2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-25 21:54:06 +08:00
linux-next/fs/crypto/keyinfo.c
Eric Biggers 231baecdef crypto: clarify name of WEAK_KEY request flag
CRYPTO_TFM_REQ_WEAK_KEY confuses newcomers to the crypto API because it
sounds like it is requesting a weak key.  Actually, it is requesting
that weak keys be forbidden (for algorithms that have the notion of
"weak keys"; currently only DES and XTS do).

Also it is only one letter away from CRYPTO_TFM_RES_WEAK_KEY, with which
it can be easily confused.  (This in fact happened in the UX500 driver,
though just in some debugging messages.)

Therefore, make the intent clear by renaming it to
CRYPTO_TFM_REQ_FORBID_WEAK_KEYS.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-01-25 18:41:52 +08:00

593 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* key management facility for FS encryption support.
*
* Copyright (C) 2015, Google, Inc.
*
* This contains encryption key functions.
*
* Written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar, 2015.
*/
#include <keys/user-type.h>
#include <linux/hashtable.h>
#include <linux/scatterlist.h>
#include <linux/ratelimit.h>
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/sha.h>
#include <crypto/skcipher.h>
#include "fscrypt_private.h"
static struct crypto_shash *essiv_hash_tfm;
/* Table of keys referenced by FS_POLICY_FLAG_DIRECT_KEY policies */
static DEFINE_HASHTABLE(fscrypt_master_keys, 6); /* 6 bits = 64 buckets */
static DEFINE_SPINLOCK(fscrypt_master_keys_lock);
/*
* Key derivation function. This generates the derived key by encrypting the
* master key with AES-128-ECB using the inode's nonce as the AES key.
*
* The master key must be at least as long as the derived key. If the master
* key is longer, then only the first 'derived_keysize' bytes are used.
*/
static int derive_key_aes(const u8 *master_key,
const struct fscrypt_context *ctx,
u8 *derived_key, unsigned int derived_keysize)
{
int res = 0;
struct skcipher_request *req = NULL;
DECLARE_CRYPTO_WAIT(wait);
struct scatterlist src_sg, dst_sg;
struct crypto_skcipher *tfm = crypto_alloc_skcipher("ecb(aes)", 0, 0);
if (IS_ERR(tfm)) {
res = PTR_ERR(tfm);
tfm = NULL;
goto out;
}
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
req = skcipher_request_alloc(tfm, GFP_NOFS);
if (!req) {
res = -ENOMEM;
goto out;
}
skcipher_request_set_callback(req,
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
crypto_req_done, &wait);
res = crypto_skcipher_setkey(tfm, ctx->nonce, sizeof(ctx->nonce));
if (res < 0)
goto out;
sg_init_one(&src_sg, master_key, derived_keysize);
sg_init_one(&dst_sg, derived_key, derived_keysize);
skcipher_request_set_crypt(req, &src_sg, &dst_sg, derived_keysize,
NULL);
res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
out:
skcipher_request_free(req);
crypto_free_skcipher(tfm);
return res;
}
/*
* Search the current task's subscribed keyrings for a "logon" key with
* description prefix:descriptor, and if found acquire a read lock on it and
* return a pointer to its validated payload in *payload_ret.
