2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-25 15:15:33 +08:00
linux-next/drivers/net/gianfar.c
Sandeep Gopalpet f74dac0859 gianfar: Fix gianfar select_queue bogosity
The gfar_select_queue() function was used to set queue mapping
only for forwarding/bridging applications and the condition
for locally generated packets was completely ignored.

The solution is to remove the gfar_select_queue() function and
use skb_record_rx_queue to set queue mapping for
forwarding/bridging applications. This will ensure that in case of
forwarding/bridging applications txq = rxq will be selected and
skb_tx_hash will be used to pick up a txq for locally generated packets.

Signed-off-by: Sandeep Gopalpet <Sandeep.Kumar@freescale.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-12-26 20:24:44 -08:00

3076 lines
80 KiB
C

/*
* drivers/net/gianfar.c
*
* Gianfar Ethernet Driver
* This driver is designed for the non-CPM ethernet controllers
* on the 85xx and 83xx family of integrated processors
* Based on 8260_io/fcc_enet.c
*
* Author: Andy Fleming
* Maintainer: Kumar Gala
* Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
*
* Copyright 2002-2009 Freescale Semiconductor, Inc.
* Copyright 2007 MontaVista Software, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* Gianfar: AKA Lambda Draconis, "Dragon"
* RA 11 31 24.2
* Dec +69 19 52
* V 3.84
* B-V +1.62
*
* Theory of operation
*
* The driver is initialized through of_device. Configuration information
* is therefore conveyed through an OF-style device tree.
*
* The Gianfar Ethernet Controller uses a ring of buffer
* descriptors. The beginning is indicated by a register
* pointing to the physical address of the start of the ring.
* The end is determined by a "wrap" bit being set in the
* last descriptor of the ring.
*
* When a packet is received, the RXF bit in the
* IEVENT register is set, triggering an interrupt when the
* corresponding bit in the IMASK register is also set (if
* interrupt coalescing is active, then the interrupt may not
* happen immediately, but will wait until either a set number
* of frames or amount of time have passed). In NAPI, the
* interrupt handler will signal there is work to be done, and
* exit. This method will start at the last known empty
* descriptor, and process every subsequent descriptor until there
* are none left with data (NAPI will stop after a set number of
* packets to give time to other tasks, but will eventually
* process all the packets). The data arrives inside a
* pre-allocated skb, and so after the skb is passed up to the
* stack, a new skb must be allocated, and the address field in
* the buffer descriptor must be updated to indicate this new
* skb.
*
* When the kernel requests that a packet be transmitted, the
* driver starts where it left off last time, and points the
* descriptor at the buffer which was passed in. The driver
* then informs the DMA engine that there are packets ready to
* be transmitted. Once the controller is finished transmitting
* the packet, an interrupt may be triggered (under the same
* conditions as for reception, but depending on the TXF bit).
* The driver then cleans up the buffer.
*/
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/unistd.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/if_vlan.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/of_mdio.h>
#include <linux/of_platform.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/in.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
#include <linux/of.h>
#include "gianfar.h"
#include "fsl_pq_mdio.h"
#define TX_TIMEOUT (1*HZ)
#undef BRIEF_GFAR_ERRORS
#undef VERBOSE_GFAR_ERRORS
const char gfar_driver_name[] = "Gianfar Ethernet";
const char gfar_driver_version[] = "1.3";
static int gfar_enet_open(struct net_device *dev);
static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
static void gfar_reset_task(struct work_struct *work);
static void gfar_timeout(struct net_device *dev);
static int gfar_close(struct net_device *dev);
struct sk_buff *gfar_new_skb(struct net_device *dev);
static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
struct sk_buff *skb);
static int gfar_set_mac_address(struct net_device *dev);
static int gfar_change_mtu(struct net_device *dev, int new_mtu);
static irqreturn_t gfar_error(int irq, void *dev_id);
static irqreturn_t gfar_transmit(int irq, void *dev_id);
static irqreturn_t gfar_interrupt(int irq, void *dev_id);
static void adjust_link(struct net_device *dev);
static void init_registers(struct net_device *dev);
static int init_phy(struct net_device *dev);
static int gfar_probe(struct of_device *ofdev,
const struct of_device_id *match);
static int gfar_remove(struct of_device *ofdev);
static void free_skb_resources(struct gfar_private *priv);
static void gfar_set_multi(struct net_device *dev);
static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
static void gfar_configure_serdes(struct net_device *dev);
static int gfar_poll(struct napi_struct *napi, int budget);
#ifdef CONFIG_NET_POLL_CONTROLLER
static void gfar_netpoll(struct net_device *dev);
#endif
int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
int amount_pull);
static void gfar_vlan_rx_register(struct net_device *netdev,
struct vlan_group *grp);
void gfar_halt(struct net_device *dev);
static void gfar_halt_nodisable(struct net_device *dev);
void gfar_start(struct net_device *dev);
static void gfar_clear_exact_match(struct net_device *dev);
static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
MODULE_AUTHOR("Freescale Semiconductor, Inc");
MODULE_DESCRIPTION("Gianfar Ethernet Driver");
MODULE_LICENSE("GPL");
static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
dma_addr_t buf)
{
u32 lstatus;
bdp->bufPtr = buf;
lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
lstatus |= BD_LFLAG(RXBD_WRAP);
eieio();
bdp->lstatus = lstatus;
}
static int gfar_init_bds(struct net_device *ndev)
{
struct gfar_private *priv = netdev_priv(ndev);
struct gfar_priv_tx_q *tx_queue = NULL;
struct gfar_priv_rx_q *rx_queue = NULL;
struct txbd8 *txbdp;
struct rxbd8 *rxbdp;
int i, j;
for (i = 0; i < priv->num_tx_queues; i++) {
tx_queue = priv->tx_queue[i];
/* Initialize some variables in our dev structure */
tx_queue->num_txbdfree = tx_queue->tx_ring_size;
tx_queue->dirty_tx = tx_queue->tx_bd_base;
tx_queue->cur_tx = tx_queue->tx_bd_base;
tx_queue->skb_curtx = 0;
tx_queue->skb_dirtytx = 0;
/* Initialize Transmit Descriptor Ring */
txbdp = tx_queue->tx_bd_base;
for (j = 0; j < tx_queue->tx_ring_size; j++) {
txbdp->lstatus = 0;
txbdp->bufPtr = 0;
txbdp++;
}
/* Set the last descriptor in the ring to indicate wrap */
txbdp--;
txbdp->status |= TXBD_WRAP;
}
for (i = 0; i < priv->num_rx_queues; i++) {
rx_queue = priv->rx_queue[i];
rx_queue->cur_rx = rx_queue->rx_bd_base;
rx_queue->skb_currx = 0;
rxbdp = rx_queue->rx_bd_base;
for (j = 0; j < rx_queue->rx_ring_size; j++) {
struct sk_buff *skb = rx_queue->rx_skbuff[j];
if (skb) {
gfar_init_rxbdp(rx_queue, rxbdp,
rxbdp->bufPtr);
} else {
skb = gfar_new_skb(ndev);
if (!skb) {
pr_err("%s: Can't allocate RX buffers\n",
ndev->name);
goto err_rxalloc_fail;
}
rx_queue->rx_skbuff[j] = skb;
gfar_new_rxbdp(rx_queue, rxbdp, skb);
}
rxbdp++;
}
}
return 0;
err_rxalloc_fail:
free_skb_resources(priv);
return -ENOMEM;
}
static int gfar_alloc_skb_resources(struct net_device *ndev)
{
void *vaddr;
dma_addr_t addr;
int i, j, k;
struct gfar_private *priv = netdev_priv(ndev);
struct device *dev = &priv->ofdev->dev;
struct gfar_priv_tx_q *tx_queue = NULL;
struct gfar_priv_rx_q *rx_queue = NULL;
priv->total_tx_ring_size = 0;
for (i = 0; i < priv->num_tx_queues; i++)
priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
priv->total_rx_ring_size = 0;
for (i = 0; i < priv->num_rx_queues; i++)
priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
/* Allocate memory for the buffer descriptors */
