8 divisor)
{
u8 shift = TCFG1_SHIFT(channel);
unsigned long flags;
u32 reg;
u8 bits;
bits = (fls(divisor) - 1) - pwm.variant.div_base;
spin_lock_irqsave(&samsung_pwm_lock, flags);
reg = readl(pwm.base + REG_TCFG1);
reg &= ~(TCFG1_MUX_MASK << shift);
reg |= bits << shift;
writel(reg, pwm.base + REG_TCFG1);
spin_unlock_irqrestore(&samsung_pwm_lock, flags);
}
static void samsung_time_stop(unsigned int channel)
{
unsigned long tcon;
unsigned long flags;
if (channel > 0)
++channel;
spin_lock_irqsave(&samsung_pwm_lock, flags);
tcon = readl_relaxed(pwm.base + REG_TCON);
tcon &= ~TCON_START(channel);
writel_relaxed(tcon, pwm.base + REG_TCON);
spin_unlock_irqrestore(&samsung_pwm_lock, flags);
}
static void samsung_time_setup(unsigned int channel, unsigned long tcnt)
{
unsigned long tcon;
unsigned long flags;
unsigned int tcon_chan = channel;
if (tcon_chan > 0)
++tcon_chan;
spin_lock_irqsave(&samsung_pwm_lock, flags);
tcon = readl_relaxed(pwm.base + REG_TCON);
tcon &= ~(TCON_START(tcon_chan) | TCON_AUTORELOAD(tcon_chan));
tcon |= TCON_MANUALUPDATE(tcon_chan);
writel_relaxed(tcnt, pwm.base + REG_TCNTB(channel));
writel_relaxed(tcnt, pwm.base + REG_TCMPB(channel));
writel_relaxed(tcon, pwm.base + REG_TCON);
spin_unlock_irqrestore(&samsung_pwm_lock, flags);
}
static void samsung_time_start(unsigned int channel, bool periodic)
{
unsigned long tcon;
unsigned long flags;
if (channel > 0)
++channel;
spin_lock_irqsave(&samsung_pwm_lock, flags);
tcon = readl_relaxed(pwm.base + REG_TCON);
tcon &= ~TCON_MANUALUPDATE(channel);
tcon |= TCON_START(channel);
if (periodic)
tcon |= TCON_AUTORELOAD(channel);
else
tcon &= ~TCON_AUTORELOAD(channel);
writel_relaxed(tcon, pwm.base + REG_TCON);
spin_unlock_irqrestore(&samsung_pwm_lock, flags);
}
static int samsung_set_next_event(unsigned long cycles,
struct clock_event_device *evt)
{
/*
* This check is needed to account for internal rounding
* errors inside clockevents core, which might result in
* passing cycles = 0, which in turn would not generate any
* timer interrupt and hang the system.
*
* Another solution would be to set up the clockevent device
* with min_delta = 2, but this would unnecessarily increase
* the minimum sleep period.
*/
if (!cycles)
cycles = 1;
samsung_time_setup(pwm.event_id, cycles);
samsung_time_start(pwm.event_id, false);
return 0;
}
static int samsung_shutdown(struct clock_event_device *evt)
{
samsung_time_stop(pwm.event_id);
return 0;
}
static int samsung_set_periodic(struct clock_event_device *evt)
{
samsung_time_stop(pwm.event_id);
samsung_time_setup(pwm.event_id, pwm.clock_count_per_tick - 1);
samsung_time_start(pwm.event_id, true);
return 0;
}
static void samsung_clockevent_resume(struct clock_event_device *cev)
{
samsung_timer_set_prescale(pwm.event_id, pwm.tscaler_div);
samsung_timer_set_divisor(pwm.event_id, pwm.tdiv);
if (pwm.variant.has_tint_cstat) {
u32 mask = (1 << pwm.event_id);
writel(mask | (mask << 5), pwm.base + REG_TINT_CSTAT);
}
}
static struct clock_event_device time_event_device = {
.name = "samsung_event_timer",
.features = CLOCK_EVT_FEAT_PERIODIC |
CLOCK_EVT_FEAT_ONESHOT,
.rating = 200,
.set_next_event = samsung_set_next_event,
.set_state_shutdown = samsung_shutdown,
.set_state_periodic = samsung_set_periodic,