*/
static struct key *
find_and_lock_process_key(const char *prefix,
const u8 descriptor[FS_KEY_DESCRIPTOR_SIZE],
unsigned int min_keysize,
const struct fscrypt_key **payload_ret)
{
char *description;
struct key *key;
const struct user_key_payload *ukp;
const struct fscrypt_key *payload;
description = kasprintf(GFP_NOFS, "%s%*phN", prefix,
FS_KEY_DESCRIPTOR_SIZE, descriptor);
if (!description)
return ERR_PTR(-ENOMEM);
key = request_key(&key_type_logon, description, NULL);
kfree(description);
if (IS_ERR(key))
return key;
down_read(&key->sem);
ukp = user_key_payload_locked(key);
if (!ukp) /* was the key revoked before we acquired its semaphore? */
goto invalid;
payload = (const struct fscrypt_key *)ukp->data;
if (ukp->datalen != sizeof(struct fscrypt_key) ||
payload->size < 1 || payload->size > FS_MAX_KEY_SIZE) {
fscrypt_warn(NULL,
"key with description '%s' has invalid payload",
key->description);
goto invalid;
}
if (payload->size < min_keysize) {
fscrypt_warn(NULL,
"key with description '%s' is too short (got %u bytes, need %u+ bytes)",
key->description, payload->size, min_keysize);
goto invalid;
}
*payload_ret = payload;
return key;
invalid:
up_read(&key->sem);
key_put(key);
return ERR_PTR(-ENOKEY);
}
static struct fscrypt_mode available_modes[] = {
[FS_ENCRYPTION_MODE_AES_256_XTS] = {
.friendly_name = "AES-256-XTS",
.cipher_str = "xts(aes)",
.keysize = 64,
.ivsize = 16,
},
[FS_ENCRYPTION_MODE_AES_256_CTS] = {
.friendly_name = "AES-256-CTS-CBC",
.cipher_str = "cts(cbc(aes))",
.keysize = 32,
.ivsize = 16,
},
[FS_ENCRYPTION_MODE_AES_128_CBC] = {
.friendly_name = "AES-128-CBC",
.cipher_str = "cbc(aes)",
.keysize = 16,
.ivsize = 16,
.needs_essiv = true,
},
[FS_ENCRYPTION_MODE_AES_128_CTS] = {
.friendly_name = "AES-128-CTS-CBC",
.cipher_str = "cts(cbc(aes))",
.keysize = 16,
.ivsize = 16,
},
[FS_ENCRYPTION_MODE_ADIANTUM] = {
.friendly_name = "Adiantum",
.cipher_str = "adiantum(xchacha12,aes)",
.keysize = 32,
.ivsize = 32,
},
};
static struct fscrypt_mode *
select_encryption_mode(const struct fscrypt_info *ci, const struct inode *inode)
{
if (!fscrypt_valid_enc_modes(ci->ci_data_mode, ci->ci_filename_mode)) {
fscrypt_warn(inode->i_sb,
"inode %lu uses unsupported encryption modes (contents mode %d, filenames mode %d)",
inode->i_ino, ci->ci_data_mode,
ci->ci_filename_mode);
return ERR_PTR(-EINVAL);
}
if (S_ISREG(inode->i_mode))
return &available_modes[ci->ci_data_mode];
if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
return &available_modes[ci->ci_filename_mode];
WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
inode->i_ino, (inode->i_mode & S_IFMT));
return ERR_PTR(-EINVAL);
}
/* Find the master key, then derive the inode's actual encryption key */
static int find_and_derive_key(const struct inode *inode,
const struct fscrypt_context *ctx,
u8 *derived_key, const struct fscrypt_mode *mode)
{
struct key *key;
const struct fscrypt_key *payload;
int err;
key = find_and_lock_process_key(FS_KEY_DESC_PREFIX,
ctx->master_key_descriptor,
mode->keysize, &payload);
if (key == ERR_PTR(-ENOKEY) && inode->i_sb->s_cop->key_prefix) {
key = find_and_lock_process_key(inode->i_sb->s_cop->key_prefix,
ctx->master_key_descriptor,
mode->keysize, &payload);
}
if (IS_ERR(key))
return PTR_ERR(key);
if (ctx->flags & FS_POLICY_FLAG_DIRECT_KEY) {
if (mode->ivsize < offsetofend(union fscrypt_iv, nonce)) {
fscrypt_warn(inode->i_sb,
"direct key mode not allowed with %s",
mode->friendly_name);
err = -EINVAL;
} else if (ctx->contents_encryption_mode !=
ctx->filenames_encryption_mode) {
fscrypt_warn(inode->i_sb,
"direct key mode not allowed with different contents and filenames modes");
err = -EINVAL;
} else {
memcpy(derived_key, payload->raw, mode->keysize);
err = 0;
}
} else {
err = derive_key_aes(payload->raw, ctx, derived_key,
mode->keysize);
}
up_read(&key->sem);
key_put(key);
return err;
}
/* Allocate and key a symmetric cipher object for the given encryption mode */
static struct crypto_skcipher *
allocate_skcipher_for_mode(struct fscrypt_mode *mode, const u8 *raw_key,
const struct inode *inode)
{
struct crypto_skcipher *tfm;
int err;
tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0);
if (IS_ERR(tfm)) {
fscrypt_warn(inode->i_sb,
"error allocating '%s' transform for inode %lu: %ld",
mode->cipher_str, inode->i_ino, PTR_ERR(tfm));
return tfm;
}
if (unlikely(!mode->logged_impl_name)) {
/*
* fscrypt performance can vary greatly depending on which
* crypto algorithm implementation is used. Help people debug
* performance problems by logging the ->cra_driver_name the
* first time a mode is used. Note that multiple threads can
* race here, but it doesn't really matter.