vaddr = dma_alloc_coherent(dev,
sizeof(struct txbd8) * priv->total_tx_ring_size +
sizeof(struct rxbd8) * priv->total_rx_ring_size,
&addr, GFP_KERNEL);
if (!vaddr) {
if (netif_msg_ifup(priv))
pr_err("%s: Could not allocate buffer descriptors!\n",
ndev->name);
return -ENOMEM;
}
for (i = 0; i < priv->num_tx_queues; i++) {
tx_queue = priv->tx_queue[i];
tx_queue->tx_bd_base = (struct txbd8 *) vaddr;
tx_queue->tx_bd_dma_base = addr;
tx_queue->dev = ndev;
/* enet DMA only understands physical addresses */
addr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
vaddr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
}
/* Start the rx descriptor ring where the tx ring leaves off */
for (i = 0; i < priv->num_rx_queues; i++) {
rx_queue = priv->rx_queue[i];
rx_queue->rx_bd_base = (struct rxbd8 *) vaddr;
rx_queue->rx_bd_dma_base = addr;
rx_queue->dev = ndev;
addr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
vaddr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
}
/* Setup the skbuff rings */
for (i = 0; i < priv->num_tx_queues; i++) {
tx_queue = priv->tx_queue[i];
tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
tx_queue->tx_ring_size, GFP_KERNEL);
if (!tx_queue->tx_skbuff) {
if (netif_msg_ifup(priv))
pr_err("%s: Could not allocate tx_skbuff\n",
ndev->name);
goto cleanup;
}
for (k = 0; k < tx_queue->tx_ring_size; k++)
tx_queue->tx_skbuff[k] = NULL;
}
for (i = 0; i < priv->num_rx_queues; i++) {
rx_queue = priv->rx_queue[i];
rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
rx_queue->rx_ring_size, GFP_KERNEL);
if (!rx_queue->rx_skbuff) {
if (netif_msg_ifup(priv))
pr_err("%s: Could not allocate rx_skbuff\n",
ndev->name);
goto cleanup;
}
for (j = 0; j < rx_queue->rx_ring_size; j++)
rx_queue->rx_skbuff[j] = NULL;
}
if (gfar_init_bds(ndev))
goto cleanup;
return 0;
cleanup:
free_skb_resources(priv);
return -ENOMEM;
}
static void gfar_init_tx_rx_base(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 __iomem *baddr;
int i;
baddr = &regs->tbase0;
for(i = 0; i < priv->num_tx_queues; i++) {
gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
baddr += 2;
}
baddr = &regs->rbase0;
for(i = 0; i < priv->num_rx_queues; i++) {
gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
baddr += 2;
}
}
static void gfar_init_mac(struct net_device *ndev)
{
struct gfar_private *priv = netdev_priv(ndev);
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 rctrl = 0;
u32 tctrl = 0;
u32 attrs = 0;
/* write the tx/rx base registers */
gfar_init_tx_rx_base(priv);
/* Configure the coalescing support */
gfar_configure_coalescing(priv, 0xFF, 0xFF);
if (priv->rx_filer_enable) {
rctrl |= RCTRL_FILREN;
/* Program the RIR0 reg with the required distribution */
gfar_write(&regs->rir0, DEFAULT_RIR0);
}
if (priv->rx_csum_enable)
rctrl |= RCTRL_CHECKSUMMING;
if (priv->extended_hash) {
rctrl |= RCTRL_EXTHASH;
gfar_clear_exact_match(ndev);
rctrl |= RCTRL_EMEN;
}
if (priv->padding) {
rctrl &= ~RCTRL_PAL_MASK;
rctrl |= RCTRL_PADDING(priv->padding);
}
/* keep vlan related bits if it's enabled */
if (priv->vlgrp) {
rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
tctrl |= TCTRL_VLINS;
}
/* Init rctrl based on our settings */
gfar_write(&regs->rctrl, rctrl);
if (ndev->features & NETIF_F_IP_CSUM)
tctrl |= TCTRL_INIT_CSUM;
tctrl |= TCTRL_TXSCHED_PRIO;
gfar_write(&regs->tctrl, tctrl);
/* Set the extraction length and index */
attrs = ATTRELI_EL(priv->rx_stash_size) |
ATTRELI_EI(priv->rx_stash_index);
gfar_write(&regs->attreli, attrs);
/* Start with defaults, and add stashing or locking
* depending on the approprate variables */
attrs = ATTR_INIT_SETTINGS;
if (priv->bd_stash_en)
attrs |= ATTR_BDSTASH;
if (priv->rx_stash_size != 0)
attrs |= ATTR_BUFSTASH;
gfar_write(&regs->attr, attrs);
gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
}
static struct net_device_stats *gfar_get_stats(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct netdev_queue *txq;
unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
unsigned long tx_packets = 0, tx_bytes = 0;
int i = 0;
for (i = 0; i < priv->num_rx_queues; i++) {
rx_packets += priv->rx_queue[i]->stats.rx_packets;
rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
}
dev->stats.rx_packets = rx_packets;
dev->stats.rx_bytes = rx_bytes;
dev->stats.rx_dropped = rx_dropped;
for (i = 0; i < priv->num_tx_queues; i++) {
txq = netdev_get_tx_queue(dev, i);
tx_bytes += txq->tx_bytes;
tx_packets += txq->tx_packets;
}
dev->stats.tx_bytes = tx_bytes;
dev->stats.tx_packets = tx_packets;
return &dev->stats;
}
static const struct net_device_ops gfar_netdev_ops = {
.ndo_open = gfar_enet_open,
.ndo_start_xmit = gfar_start_xmit,
.ndo_stop = gfar_close,
.ndo_change_mtu = gfar_change_mtu,
.ndo_set_multicast_list = gfar_set_multi,
.ndo_tx_timeout = gfar_timeout,
.ndo_do_ioctl = gfar_ioctl,
.ndo_get_stats = gfar_get_stats,
.ndo_vlan_rx_register = gfar_vlan_rx_register,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = gfar_netpoll,
#endif
};
unsigned int ftp_rqfpr[MAX_FILER_IDX + 1];
unsigned int ftp_rqfcr[MAX_FILER_IDX + 1];
void lock_rx_qs(struct gfar_private *priv)
{
int i = 0x0;
for (i = 0; i < priv->num_rx_queues; i++)
spin_lock(&priv->rx_queue[i]->rxlock);
}
void lock_tx_qs(struct gfar_private *priv)
{
int i = 0x0;
for (i = 0; i < priv->num_tx_queues; i++)
spin_lock(&priv->tx_queue[i]->txlock);
}
void unlock_rx_qs(struct gfar_private *priv)
{
int i = 0x0;
for (i = 0; i < priv->num_rx_queues; i++)
spin_unlock(&priv->rx_queue[i]->rxlock);
}
void unlock_tx_qs(struct gfar_private *priv)
{
int i = 0x0;
for (i = 0; i < priv->num_tx_queues; i++)
spin_unlock(&priv->tx_queue[i]->txlock);
}
/* Returns 1 if incoming frames use an FCB */
static inline int gfar_uses_fcb(struct gfar_private *priv)
{
return priv->vlgrp || priv->rx_csum_enable;
}
static void free_tx_pointers(struct gfar_private *priv)
{
int i = 0;
for (i = 0; i < priv->num_tx_queues; i++)
kfree(priv->tx_queue[i]);
}
static void free_rx_pointers(struct gfar_private *priv)
{
int i = 0;
for (i = 0; i < priv->num_rx_queues; i++)
kfree(priv->rx_queue[i]);
}
static void unmap_group_regs(struct gfar_private *priv)
{
int i = 0;
for (i = 0; i < MAXGROUPS; i++)
if (priv->gfargrp[i].regs)
iounmap(priv->gfargrp[i].regs);
}
static void disable_napi(struct gfar_private *priv)
{
int i = 0;
for (i = 0; i < priv->num_grps; i++)
napi_disable(&priv->gfargrp[i].napi);
}
static void enable_napi(struct gfar_private *priv)
{
int i = 0;
for (i = 0; i < priv->num_grps; i++)
napi_enable(&priv->gfargrp[i].napi);
}
static int gfar_parse_group(struct device_node *np,
struct gfar_private *priv, const char *model)
{
u32 *queue_mask;
u64 addr, size;
addr = of_translate_address(np,
of_get_address(np, 0, &size, NULL));
priv->gfargrp[priv->num_grps].regs = ioremap(addr, size);
if (!priv->gfargrp[priv->num_grps].regs)
return -ENOMEM;
priv->gfargrp[priv->num_grps].interruptTransmit =
irq_of_parse_and_map(np, 0);
/* If we aren't the FEC we have multiple interrupts */
if (model && strcasecmp(model, "FEC")) {
priv->gfargrp[priv->num_grps].interruptReceive =
irq_of_parse_and_map(np, 1);
priv->gfargrp[priv->num_grps].interruptError =
irq_of_parse_and_map(np,2);
if (priv->gfargrp[priv->num_grps].interruptTransmit < 0 ||
priv->gfargrp[priv->num_grps].interruptReceive < 0 ||
priv->gfargrp[priv->num_grps].interruptError < 0) {
return -EINVAL;
}
}
priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
priv->gfargrp[priv->num_grps].priv = priv;
spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
if(priv->mode == MQ_MG_MODE) {
queue_mask = (u32 *)of_get_property(np,
"fsl,rx-bit-map", NULL);
priv->gfargrp[priv->num_grps].rx_bit_map =
queue_mask ? *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
queue_mask = (u32 *)of_get_property(np,
"fsl,tx-bit-map", NULL);
priv->gfargrp[priv->num_grps].tx_bit_map =
queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
} else {
priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