.set_state_oneshot = samsung_shutdown,
.tick_resume = samsung_shutdown,
.resume = samsung_clockevent_resume,
};
static irqreturn_t samsung_clock_event_isr(int irq, void *dev_id)
{
struct clock_event_device *evt = dev_id;
if (pwm.variant.has_tint_cstat) {
u32 mask = (1 << pwm.event_id);
writel(mask | (mask << 5), pwm.base + REG_TINT_CSTAT);
}
evt->event_handler(evt);
return IRQ_HANDLED;
}
static void __init samsung_clockevent_init(void)
{
unsigned long pclk;
unsigned long clock_rate;
unsigned int irq_number;
pclk = clk_get_rate(pwm.timerclk);
samsung_timer_set_prescale(pwm.event_id, pwm.tscaler_div);
samsung_timer_set_divisor(pwm.event_id, pwm.tdiv);
clock_rate = pclk / (pwm.tscaler_div * pwm.tdiv);
pwm.clock_count_per_tick = clock_rate / HZ;
time_event_device.cpumask = cpumask_of(0);
clockevents_config_and_register(&time_event_device,
clock_rate, 1, pwm.tcnt_max);
irq_number = pwm.irq[pwm.event_id];
if (request_irq(irq_number, samsung_clock_event_isr,
IRQF_TIMER | IRQF_IRQPOLL, "samsung_time_irq",
&time_event_device))
pr_err("%s: request_irq() failed\n", "samsung_time_irq");
if (pwm.variant.has_tint_cstat) {
u32 mask = (1 << pwm.event_id);
writel(mask | (mask << 5), pwm.base + REG_TINT_CSTAT);
}
}
static void samsung_clocksource_suspend(struct clocksource *cs)
{
samsung_time_stop(pwm.source_id);
}
static void samsung_clocksource_resume(struct clocksource *cs)
{
samsung_timer_set_prescale(pwm.source_id, pwm.tscaler_div);
samsung_timer_set_divisor(pwm.source_id, pwm.tdiv);
samsung_time_setup(pwm.source_id, pwm.tcnt_max);
samsung_time_start(pwm.source_id, true);
}
static u64 notrace samsung_clocksource_read(struct clocksource *c)
{
return ~readl_relaxed(pwm.source_reg);
}
static struct clocksource samsung_clocksource = {
.name = "samsung_clocksource_timer",
.rating = 250,
.read = samsung_clocksource_read,
.suspend = samsung_clocksource_suspend,
.resume = samsung_clocksource_resume,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
/*
* Override the global weak sched_clock symbol with this
* local implementation which uses the clocksource to get some
* better resolution when scheduling the kernel. We accept that
* this wraps around for now, since it is just a relative time
* stamp. (Inspired by U300 implementation.)
*/
static u64 notrace samsung_read_sched_clock(void)
{
return samsung_clocksource_read(NULL);
}
static int __init samsung_clocksource_init(void)
{
unsigned long pclk;
unsigned long clock_rate;
pclk = clk_get_rate(pwm.timerclk);
samsung_timer_set_prescale(pwm.source_id, pwm.tscaler_div);
samsung_timer_set_divisor(pwm.source_id, pwm.tdiv);
clock_rate = pclk / (pwm.tscaler_div * pwm.tdiv);
samsung_time_setup(pwm.source_id, pwm.tcnt_max);
samsung_time_start(pwm.source_id, true);
if (pwm.source_id == 4)
pwm.source_reg = pwm.base + 0x40;
else
pwm.source_reg = pwm.base + pwm.source_id * 0x0c + 0x14;
sched_clock_register(samsung_read_sched_clock,
pwm.variant.bits, clock_rate);
samsung_clocksource.mask = CLOCKSOURCE_MASK(pwm.variant.bits);
return clocksource_register_hz(&samsung_clocksource, clock_rate);
}
static void __init samsung_timer_resources(void)
{
clk_prepare_enable(pwm.timerclk);
pwm.tcnt_max = (1UL << pwm.variant.bits) - 1;
if (pwm.variant.bits == 16) {
pwm.tscaler_div = 25;
pwm.tdiv = 2;
} else {