*/
mode->logged_impl_name = true;
pr_info("fscrypt: %s using implementation \"%s\"\n",
mode->friendly_name,
crypto_skcipher_alg(tfm)->base.cra_driver_name);
}
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
if (err)
goto err_free_tfm;
return tfm;
err_free_tfm:
crypto_free_skcipher(tfm);
return ERR_PTR(err);
}
/* Master key referenced by FS_POLICY_FLAG_DIRECT_KEY policy */
struct fscrypt_master_key {
struct hlist_node mk_node;
refcount_t mk_refcount;
const struct fscrypt_mode *mk_mode;
struct crypto_skcipher *mk_ctfm;
u8 mk_descriptor[FS_KEY_DESCRIPTOR_SIZE];
u8 mk_raw[FS_MAX_KEY_SIZE];
};
static void free_master_key(struct fscrypt_master_key *mk)
{
if (mk) {
crypto_free_skcipher(mk->mk_ctfm);
kzfree(mk);
}
}
static void put_master_key(struct fscrypt_master_key *mk)
{
if (!refcount_dec_and_lock(&mk->mk_refcount, &fscrypt_master_keys_lock))
return;
hash_del(&mk->mk_node);
spin_unlock(&fscrypt_master_keys_lock);
free_master_key(mk);
}
/*
* Find/insert the given master key into the fscrypt_master_keys table. If
* found, it is returned with elevated refcount, and 'to_insert' is freed if
* non-NULL. If not found, 'to_insert' is inserted and returned if it's
* non-NULL; otherwise NULL is returned.
*/
static struct fscrypt_master_key *
find_or_insert_master_key(struct fscrypt_master_key *to_insert,
const u8 *raw_key, const struct fscrypt_mode *mode,
const struct fscrypt_info *ci)
{
unsigned long hash_key;
struct fscrypt_master_key *mk;
/*
* Careful: to avoid potentially leaking secret key bytes via timing
* information, we must key the hash table by descriptor rather than by
* raw key, and use crypto_memneq() when comparing raw keys.