}
priv->num_grps++;
return 0;
}
static int gfar_of_init(struct of_device *ofdev, struct net_device **pdev)
{
const char *model;
const char *ctype;
const void *mac_addr;
int err = 0, i;
struct net_device *dev = NULL;
struct gfar_private *priv = NULL;
struct device_node *np = ofdev->node;
struct device_node *child = NULL;
const u32 *stash;
const u32 *stash_len;
const u32 *stash_idx;
unsigned int num_tx_qs, num_rx_qs;
u32 *tx_queues, *rx_queues;
if (!np || !of_device_is_available(np))
return -ENODEV;
/* parse the num of tx and rx queues */
tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
num_tx_qs = tx_queues ? *tx_queues : 1;
if (num_tx_qs > MAX_TX_QS) {
printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
num_tx_qs, MAX_TX_QS);
printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
return -EINVAL;
}
rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
num_rx_qs = rx_queues ? *rx_queues : 1;
if (num_rx_qs > MAX_RX_QS) {
printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
num_tx_qs, MAX_TX_QS);
printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
return -EINVAL;
}
*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
dev = *pdev;
if (NULL == dev)
return -ENOMEM;
priv = netdev_priv(dev);
priv->node = ofdev->node;
priv->ndev = dev;
dev->num_tx_queues = num_tx_qs;
dev->real_num_tx_queues = num_tx_qs;
priv->num_tx_queues = num_tx_qs;
priv->num_rx_queues = num_rx_qs;
priv->num_grps = 0x0;
model = of_get_property(np, "model", NULL);
for (i = 0; i < MAXGROUPS; i++)
priv->gfargrp[i].regs = NULL;
/* Parse and initialize group specific information */
if (of_device_is_compatible(np, "fsl,etsec2")) {
priv->mode = MQ_MG_MODE;
for_each_child_of_node(np, child) {
err = gfar_parse_group(child, priv, model);
if (err)
goto err_grp_init;
}
} else {
priv->mode = SQ_SG_MODE;
err = gfar_parse_group(np, priv, model);
if(err)
goto err_grp_init;
}
for (i = 0; i < priv->num_tx_queues; i++)
priv->tx_queue[i] = NULL;
for (i = 0; i < priv->num_rx_queues; i++)
priv->rx_queue[i] = NULL;
for (i = 0; i < priv->num_tx_queues; i++) {
priv->tx_queue[i] = (struct gfar_priv_tx_q *)kmalloc(
sizeof (struct gfar_priv_tx_q), GFP_KERNEL);
if (!priv->tx_queue[i]) {
err = -ENOMEM;
goto tx_alloc_failed;
}
priv->tx_queue[i]->tx_skbuff = NULL;
priv->tx_queue[i]->qindex = i;
priv->tx_queue[i]->dev = dev;
spin_lock_init(&(priv->tx_queue[i]->txlock));
}
for (i = 0; i < priv->num_rx_queues; i++) {
priv->rx_queue[i] = (struct gfar_priv_rx_q *)kmalloc(
sizeof (struct gfar_priv_rx_q), GFP_KERNEL);
if (!priv->rx_queue[i]) {
err = -ENOMEM;
goto rx_alloc_failed;
}
priv->rx_queue[i]->rx_skbuff = NULL;
priv->rx_queue[i]->qindex = i;
priv->rx_queue[i]->dev = dev;
spin_lock_init(&(priv->rx_queue[i]->rxlock));
}
stash = of_get_property(np, "bd-stash", NULL);
if (stash) {
priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
priv->bd_stash_en = 1;
}
stash_len = of_get_property(np, "rx-stash-len", NULL);
if (stash_len)
priv->rx_stash_size = *stash_len;
stash_idx = of_get_property(np, "rx-stash-idx", NULL);
if (stash_idx)
priv->rx_stash_index = *stash_idx;
if (stash_len || stash_idx)
priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
mac_addr = of_get_mac_address(np);
if (mac_addr)
memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
if (model && !strcasecmp(model, "TSEC"))
priv->device_flags =
FSL_GIANFAR_DEV_HAS_GIGABIT |
FSL_GIANFAR_DEV_HAS_COALESCE |
FSL_GIANFAR_DEV_HAS_RMON |
FSL_GIANFAR_DEV_HAS_MULTI_INTR;
if (model && !strcasecmp(model, "eTSEC"))
priv->device_flags =
FSL_GIANFAR_DEV_HAS_GIGABIT |
FSL_GIANFAR_DEV_HAS_COALESCE |
FSL_GIANFAR_DEV_HAS_RMON |
FSL_GIANFAR_DEV_HAS_MULTI_INTR |
FSL_GIANFAR_DEV_HAS_PADDING |
FSL_GIANFAR_DEV_HAS_CSUM |
FSL_GIANFAR_DEV_HAS_VLAN |
FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
ctype = of_get_property(np, "phy-connection-type", NULL);
/* We only care about rgmii-id. The rest are autodetected */
if (ctype && !strcmp(ctype, "rgmii-id"))
priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
else
priv->interface = PHY_INTERFACE_MODE_MII;
if (of_get_property(np, "fsl,magic-packet", NULL))
priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
/* Find the TBI PHY. If it's not there, we don't support SGMII */
priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
return 0;
rx_alloc_failed:
free_rx_pointers(priv);
tx_alloc_failed:
free_tx_pointers(priv);
err_grp_init:
unmap_group_regs(priv);
free_netdev(dev);
return err;
}
/* Ioctl MII Interface */
static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct gfar_private *priv = netdev_priv(dev);
if (!netif_running(dev))
return -EINVAL;
if (!priv->phydev)
return -ENODEV;
return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
}
static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
{
unsigned int new_bit_map = 0x0;
int mask = 0x1 << (max_qs - 1), i;
for (i = 0; i < max_qs; i++) {
if (bit_map & mask)
new_bit_map = new_bit_map + (1 << i);
mask = mask >> 0x1;
}
return new_bit_map;
}
static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
u32 class)
{
u32 rqfpr = FPR_FILER_MASK;
u32 rqfcr = 0x0;
rqfar--;
rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
ftp_rqfpr[rqfar] = rqfpr;
ftp_rqfcr[rqfar] = rqfcr;
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
rqfar--;
rqfcr = RQFCR_CMP_NOMATCH;
ftp_rqfpr[rqfar] = rqfpr;
ftp_rqfcr[rqfar] = rqfcr;
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
rqfar--;
rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
rqfpr = class;
ftp_rqfcr[rqfar] = rqfcr;
ftp_rqfpr[rqfar] = rqfpr;
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
rqfar--;
rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
rqfpr = class;
ftp_rqfcr[rqfar] = rqfcr;
ftp_rqfpr[rqfar] = rqfpr;
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
return rqfar;
}
static void gfar_init_filer_table(struct gfar_private *priv)
{
int i = 0x0;
u32 rqfar = MAX_FILER_IDX;
u32 rqfcr = 0x0;
u32 rqfpr = FPR_FILER_MASK;
/* Default rule */
rqfcr = RQFCR_CMP_MATCH;
ftp_rqfcr[rqfar] = rqfcr;
ftp_rqfpr[rqfar] = rqfpr;
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
/* cur_filer_idx indicated the fisrt non-masked rule */
priv->cur_filer_idx = rqfar;
/* Rest are masked rules */
rqfcr = RQFCR_CMP_NOMATCH;
for (i = 0; i < rqfar; i++) {
ftp_rqfcr[i] = rqfcr;
ftp_rqfpr[i] = rqfpr;
gfar_write_filer(priv, i, rqfcr, rqfpr);
}
}
/* Set up the ethernet device structure, private data,
* and anything else we need before we start */
static int gfar_probe(struct of_device *ofdev,
const struct of_device_id *match)
{
u32 tempval;
struct net_device *dev = NULL;
struct gfar_private *priv = NULL;
struct gfar __iomem *regs = NULL;
int err = 0, i, grp_idx = 0;
int len_devname;
u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
u32 isrg = 0;
u32 __iomem *baddr;
err = gfar_of_init(ofdev, &dev);
if (err)
return err;
priv = netdev_priv(dev);
priv->ndev = dev;
priv->ofdev = ofdev;
priv->node = ofdev->node;
SET_NETDEV_DEV(dev, &ofdev->dev);
spin_lock_init(&priv->bflock);
INIT_WORK(&priv->reset_task, gfar_reset_task);
dev_set_drvdata(&ofdev->dev, priv);
regs = priv->gfargrp[0].regs;
/* Stop the DMA engine now, in case it was running before */
/* (The firmware could have used it, and left it running). */
gfar_halt(dev);
/* Reset MAC layer */
gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
/* We need to delay at least 3 TX clocks */
udelay(2);
tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
gfar_write(&regs->maccfg1, tempval);
/* Initialize MACCFG2. */
gfar_write(&regs->maccfg2, MACCFG2_INIT_SETTINGS);
/* Initialize ECNTRL */
gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
/* Set the dev->base_addr to the gfar reg region */
dev->base_addr = (unsigned long) regs;
SET_NETDEV_DEV(dev, &ofdev->dev);
/* Fill in the dev structure */
dev->watchdog_timeo = TX_TIMEOUT;
dev->mtu = 1500;