pwm.tscaler_div = 2;
pwm.tdiv = 1;
}
}
/*
* PWM master driver
*/
static int __init _samsung_pwm_clocksource_init(void)
{
u8 mask;
int channel;
mask = ~pwm.variant.output_mask & ((1 << SAMSUNG_PWM_NUM) - 1);
channel = fls(mask) - 1;
if (channel < 0) {
pr_crit("failed to find PWM channel for clocksource\n");
return -EINVAL;
}
pwm.source_id = channel;
mask &= ~(1 << channel);
channel = fls(mask) - 1;
if (channel < 0) {
pr_crit("failed to find PWM channel for clock event\n");
return -EINVAL;
}
pwm.event_id = channel;
samsung_timer_resources();
samsung_clockevent_init();
return samsung_clocksource_init();
}
void __init samsung_pwm_clocksource_init(void __iomem *base,
unsigned int *irqs, struct samsung_pwm_variant *variant)
{
pwm.base = base;
memcpy(&pwm.variant, variant, sizeof(pwm.variant));
memcpy(pwm.irq, irqs, SAMSUNG_PWM_NUM * sizeof(*irqs));
pwm.timerclk = clk_get(NULL, "timers");
if (IS_ERR(pwm.timerclk))
panic("failed to get timers clock for timer");
_samsung_pwm_clocksource_init();
}
#ifdef CONFIG_TIMER_OF
static int __init samsung_pwm_alloc(struct device_node *np,
const struct samsung_pwm_variant *variant)
{
struct property *prop;
const __be32 *cur;
u32 val;
int i;
memcpy(&pwm.variant, variant, sizeof(pwm.variant));
for (i = 0; i < SAMSUNG_PWM_NUM; ++i)
pwm.irq[i] = irq_of_parse_and_map(np, i);
of_property_for_each_u32(np, "samsung,pwm-outputs", prop, cur, val) {
if (val >= SAMSUNG_PWM_NUM) {
pr_warn("%s: invalid channel index in samsung,pwm-outputs property\n", __func__);
continue;
}
pwm.variant.output_mask |= 1 << val;
}
pwm.base = of_iomap(np, 0);
if (!pwm.base) {
pr_err("%s: failed to map PWM registers\n", __func__);
return -ENXIO;
}
pwm.timerclk = of_clk_get_by_name(np, "timers");
if (IS_ERR(pwm.timerclk)) {
pr_crit("failed to get timers clock for timer\n");
return PTR_ERR(pwm.timerclk);
}
return _samsung_pwm_clocksource_init();
}
static const struct samsung_pwm_variant s3c24xx_variant = {
.bits = 16,
.div_base = 1,
.has_tint_cstat = false,
.tclk_mask = (1 << 4),
};
static int __init s3c2410_pwm_clocksource_init(struct device_node *np)
{
return samsung_pwm_alloc(np, &s3c24xx_variant);
}
TIMER_OF_DECLARE(s3c2410_pwm, "samsung,s3c2410-pwm", s3c2410_pwm_clocksource_init);
static const struct samsung_pwm_variant s3c64xx_variant = {
.bits = 32,
.div_base = 0,
.has_tint_cstat = true,
.tclk_mask = (1 << 7) | (1 << 6) | (1 << 5),
};
static int __init s3c64xx_pwm_clocksource_init(struct device_node *np)
{
return samsung_pwm_alloc(np, &s3c64xx_variant);
}
TIMER_OF_DECLARE(s3c6400_pwm, "samsung,s3c6400-pwm", s3c64xx_pwm_clocksource_init);
static const struct samsung_pwm_variant s5p64x0_variant = {
.bits = 32,
.div_base = 0,
.has_tint_cstat = true,
.tclk_mask = 0,
};
static int __init s5p64x0_pwm_clocksource_init(struct device_node *np)
{
return samsung_pwm_alloc(np, &s5p64x0_variant);
}
TIMER_OF_DECLARE(s5p6440_pwm, "samsung,s5p6440-pwm", s5p64x0_pwm_clocksource_init);
static const struct samsung_pwm_variant s5p_variant = {
.bits = 32,
.div_base = 0,
.has_tint_cstat = true,
.tclk_mask = (1 << 5),
};
static int __init s5p_pwm_clocksource_init(struct device_node *np)
{
return samsung_pwm_alloc(np, &s5p_variant);
}
TIMER_OF_DECLARE(s5pc100_pwm, "samsung,s5pc100-pwm", s5p_pwm_clocksource_init);
#endif