*/
BUILD_BUG_ON(sizeof(hash_key) > FS_KEY_DESCRIPTOR_SIZE);
memcpy(&hash_key, ci->ci_master_key_descriptor, sizeof(hash_key));
spin_lock(&fscrypt_master_keys_lock);
hash_for_each_possible(fscrypt_master_keys, mk, mk_node, hash_key) {
if (memcmp(ci->ci_master_key_descriptor, mk->mk_descriptor,
FS_KEY_DESCRIPTOR_SIZE) != 0)
continue;
if (mode != mk->mk_mode)
continue;
if (crypto_memneq(raw_key, mk->mk_raw, mode->keysize))
continue;
/* using existing tfm with same (descriptor, mode, raw_key) */
refcount_inc(&mk->mk_refcount);
spin_unlock(&fscrypt_master_keys_lock);
free_master_key(to_insert);
return mk;
}
if (to_insert)
hash_add(fscrypt_master_keys, &to_insert->mk_node, hash_key);
spin_unlock(&fscrypt_master_keys_lock);
return to_insert;
}
/* Prepare to encrypt directly using the master key in the given mode */
static struct fscrypt_master_key *
fscrypt_get_master_key(const struct fscrypt_info *ci, struct fscrypt_mode *mode,
const u8 *raw_key, const struct inode *inode)
{
struct fscrypt_master_key *mk;
int err;
/* Is there already a tfm for this key? */
mk = find_or_insert_master_key(NULL, raw_key, mode, ci);
if (mk)
return mk;
/* Nope, allocate one. */
mk = kzalloc(sizeof(*mk), GFP_NOFS);
if (!mk)
return ERR_PTR(-ENOMEM);
refcount_set(&mk->mk_refcount, 1);
mk->mk_mode = mode;
mk->mk_ctfm = allocate_skcipher_for_mode(mode, raw_key, inode);
if (IS_ERR(mk->mk_ctfm)) {
err = PTR_ERR(mk->mk_ctfm);
mk->mk_ctfm = NULL;
goto err_free_mk;
}
memcpy(mk->mk_descriptor, ci->ci_master_key_descriptor,
FS_KEY_DESCRIPTOR_SIZE);
memcpy(mk->mk_raw, raw_key, mode->keysize);
return find_or_insert_master_key(mk, raw_key, mode, ci);
err_free_mk:
free_master_key(mk);
return ERR_PTR(err);
}
static int derive_essiv_salt(const u8 *key, int keysize, u8 *salt)
{
struct crypto_shash *tfm = READ_ONCE(essiv_hash_tfm);
/* init hash transform on demand */
if (unlikely(!tfm)) {
struct crypto_shash *prev_tfm;
tfm = crypto_alloc_shash("sha256", 0, 0);
if (IS_ERR(tfm)) {
fscrypt_warn(NULL,
"error allocating SHA-256 transform: %ld",
PTR_ERR(tfm));
return PTR_ERR(tfm);
}
prev_tfm = cmpxchg(&essiv_hash_tfm, NULL, tfm);
if (prev_tfm) {
crypto_free_shash(tfm);
tfm = prev_tfm;
}
}
{
SHASH_DESC_ON_STACK(desc, tfm);
desc->tfm = tfm;
desc->flags = 0;
return crypto_shash_digest(desc, key, keysize, salt);
}
}
static int init_essiv_generator(struct fscrypt_info *ci, const u8 *raw_key,
int keysize)
{
int err;
struct crypto_cipher *essiv_tfm;
u8 salt[SHA256_DIGEST_SIZE];
essiv_tfm = crypto_alloc_cipher("aes", 0, 0);
if (IS_ERR(essiv_tfm))
return PTR_ERR(essiv_tfm);
ci->ci_essiv_tfm = essiv_tfm;
err = derive_essiv_salt(raw_key, keysize, salt);
if (err)
goto out;
/*
* Using SHA256 to derive the salt/key will result in AES-256 being
* used for IV generation. File contents encryption will still use the
* configured keysize (AES-128) nevertheless.
*/
err = crypto_cipher_setkey(essiv_tfm, salt, sizeof(salt));
if (err)
goto out;
out:
memzero_explicit(salt, sizeof(salt));
return err;
}
void __exit fscrypt_essiv_cleanup(void)
{
crypto_free_shash(essiv_hash_tfm);
}
/*
* Given the encryption mode and key (normally the derived key, but for
* FS_POLICY_FLAG_DIRECT_KEY mode it's the master key), set up the inode's
* symmetric cipher transform object(s).