dev->netdev_ops = &gfar_netdev_ops;
dev->ethtool_ops = &gfar_ethtool_ops;
/* Register for napi ...We are registering NAPI for each grp */
for (i = 0; i < priv->num_grps; i++)
netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
priv->rx_csum_enable = 1;
dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
} else
priv->rx_csum_enable = 0;
priv->vlgrp = NULL;
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
priv->extended_hash = 1;
priv->hash_width = 9;
priv->hash_regs[0] = &regs->igaddr0;
priv->hash_regs[1] = &regs->igaddr1;
priv->hash_regs[2] = &regs->igaddr2;
priv->hash_regs[3] = &regs->igaddr3;
priv->hash_regs[4] = &regs->igaddr4;
priv->hash_regs[5] = &regs->igaddr5;
priv->hash_regs[6] = &regs->igaddr6;
priv->hash_regs[7] = &regs->igaddr7;
priv->hash_regs[8] = &regs->gaddr0;
priv->hash_regs[9] = &regs->gaddr1;
priv->hash_regs[10] = &regs->gaddr2;
priv->hash_regs[11] = &regs->gaddr3;
priv->hash_regs[12] = &regs->gaddr4;
priv->hash_regs[13] = &regs->gaddr5;
priv->hash_regs[14] = &regs->gaddr6;
priv->hash_regs[15] = &regs->gaddr7;
} else {
priv->extended_hash = 0;
priv->hash_width = 8;
priv->hash_regs[0] = &regs->gaddr0;
priv->hash_regs[1] = &regs->gaddr1;
priv->hash_regs[2] = &regs->gaddr2;
priv->hash_regs[3] = &regs->gaddr3;
priv->hash_regs[4] = &regs->gaddr4;
priv->hash_regs[5] = &regs->gaddr5;
priv->hash_regs[6] = &regs->gaddr6;
priv->hash_regs[7] = &regs->gaddr7;
}
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
priv->padding = DEFAULT_PADDING;
else
priv->padding = 0;
if (dev->features & NETIF_F_IP_CSUM)
dev->hard_header_len += GMAC_FCB_LEN;
/* Program the isrg regs only if number of grps > 1 */
if (priv->num_grps > 1) {
baddr = &regs->isrg0;
for (i = 0; i < priv->num_grps; i++) {
isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
gfar_write(baddr, isrg);
baddr++;
isrg = 0x0;
}
}
/* Need to reverse the bit maps as bit_map's MSB is q0
* but, for_each_bit parses from right to left, which
* basically reverses the queue numbers */
for (i = 0; i< priv->num_grps; i++) {
priv->gfargrp[i].tx_bit_map = reverse_bitmap(
priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
priv->gfargrp[i].rx_bit_map = reverse_bitmap(
priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
}
/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
* also assign queues to groups */
for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
priv->gfargrp[grp_idx].num_rx_queues = 0x0;
for_each_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
priv->num_rx_queues) {
priv->gfargrp[grp_idx].num_rx_queues++;
priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
}
priv->gfargrp[grp_idx].num_tx_queues = 0x0;
for_each_bit (i, &priv->gfargrp[grp_idx].tx_bit_map,
priv->num_tx_queues) {
priv->gfargrp[grp_idx].num_tx_queues++;
priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
tstat = tstat | (TSTAT_CLEAR_THALT >> i);
tqueue = tqueue | (TQUEUE_EN0 >> i);
}
priv->gfargrp[grp_idx].rstat = rstat;
priv->gfargrp[grp_idx].tstat = tstat;
rstat = tstat =0;
}
gfar_write(&regs->rqueue, rqueue);
gfar_write(&regs->tqueue, tqueue);
priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
/* Initializing some of the rx/tx queue level parameters */
for (i = 0; i < priv->num_tx_queues; i++) {
priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
priv->tx_queue[i]->txic = DEFAULT_TXIC;
}
for (i = 0; i < priv->num_rx_queues; i++) {
priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
priv->rx_queue[i]->rxic = DEFAULT_RXIC;
}
/* enable filer if using multiple RX queues*/
if(priv->num_rx_queues > 1)
priv->rx_filer_enable = 1;
/* Enable most messages by default */
priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
/* Carrier starts down, phylib will bring it up */
netif_carrier_off(dev);
err = register_netdev(dev);
if (err) {
printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
dev->name);
goto register_fail;
}
device_init_wakeup(&dev->dev,
priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
/* fill out IRQ number and name fields */
len_devname = strlen(dev->name);
for (i = 0; i < priv->num_grps; i++) {
strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
len_devname);
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
"_g", sizeof("_g"));
priv->gfargrp[i].int_name_tx[
strlen(priv->gfargrp[i].int_name_tx)] = i+48;
strncpy(&priv->gfargrp[i].int_name_tx[strlen(
priv->gfargrp[i].int_name_tx)],
"_tx", sizeof("_tx") + 1);
strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
len_devname);
strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
"_g", sizeof("_g"));
priv->gfargrp[i].int_name_rx[
strlen(priv->gfargrp[i].int_name_rx)] = i+48;
strncpy(&priv->gfargrp[i].int_name_rx[strlen(
priv->gfargrp[i].int_name_rx)],
"_rx", sizeof("_rx") + 1);
strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
len_devname);
strncpy(&priv->gfargrp[i].int_name_er[len_devname],
"_g", sizeof("_g"));
priv->gfargrp[i].int_name_er[strlen(
priv->gfargrp[i].int_name_er)] = i+48;
strncpy(&priv->gfargrp[i].int_name_er[strlen(\
priv->gfargrp[i].int_name_er)],
"_er", sizeof("_er") + 1);
} else
priv->gfargrp[i].int_name_tx[len_devname] = '\0';
}
/* Initialize the filer table */
gfar_init_filer_table(priv);
/* Create all the sysfs files */
gfar_init_sysfs(dev);
/* Print out the device info */
printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
/* Even more device info helps when determining which kernel */
/* provided which set of benchmarks. */
printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
for (i = 0; i < priv->num_rx_queues; i++)
printk(KERN_INFO "%s: :RX BD ring size for Q[%d]: %d\n",
dev->name, i, priv->rx_queue[i]->rx_ring_size);
for(i = 0; i < priv->num_tx_queues; i++)
printk(KERN_INFO "%s:TX BD ring size for Q[%d]: %d\n",
dev->name, i, priv->tx_queue[i]->tx_ring_size);
return 0;
register_fail:
unmap_group_regs(priv);
free_tx_pointers(priv);
free_rx_pointers(priv);
if (priv->phy_node)
of_node_put(priv->phy_node);
if (priv->tbi_node)
of_node_put(priv->tbi_node);
free_netdev(dev);
return err;
}
static int gfar_remove(struct of_device *ofdev)
{
struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
if (priv->phy_node)
of_node_put(priv->phy_node);
if (priv->tbi_node)
of_node_put(priv->tbi_node);
dev_set_drvdata(&ofdev->dev, NULL);
unregister_netdev(priv->ndev);
unmap_group_regs(priv);
free_netdev(priv->ndev);
return 0;
}
#ifdef CONFIG_PM
static int gfar_suspend(struct device *dev)
{
struct gfar_private *priv = dev_get_drvdata(dev);
struct net_device *ndev = priv->ndev;
struct gfar __iomem *regs = priv->gfargrp[0].regs;
unsigned long flags;
u32 tempval;
int magic_packet = priv->wol_en &&
(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
netif_device_detach(ndev);
if (netif_running(ndev)) {
local_irq_save(flags);
lock_tx_qs(priv);
lock_rx_qs(priv);
gfar_halt_nodisable(ndev);
/* Disable Tx, and Rx if wake-on-LAN is disabled. */
tempval = gfar_read(&regs->maccfg1);
tempval &= ~MACCFG1_TX_EN;
if (!magic_packet)
tempval &= ~MACCFG1_RX_EN;
gfar_write(&regs->maccfg1, tempval);
unlock_rx_qs(priv);
unlock_tx_qs(priv);
local_irq_restore(flags);
disable_napi(priv);
if (magic_packet) {
/* Enable interrupt on Magic Packet */
gfar_write(&regs->imask, IMASK_MAG);
/* Enable Magic Packet mode */
tempval = gfar_read(&regs->maccfg2);
tempval |= MACCFG2_MPEN;
gfar_write(&regs->maccfg2, tempval);
} else {
phy_stop(priv->phydev);
}
}
return 0;
}
static int gfar_resume(struct device *dev)
{
struct gfar_private *priv = dev_get_drvdata(dev);
struct net_device *ndev = priv->ndev;
struct gfar __iomem *regs = priv->gfargrp[0].regs;
unsigned long flags;
u32 tempval;
int magic_packet = priv->wol_en &&
(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
if (!netif_running(ndev)) {
netif_device_attach(ndev);
return 0;
}
if (!magic_packet && priv->phydev)
phy_start(priv->phydev);
/* Disable Magic Packet mode, in case something
* else woke us up.
*/
local_irq_save(flags);
lock_tx_qs(priv);
lock_rx_qs(priv);
tempval = gfar_read(&regs->maccfg2);
tempval &= ~MACCFG2_MPEN;
gfar_write(&regs->maccfg2, tempval);
gfar_start(ndev);
unlock_rx_qs(priv);
unlock_tx_qs(priv);
local_irq_restore(flags);
netif_device_attach(ndev);
enable_napi(priv);
return 0;
}
static int gfar_restore(struct device *dev)
{
struct gfar_private *priv = dev_get_drvdata(dev);
struct net_device *ndev = priv->ndev;
if (!netif_running(ndev))
return 0;
gfar_init_bds(ndev);
init_registers(ndev);
gfar_set_mac_address(ndev);
gfar_init_mac(ndev);
gfar_start(ndev);
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
if (priv->phydev)
phy_start(priv->phydev);
netif_device_attach(ndev);
enable_napi(priv);
return 0;
}
static struct dev_pm_ops gfar_pm_ops = {
.suspend = gfar_suspend,
.resume = gfar_resume,
.freeze = gfar_suspend,
.thaw = gfar_resume,
.restore = gfar_restore,
};
#define GFAR_PM_OPS (&gfar_pm_ops)
static int gfar_legacy_suspend(struct of_device *ofdev, pm_message_t state)
{
return gfar_suspend(&ofdev->dev);
}
static int gfar_legacy_resume(struct of_device *ofdev)
{
return gfar_resume(&ofdev->dev);
}
#else
#define GFAR_PM_OPS NULL
#define gfar_legacy_suspend NULL
#define gfar_legacy_resume NULL
#endif
/* Reads the controller's registers to determine what interface
* connects it to the PHY.
*/
static phy_interface_t gfar_get_interface(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 ecntrl;
ecntrl = gfar_read(&regs->ecntrl);
if (ecntrl & ECNTRL_SGMII_MODE)
return PHY_INTERFACE_MODE_SGMII;
if (ecntrl & ECNTRL_TBI_MODE) {
if (ecntrl & ECNTRL_REDUCED_MODE)
return PHY_INTERFACE_MODE_RTBI;
else
return PHY_INTERFACE_MODE_TBI;
}
if (ecntrl & ECNTRL_REDUCED_MODE) {
if (ecntrl & ECNTRL_REDUCED_MII_MODE)
return PHY_INTERFACE_MODE_RMII;
else {
phy_interface_t interface = priv->interface;
/*
* This isn't autodetected right now, so it must
* be set by the device tree or platform code.
*/
if (interface == PHY_INTERFACE_MODE_RGMII_ID)
return PHY_INTERFACE_MODE_RGMII_ID;
return PHY_INTERFACE_MODE_RGMII;
}
}
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
return PHY_INTERFACE_MODE_GMII;
return PHY_INTERFACE_MODE_MII;
}
/* Initializes driver's PHY state, and attaches to the PHY.
* Returns 0 on success.
*/
static int init_phy(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
uint gigabit_support =
priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
SUPPORTED_1000baseT_Full : 0;
phy_interface_t interface;
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
interface = gfar_get_interface(dev);
priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
interface);
if (!priv->phydev)
priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
interface);
if (!priv->phydev) {
dev_err(&dev->dev, "could not attach to PHY\n");
return -ENODEV;
}
if (interface == PHY_INTERFACE_MODE_SGMII)
gfar_configure_serdes(dev);
/* Remove any features not supported by the controller */
priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
priv->phydev->advertising = priv->phydev->supported;
return 0;
}
/*
* Initialize TBI PHY interface for communicating with the
* SERDES lynx PHY on the chip. We communicate with this PHY
* through the MDIO bus on each controller, treating it as a
* "normal" PHY at the address found in the TBIPA register. We assume
* that the TBIPA register is valid. Either the MDIO bus code will set
* it to a value that doesn't conflict with other PHYs on the bus, or the
* value doesn't matter, as there are no other PHYs on the bus.
*/
static void gfar_configure_serdes(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct phy_device *tbiphy;
if (!priv->tbi_node) {
dev_warn(&dev->dev, "error: SGMII mode requires that the "
"device tree specify a tbi-handle\n");
return;
}
tbiphy = of_phy_find_device(priv->tbi_node);
if (!tbiphy) {
dev_err(&dev->dev, "error: Could not get TBI device\n");
return;
}
/*
* If the link is already up, we must already be ok, and don't need to
* configure and reset the TBI<->SerDes link. Maybe U-Boot configured
* everything for us? Resetting it takes the link down and requires
* several seconds for it to come back.
*/
if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
return;
/* Single clk mode, mii mode off(for serdes communication) */
phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
phy_write(tbiphy, MII_ADVERTISE,
ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
ADVERTISE_1000XPSE_ASYM);
phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
}
static void init_registers(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = NULL;
int i = 0;
for (i = 0; i < priv->num_grps; i++) {
regs = priv->gfargrp[i].regs;
/* Clear IEVENT */
gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
/* Initialize IMASK */
gfar_write(&regs->imask, IMASK_INIT_CLEAR);
}
regs = priv->gfargrp[0].regs;
/* Init hash registers to zero */
gfar_write(&regs->igaddr0, 0);
gfar_write(&regs->igaddr1, 0);
gfar_write(&regs->igaddr2, 0);
gfar_write(&regs->igaddr3, 0);
gfar_write(&regs->igaddr4, 0);
gfar_write(&regs->igaddr5, 0);
gfar_write(&regs->igaddr6, 0);
gfar_write(&regs->igaddr7, 0);
gfar_write(&regs->gaddr0, 0);
gfar_write(&regs->gaddr1, 0);
gfar_write(&regs->gaddr2, 0);
gfar_write(&regs->gaddr3, 0);
gfar_write(&regs->gaddr4, 0);
gfar_write(&regs->gaddr5, 0);
gfar_write(&regs->gaddr6, 0);
gfar_write(&regs->gaddr7, 0);
/* Zero out the rmon mib registers if it has them */
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
/* Mask off the CAM interrupts */
gfar_write(&regs->rmon.cam1, 0xffffffff);
gfar_write(&regs->rmon.cam2, 0xffffffff);
}
/* Initialize the max receive buffer length */
gfar_write(&regs->mrblr, priv->rx_buffer_size);
/* Initialize the Minimum Frame Length Register */
gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
}
/* Halt the receive and transmit queues */
static void gfar_halt_nodisable(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = NULL;
u32 tempval;
int i = 0;
for (i = 0; i < priv->num_grps; i++) {
regs = priv->gfargrp[i].regs;
/* Mask all interrupts */
gfar_write(&regs->imask, IMASK_INIT_CLEAR);
/* Clear all interrupts */
gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
}
regs = priv->gfargrp[0].regs;
/* Stop the DMA, and wait for it to stop */
tempval = gfar_read(&regs->dmactrl);
if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
!= (DMACTRL_GRS | DMACTRL_GTS)) {
tempval |= (DMACTRL_GRS | DMACTRL_GTS);
gfar_write(&regs->dmactrl, tempval);
while (!(gfar_read(&regs->ievent) &
(IEVENT_GRSC | IEVENT_GTSC)))
cpu_relax();
}
}
/* Halt the receive and transmit queues */
void gfar_halt(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 tempval;
gfar_halt_nodisable(dev);
/* Disable Rx and Tx */
tempval = gfar_read(&regs->maccfg1);
tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
gfar_write(&regs->maccfg1, tempval);
}
static void free_grp_irqs(struct gfar_priv_grp *grp)
{
free_irq(grp->interruptError, grp);
free_irq(grp->interruptTransmit, grp);
free_irq(grp->interruptReceive, grp);
}
void stop_gfar(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
unsigned long flags;
int i;
phy_stop(priv->phydev);
/* Lock it down */
local_irq_save(flags);
lock_tx_qs(priv);
lock_rx_qs(priv);
gfar_halt(dev);
unlock_rx_qs(priv);
unlock_tx_qs(priv);
local_irq_restore(flags);
/* Free the IRQs */
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
for (i = 0; i < priv->num_grps; i++)
free_grp_irqs(&priv->gfargrp[i]);
} else {
for (i = 0; i < priv->num_grps; i++)
free_irq(priv->gfargrp[i].interruptTransmit,
&priv->gfargrp[i]);
}
free_skb_resources(priv);
}
static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
{
struct txbd8 *txbdp;
struct gfar_private *priv = netdev_priv(tx_queue->dev);
int i, j;
txbdp = tx_queue->tx_bd_base;
for (i = 0; i < tx_queue->tx_ring_size; i++) {
if (!tx_queue->tx_skbuff[i])
continue;
dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
txbdp->length, DMA_TO_DEVICE);
txbdp->lstatus = 0;
for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
j++) {
txbdp++;
dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
txbdp->length, DMA_TO_DEVICE);
}
txbdp++;
dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
tx_queue->tx_skbuff[i] = NULL;
}
kfree(tx_queue->tx_skbuff);
}
static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
{
struct rxbd8 *rxbdp;
struct gfar_private *priv = netdev_priv(rx_queue->dev);
int i;
rxbdp = rx_queue->rx_bd_base;
for (i = 0; i < rx_queue->rx_ring_size; i++) {
if (rx_queue->rx_skbuff[i]) {
dma_unmap_single(&priv->ofdev->dev,
rxbdp->bufPtr, priv->rx_buffer_size,
DMA_FROM_DEVICE);
dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
rx_queue->rx_skbuff[i] = NULL;
}
rxbdp->lstatus = 0;
rxbdp->bufPtr = 0;
rxbdp++;
}
kfree(rx_queue->rx_skbuff);
}
/* If there are any tx skbs or rx skbs still around, free them.