*/
static int setup_crypto_transform(struct fscrypt_info *ci,
struct fscrypt_mode *mode,
const u8 *raw_key, const struct inode *inode)
{
struct fscrypt_master_key *mk;
struct crypto_skcipher *ctfm;
int err;
if (ci->ci_flags & FS_POLICY_FLAG_DIRECT_KEY) {
mk = fscrypt_get_master_key(ci, mode, raw_key, inode);
if (IS_ERR(mk))
return PTR_ERR(mk);
ctfm = mk->mk_ctfm;
} else {
mk = NULL;
ctfm = allocate_skcipher_for_mode(mode, raw_key, inode);
if (IS_ERR(ctfm))
return PTR_ERR(ctfm);
}
ci->ci_master_key = mk;
ci->ci_ctfm = ctfm;
if (mode->needs_essiv) {
/* ESSIV implies 16-byte IVs which implies !DIRECT_KEY */
WARN_ON(mode->ivsize != AES_BLOCK_SIZE);
WARN_ON(ci->ci_flags & FS_POLICY_FLAG_DIRECT_KEY);
err = init_essiv_generator(ci, raw_key, mode->keysize);
if (err) {
fscrypt_warn(inode->i_sb,
"error initializing ESSIV generator for inode %lu: %d",
inode->i_ino, err);
return err;
}
}
return 0;
}
static void put_crypt_info(struct fscrypt_info *ci)
{
if (!ci)
return;
if (ci->ci_master_key) {
put_master_key(ci->ci_master_key);
} else {
crypto_free_skcipher(ci->ci_ctfm);
crypto_free_cipher(ci->ci_essiv_tfm);
}
kmem_cache_free(fscrypt_info_cachep, ci);
}
int fscrypt_get_encryption_info(struct inode *inode)
{
struct fscrypt_info *crypt_info;
struct fscrypt_context ctx;
struct fscrypt_mode *mode;
u8 *raw_key = NULL;
int res;
if (inode->i_crypt_info)
return 0;
res = fscrypt_initialize(inode->i_sb->s_cop->flags);
if (res)
return res;
res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
if (res < 0) {
if (!fscrypt_dummy_context_enabled(inode) ||
IS_ENCRYPTED(inode))
return res;
/* Fake up a context for an unencrypted directory */
memset(&ctx, 0, sizeof(ctx));
ctx.format = FS_ENCRYPTION_CONTEXT_FORMAT_V1;
ctx.contents_encryption_mode = FS_ENCRYPTION_MODE_AES_256_XTS;
ctx.filenames_encryption_mode = FS_ENCRYPTION_MODE_AES_256_CTS;
memset(ctx.master_key_descriptor, 0x42, FS_KEY_DESCRIPTOR_SIZE);
} else if (res != sizeof(ctx)) {
return -EINVAL;
}
if (ctx.format != FS_ENCRYPTION_CONTEXT_FORMAT_V1)
return -EINVAL;
if (ctx.flags & ~FS_POLICY_FLAGS_VALID)
return -EINVAL;
crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_NOFS);
if (!crypt_info)
return -ENOMEM;
crypt_info->ci_flags = ctx.flags;
crypt_info->ci_data_mode = ctx.contents_encryption_mode;
crypt_info->ci_filename_mode = ctx.filenames_encryption_mode;
memcpy(crypt_info->ci_master_key_descriptor, ctx.master_key_descriptor,
FS_KEY_DESCRIPTOR_SIZE);
memcpy(crypt_info->ci_nonce, ctx.nonce, FS_KEY_DERIVATION_NONCE_SIZE);
mode = select_encryption_mode(crypt_info, inode);
if (IS_ERR(mode)) {
res = PTR_ERR(mode);
goto out;
}
WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
crypt_info->ci_mode = mode;
/*
* This cannot be a stack buffer because it may be passed to the
* scatterlist crypto API as part of key derivation.
*/
res = -ENOMEM;
raw_key = kmalloc(mode->keysize, GFP_NOFS);
if (!raw_key)
goto out;
res = find_and_derive_key(inode, &ctx, raw_key, mode);
if (res)
goto out;
res = setup_crypto_transform(crypt_info, mode, raw_key, inode);
if (res)
goto out;
if (cmpxchg(&inode->i_crypt_info, NULL, crypt_info) == NULL)
crypt_info = NULL;
out:
if (res == -ENOKEY)
res = 0;
put_crypt_info(crypt_info);
kzfree(raw_key);
return res;
}
EXPORT_SYMBOL(fscrypt_get_encryption_info);
void fscrypt_put_encryption_info(struct inode *inode)
{
put_crypt_info(inode->i_crypt_info);
inode->i_crypt_info = NULL;
}
EXPORT_SYMBOL(fscrypt_put_encryption_info);