* Then free tx_skbuff and rx_skbuff */
static void free_skb_resources(struct gfar_private *priv)
{
struct gfar_priv_tx_q *tx_queue = NULL;
struct gfar_priv_rx_q *rx_queue = NULL;
int i;
/* Go through all the buffer descriptors and free their data buffers */
for (i = 0; i < priv->num_tx_queues; i++) {
tx_queue = priv->tx_queue[i];
if(!tx_queue->tx_skbuff)
free_skb_tx_queue(tx_queue);
}
for (i = 0; i < priv->num_rx_queues; i++) {
rx_queue = priv->rx_queue[i];
if(!rx_queue->rx_skbuff)
free_skb_rx_queue(rx_queue);
}
dma_free_coherent(&priv->ofdev->dev,
sizeof(struct txbd8) * priv->total_tx_ring_size +
sizeof(struct rxbd8) * priv->total_rx_ring_size,
priv->tx_queue[0]->tx_bd_base,
priv->tx_queue[0]->tx_bd_dma_base);
}
void gfar_start(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 tempval;
int i = 0;
/* Enable Rx and Tx in MACCFG1 */
tempval = gfar_read(&regs->maccfg1);
tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
gfar_write(&regs->maccfg1, tempval);
/* Initialize DMACTRL to have WWR and WOP */
tempval = gfar_read(&regs->dmactrl);
tempval |= DMACTRL_INIT_SETTINGS;
gfar_write(&regs->dmactrl, tempval);
/* Make sure we aren't stopped */
tempval = gfar_read(&regs->dmactrl);
tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
gfar_write(&regs->dmactrl, tempval);
for (i = 0; i < priv->num_grps; i++) {
regs = priv->gfargrp[i].regs;
/* Clear THLT/RHLT, so that the DMA starts polling now */
gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
/* Unmask the interrupts we look for */
gfar_write(&regs->imask, IMASK_DEFAULT);
}
dev->trans_start = jiffies;
}
void gfar_configure_coalescing(struct gfar_private *priv,
unsigned long tx_mask, unsigned long rx_mask)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 __iomem *baddr;
int i = 0;
/* Backward compatible case ---- even if we enable
* multiple queues, there's only single reg to program
*/
gfar_write(&regs->txic, 0);
if(likely(priv->tx_queue[0]->txcoalescing))
gfar_write(&regs->txic, priv->tx_queue[0]->txic);
gfar_write(&regs->rxic, 0);
if(unlikely(priv->rx_queue[0]->rxcoalescing))
gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
if (priv->mode == MQ_MG_MODE) {
baddr = &regs->txic0;
for_each_bit (i, &tx_mask, priv->num_tx_queues) {
if (likely(priv->tx_queue[i]->txcoalescing)) {
gfar_write(baddr + i, 0);
gfar_write(baddr + i, priv->tx_queue[i]->txic);
}
}
baddr = &regs->rxic0;
for_each_bit (i, &rx_mask, priv->num_rx_queues) {
if (likely(priv->rx_queue[i]->rxcoalescing)) {
gfar_write(baddr + i, 0);
gfar_write(baddr + i, priv->rx_queue[i]->rxic);
}
}
}
}
static int register_grp_irqs(struct gfar_priv_grp *grp)
{
struct gfar_private *priv = grp->priv;
struct net_device *dev = priv->ndev;
int err;
/* If the device has multiple interrupts, register for
* them. Otherwise, only register for the one */
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
/* Install our interrupt handlers for Error,
* Transmit, and Receive */
if ((err = request_irq(grp->interruptError, gfar_error, 0,
grp->int_name_er,grp)) < 0) {
if (netif_msg_intr(priv))
printk(KERN_ERR "%s: Can't get IRQ %d\n",
dev->name, grp->interruptError);
goto err_irq_fail;
}
if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
0, grp->int_name_tx, grp)) < 0) {
if (netif_msg_intr(priv))
printk(KERN_ERR "%s: Can't get IRQ %d\n",
dev->name, grp->interruptTransmit);
goto tx_irq_fail;
}
if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
grp->int_name_rx, grp)) < 0) {
if (netif_msg_intr(priv))
printk(KERN_ERR "%s: Can't get IRQ %d\n",
dev->name, grp->interruptReceive);
goto rx_irq_fail;
}
} else {
if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
grp->int_name_tx, grp)) < 0) {
if (netif_msg_intr(priv))
printk(KERN_ERR "%s: Can't get IRQ %d\n",
dev->name, grp->interruptTransmit);
goto err_irq_fail;
}
}
return 0;
rx_irq_fail:
free_irq(grp->interruptTransmit, grp);
tx_irq_fail:
free_irq(grp->interruptError, grp);
err_irq_fail:
return err;
}
/* Bring the controller up and running */
int startup_gfar(struct net_device *ndev)
{
struct gfar_private *priv = netdev_priv(ndev);
struct gfar __iomem *regs = NULL;
int err, i, j;
for (i = 0; i < priv->num_grps; i++) {
regs= priv->gfargrp[i].regs;
gfar_write(&regs->imask, IMASK_INIT_CLEAR);
}
regs= priv->gfargrp[0].regs;
err = gfar_alloc_skb_resources(ndev);
if (err)
return err;
gfar_init_mac(ndev);
for (i = 0; i < priv->num_grps; i++) {
err = register_grp_irqs(&priv->gfargrp[i]);
if (err) {
for (j = 0; j < i; j++)
free_grp_irqs(&priv->gfargrp[j]);
goto irq_fail;
}
}
/* Start the controller */
gfar_start(ndev);
phy_start(priv->phydev);
gfar_configure_coalescing(priv, 0xFF, 0xFF);
return 0;
irq_fail:
free_skb_resources(priv);
return err;
}
/* Called when something needs to use the ethernet device */
/* Returns 0 for success. */
static int gfar_enet_open(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
int err;
enable_napi(priv);
skb_queue_head_init(&priv->rx_recycle);
/* Initialize a bunch of registers */
init_registers(dev);
gfar_set_mac_address(dev);
err = init_phy(dev);
if (err) {
disable_napi(priv);
return err;
}
err = startup_gfar(dev);
if (err) {
disable_napi(priv);
return err;
}
netif_tx_start_all_queues(dev);
device_set_wakeup_enable(&dev->dev, priv->wol_en);
return err;
}
static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
{
struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
memset(fcb, 0, GMAC_FCB_LEN);
return fcb;
}
static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
{
u8 flags = 0;
/* If we're here, it's a IP packet with a TCP or UDP
* payload. We set it to checksum, using a pseudo-header
* we provide
*/
flags = TXFCB_DEFAULT;
/* Tell the controller what the protocol is */
/* And provide the already calculated phcs */
if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
flags |= TXFCB_UDP;
fcb->phcs = udp_hdr(skb)->check;
} else
fcb->phcs = tcp_hdr(skb)->check;
/* l3os is the distance between the start of the
* frame (skb->data) and the start of the IP hdr.
* l4os is the distance between the start of the
* l3 hdr and the l4 hdr */
fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
fcb->l4os = skb_network_header_len(skb);
fcb->flags = flags;
}
void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
{
fcb->flags |= TXFCB_VLN;
fcb->vlctl = vlan_tx_tag_get(skb);
}
static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
struct txbd8 *base, int ring_size)
{
struct txbd8 *new_bd = bdp + stride;
return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
}
static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
int ring_size)
{
return skip_txbd(bdp, 1, base, ring_size);
}
/* This is called by the kernel when a frame is ready for transmission. */
/* It is pointed to by the dev->hard_start_xmit function pointer */
static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar_priv_tx_q *tx_queue = NULL;
struct netdev_queue *txq;
struct gfar __iomem *regs = NULL;
struct txfcb *fcb = NULL;
struct txbd8 *txbdp, *txbdp_start, *base;
u32 lstatus;
int i, rq = 0;
u32 bufaddr;
unsigned long flags;
unsigned int nr_frags, length;
rq = skb->queue_mapping;
tx_queue = priv->tx_queue[rq];
txq = netdev_get_tx_queue(dev, rq);
base = tx_queue->tx_bd_base;
regs = tx_queue->grp->regs;
/* make space for additional header when fcb is needed */
if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
(priv->vlgrp && vlan_tx_tag_present(skb))) &&
(skb_headroom(skb) < GMAC_FCB_LEN)) {
struct sk_buff *skb_new;
skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
if (!skb_new) {
dev->stats.tx_errors++;
kfree_skb(skb);
return NETDEV_TX_OK;
}
kfree_skb(skb);
skb = skb_new;
}
/* total number of fragments in the SKB */
nr_frags = skb_shinfo(skb)->nr_frags;
/* check if there is space to queue this packet */
if ((nr_frags+1) > tx_queue->num_txbdfree) {
/* no space, stop the queue */
netif_tx_stop_queue(txq);
dev->stats.tx_fifo_errors++;
return NETDEV_TX_BUSY;
}
/* Update transmit stats */
txq->tx_bytes += skb->len;
txq->tx_packets ++;
txbdp = txbdp_start = tx_queue->cur_tx;
if (nr_frags == 0) {
lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
} else {
/* Place the fragment addresses and lengths into the TxBDs */
for (i = 0; i < nr_frags; i++) {
/* Point at the next BD, wrapping as needed */
txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
length = skb_shinfo(skb)->frags[i].size;
lstatus = txbdp->lstatus | length |
BD_LFLAG(TXBD_READY);
/* Handle the last BD specially */
if (i == nr_frags - 1)
lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
bufaddr = dma_map_page(&priv->ofdev->dev,
skb_shinfo(skb)->frags[i].page,
skb_shinfo(skb)->frags[i].page_offset,
length,
DMA_TO_DEVICE);
/* set the TxBD length and buffer pointer */
txbdp->bufPtr = bufaddr;
txbdp->lstatus = lstatus;
}
lstatus = txbdp_start->lstatus;
}
/* Set up checksumming */
if (CHECKSUM_PARTIAL == skb->ip_summed) {
fcb = gfar_add_fcb(skb);
lstatus |= BD_LFLAG(TXBD_TOE);
gfar_tx_checksum(skb, fcb);
}
if (priv->vlgrp && vlan_tx_tag_present(skb)) {
if (unlikely(NULL == fcb)) {
fcb = gfar_add_fcb(skb);
lstatus |= BD_LFLAG(TXBD_TOE);
}
gfar_tx_vlan(skb, fcb);
}
/* setup the TxBD length and buffer pointer for the first BD */
tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
/*
* We can work in parallel with gfar_clean_tx_ring(), except
* when modifying num_txbdfree. Note that we didn't grab the lock
* when we were reading the num_txbdfree and checking for available
* space, that's because outside of this function it can only grow,
* and once we've got needed space, it cannot suddenly disappear.
*
* The lock also protects us from gfar_error(), which can modify
* regs->tstat and thus retrigger the transfers, which is why we
* also must grab the lock before setting ready bit for the first
* to be transmitted BD.
*/
spin_lock_irqsave(&tx_queue->txlock, flags);
/*
* The powerpc-specific eieio() is used, as wmb() has too strong
* semantics (it requires synchronization between cacheable and
* uncacheable mappings, which eieio doesn't provide and which we
* don't need), thus requiring a more expensive sync instruction. At
* some point, the set of architecture-independent barrier functions
* should be expanded to include weaker barriers.
*/
eieio();
txbdp_start->lstatus = lstatus;
/* Update the current skb pointer to the next entry we will use
* (wrapping if necessary) */
tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
TX_RING_MOD_MASK(tx_queue->tx_ring_size);
tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
/* reduce TxBD free count */
tx_queue->num_txbdfree -= (nr_frags + 1);
dev->trans_start = jiffies;
/* If the next BD still needs to be cleaned up, then the bds
are full. We need to tell the kernel to stop sending us stuff. */
if (!tx_queue->num_txbdfree) {
netif_tx_stop_queue(txq);
dev->stats.tx_fifo_errors++;
}
/* Tell the DMA to go go go */
gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
/* Unlock priv */
spin_unlock_irqrestore(&tx_queue->txlock, flags);
return NETDEV_TX_OK;
}
/* Stops the kernel queue, and halts the controller */
static int gfar_close(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
disable_napi(priv);
skb_queue_purge(&priv->rx_recycle);
cancel_work_sync(&priv->reset_task);
stop_gfar(dev);
/* Disconnect from the PHY */
phy_disconnect(priv->phydev);
priv->phydev = NULL;
netif_tx_stop_all_queues(dev);
return 0;
}
/* Changes the mac address if the controller is not running. */
static int gfar_set_mac_address(struct net_device *dev)
{
gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
return 0;
}
/* Enables and disables VLAN insertion/extraction */
static void gfar_vlan_rx_register(struct net_device *dev,
struct vlan_group *grp)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = NULL;
unsigned long flags;
u32 tempval;
regs = priv->gfargrp[0].regs;
local_irq_save(flags);
lock_rx_qs(priv);
priv->vlgrp = grp;
if (grp) {
/* Enable VLAN tag insertion */
tempval = gfar_read(&regs->tctrl);
tempval |= TCTRL_VLINS;
gfar_write(&regs->tctrl, tempval);
/* Enable VLAN tag extraction */
tempval = gfar_read(&regs->rctrl);
tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
gfar_write(&regs->rctrl, tempval);
} else {
/* Disable VLAN tag insertion */
tempval = gfar_read(&regs->tctrl);
tempval &= ~TCTRL_VLINS;
gfar_write(&regs->tctrl, tempval);
/* Disable VLAN tag extraction */
tempval = gfar_read(&regs->rctrl);
tempval &= ~RCTRL_VLEX;
/* If parse is no longer required, then disable parser */
if (tempval & RCTRL_REQ_PARSER)
tempval |= RCTRL_PRSDEP_INIT;
else
tempval &= ~RCTRL_PRSDEP_INIT;
gfar_write(&regs->rctrl, tempval);
}
gfar_change_mtu(dev, dev->mtu);
unlock_rx_qs(priv);
local_irq_restore(flags);
}
static int gfar_change_mtu(struct net_device *dev, int new_mtu)
{
int tempsize, tempval;
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->gfargrp[0].regs;
int oldsize = priv->rx_buffer_size;
int frame_size = new_mtu + ETH_HLEN;
if (priv->vlgrp)
frame_size += VLAN_HLEN;
if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
if (netif_msg_drv(priv))
printk(KERN_ERR "%s: Invalid MTU setting\n",
dev->name);
return -EINVAL;
}
if (gfar_uses_fcb(priv))
frame_size += GMAC_FCB_LEN;
frame_size += priv->padding;
tempsize =
(frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
INCREMENTAL_BUFFER_SIZE;
/* Only stop and start the controller if it isn't already
* stopped, and we changed something */
if ((oldsize != tempsize) && (dev->flags & IFF_UP))
stop_gfar(dev);
priv->rx_buffer_size = tempsize;
dev->mtu = new_mtu;
gfar_write(&regs->mrblr, priv->rx_buffer_size);
gfar_write(&regs->maxfrm, priv->rx_buffer_size);
/* If the mtu is larger than the max size for standard
* ethernet frames (ie, a jumbo frame), then set maccfg2
* to allow huge frames, and to check the length */
tempval = gfar_read(&regs->maccfg2);
if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
else
tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
gfar_write(&regs->maccfg2, tempval);
if ((oldsize != tempsize) && (dev->flags & IFF_UP))
startup_gfar(dev);
return 0;
}
/* gfar_reset_task gets scheduled when a packet has not been
* transmitted after a set amount of time.
* For now, assume that clearing out all the structures, and
* starting over will fix the problem.
*/
static void gfar_reset_task(struct work_struct *work)
{
struct gfar_private *priv = container_of(work, struct gfar_private,
reset_task);
struct net_device *dev = priv->ndev;
if (dev->flags & IFF_UP) {
netif_tx_stop_all_queues(dev);
stop_gfar(dev);
startup_gfar(dev);
netif_tx_start_all_queues(dev);
}
netif_tx_schedule_all(dev);
}
static void gfar_timeout(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
dev->stats.tx_errors++;
schedule_work(&priv->reset_task);
}
/* Interrupt Handler for Transmit complete */
static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
{
struct net_device *dev = tx_queue->dev;
struct gfar_private *priv = netdev_priv(dev);
struct gfar_priv_rx_q *rx_queue = NULL;
struct txbd8 *bdp;
struct txbd8 *lbdp = NULL;
struct txbd8 *base = tx_queue->tx_bd_base;
struct sk_buff *skb;
int skb_dirtytx;
int tx_ring_size = tx_queue->tx_ring_size;
int frags = 0;
int i;
int howmany = 0;
u32 lstatus;
rx_queue = priv->rx_queue[tx_queue->qindex];
bdp = tx_queue->dirty_tx;
skb_dirtytx = tx_queue->skb_dirtytx;
while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
unsigned long flags;
frags = skb_shinfo(skb)->nr_frags;
lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
lstatus = lbdp->lstatus;
/* Only clean completed frames */
if ((lstatus & BD_LFLAG(TXBD_READY)) &&
(lstatus & BD_LENGTH_MASK))
break;
dma_unmap_single(&priv->ofdev->dev,
bdp->bufPtr,
bdp->length,
DMA_TO_DEVICE);
bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
bdp = next_txbd(bdp, base, tx_ring_size);
for (i = 0; i < frags; i++) {
dma_unmap_page(&priv->ofdev->dev,
bdp->bufPtr,
bdp->length,
DMA_TO_DEVICE);
bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
bdp = next_txbd(bdp, base, tx_ring_size);
}
/*
* If there's room in the queue (limit it to rx_buffer_size)
* we add this skb back into the pool, if it's the right size
*/
if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
skb_recycle_check(skb, priv->rx_buffer_size +
RXBUF_ALIGNMENT))
__skb_queue_head(&priv->rx_recycle, skb);
else
dev_kfree_skb_any(skb);
tx_queue->tx_skbuff[skb_dirtytx] = NULL;
skb_dirtytx = (skb_dirtytx + 1) &
TX_RING_MOD_MASK(tx_ring_size);
howmany++;
spin_lock_irqsave(&tx_queue->txlock, flags);
tx_queue->num_txbdfree += frags + 1;
spin_unlock_irqrestore(&tx_queue->txlock, flags);
}
/* If we freed a buffer, we can restart transmission, if necessary */
if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
netif_wake_subqueue(dev, tx_queue->qindex);
/* Update dirty indicators */
tx_queue->skb_dirtytx = skb_dirtytx;
tx_queue->dirty_tx = bdp;
return howmany;
}
static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
{
unsigned long flags;
spin_lock_irqsave(&gfargrp->grplock, flags);
if (napi_schedule_prep(&gfargrp->napi)) {
gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
__napi_schedule(&gfargrp->napi);
} else {
/*
* Clear IEVENT, so interrupts aren't called again
* because of the packets that have already arrived.
*/
gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
}
spin_unlock_irqrestore(&gfargrp->grplock, flags);
}
/* Interrupt Handler for Transmit complete */
static irqreturn_t gfar_transmit(int irq, void *grp_id)
{
gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
return IRQ_HANDLED;
}
static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
struct sk_buff *skb)
{
struct net_device *dev = rx_queue->dev;
struct gfar_private *priv = netdev_priv(dev);
dma_addr_t buf;
buf = dma_map_single(&priv->ofdev->dev, skb->data,
priv->rx_buffer_size, DMA_FROM_DEVICE);
gfar_init_rxbdp(rx_queue, bdp, buf);
}
struct sk_buff * gfar_new_skb(struct net_device *dev)
{
unsigned int alignamount;
struct gfar_private *priv = netdev_priv(dev);
struct sk_buff *skb = NULL;
skb = __skb_dequeue(&priv->rx_recycle);
if (!skb)
skb = netdev_alloc_skb(dev,
priv->rx_buffer_size + RXBUF_ALIGNMENT);
if (!skb)
return NULL;
alignamount = RXBUF_ALIGNMENT -
(((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
/* We need the data buffer to be aligned properly. We will reserve
* as many bytes as needed to align the data properly
*/
skb_reserve(skb, alignamount);
return skb;
}
static inline void count_errors(unsigned short status, struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct net_device_stats *stats = &dev->stats;
struct gfar_extra_stats *estats = &priv->extra_stats;
/* If the packet was truncated, none of the other errors
* matter */
if (status & RXBD_TRUNCATED) {
stats->rx_length_errors++;
estats->rx_trunc++;
return;
}
/* Count the errors, if there were any */
if (status & (RXBD_LARGE | RXBD_SHORT)) {
stats->rx_length_errors++;
if (status & RXBD_LARGE)
estats->rx_large++;
else
estats->rx_short++;
}
if (status & RXBD_NONOCTET) {
stats->rx_frame_errors++;
estats->rx_nonoctet++;
}
if (status & RXBD_CRCERR) {
estats->rx_crcerr++;
stats->rx_crc_errors++;
}
if (status & RXBD_OVERRUN) {
estats->rx_overrun++;
stats->rx_crc_errors++;
}
}
irqreturn_t gfar_receive(int irq, void *grp_id)
{
gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
return IRQ_HANDLED;
}
static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
{
/* If valid headers were found, and valid sums
* were verified, then we tell the kernel that no
* checksumming is necessary. Otherwise, it is */
if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
}
/* gfar_process_frame() -- handle one incoming packet if skb
* isn't NULL. */
static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
int amount_pull)
{
struct gfar_private *priv = netdev_priv(dev);
struct rxfcb *fcb = NULL;
int ret;
/* fcb is at the beginning if exists */
fcb = (struct rxfcb *)skb->data;
/* Remove the FCB from the skb */
/* Remove the padded bytes, if there are any */
if (amount_pull) {
skb_record_rx_queue(skb, fcb->rq);
skb_pull(skb, amount_pull);
}
if (priv->rx_csum_enable)
gfar_rx_checksum(skb, fcb);
/* Tell the skb what kind of packet this is */
skb->protocol = eth_type_trans(skb, dev);
/* Send the packet up the stack */
if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
else
ret = netif_receive_skb(skb);
if (NET_RX_DROP == ret)
priv->extra_stats.kernel_dropped++;
return 0;
}
/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
* until the budget/quota has been reached. Returns the number
* of frames handled
*/
int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
{
struct net_device *dev = rx_queue->dev;
struct rxbd8 *bdp, *base;
struct sk_buff *skb;
int pkt_len;
int amount_pull;
int howmany = 0;
struct gfar_private *priv = netdev_priv(dev);
/* Get the first full descriptor */
bdp = rx_queue->cur_rx;
base = rx_queue->rx_bd_base;
amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
priv->padding;
while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
struct sk_buff *newskb;
rmb();
/* Add another skb for the future */
newskb = gfar_new_skb(dev);
skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
priv->rx_buffer_size, DMA_FROM_DEVICE);
/* We drop the frame if we failed to allocate a new buffer */
if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
bdp->status & RXBD_ERR)) {
count_errors(bdp->status, dev);
if (unlikely(!newskb))
newskb = skb;
else if (skb) {
/*
* We need to reset ->data to what it
* was before gfar_new_skb() re-aligned
* it to an RXBUF_ALIGNMENT boundary
* before we put the skb back on the
* recycle list.
*/
skb->data = skb->head + NET_SKB_PAD;
__skb_queue_head(&priv->rx_recycle, skb);
}
} else {
/* Increment the number of packets */
rx_queue->stats.rx_packets++;
howmany++;
if (likely(skb)) {
pkt_len = bdp->length - ETH_FCS_LEN;
/* Remove the FCS from the packet length */
skb_put(skb, pkt_len);
rx_queue->stats.rx_bytes += pkt_len;
skb_record_rx_queue(skb, rx_queue->qindex);
gfar_process_frame(dev, skb, amount_pull);
} else {
if (netif_msg_rx_err(priv))
printk(KERN_WARNING
"%s: Missing skb!\n", dev->name);
rx_queue->stats.rx_dropped++;
priv->extra_stats.rx_skbmissing++;
}
}
rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
/* Setup the new bdp */
gfar_new_rxbdp(rx_queue, bdp, newskb);
/* Update to the next pointer */
bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
/* update to point at the next skb */
rx_queue->skb_currx =
(rx_queue->skb_currx + 1) &
RX_RING_MOD_MASK(rx_queue->rx_ring_size);
}
/* Update the current rxbd pointer to be the next one */
rx_queue->cur_rx = bdp;
return howmany;
}
static int gfar_poll(struct napi_struct *napi, int budget)
{
struct gfar_priv_grp *gfargrp = container_of(napi,
struct gfar_priv_grp, napi);
struct gfar_private *priv = gfargrp->priv;
struct gfar __iomem *regs = gfargrp->regs;
struct gfar_priv_tx_q *tx_queue = NULL;
struct gfar_priv_rx_q *rx_queue = NULL;
int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
int tx_cleaned = 0, i, left_over_budget = budget;
unsigned long serviced_queues = 0;
int num_queues = 0;
num_queues = gfargrp->num_rx_queues;
budget_per_queue = budget/num_queues;
/* Clear IEVENT, so interrupts aren't called again
* because of the packets that have already arrived */
gfar_write(&regs->ievent, IEVENT_RTX_MASK);
while (num_queues && left_over_budget) {
budget_per_queue = left_over_budget/num_queues;
left_over_budget = 0;
for_each_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
if (test_bit(i, &serviced_queues))
continue;
rx_queue = priv->rx_queue[i];
tx_queue = priv->tx_queue[rx_queue->qindex];
tx_cleaned += gfar_clean_tx_ring(tx_queue);
rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
budget_per_queue);
rx_cleaned += rx_cleaned_per_queue;
if(rx_cleaned_per_queue < budget_per_queue) {
left_over_budget = left_over_budget +
(budget_per_queue - rx_cleaned_per_queue);
set_bit(i, &serviced_queues);
num_queues--;
}
}
}
if (tx_cleaned)
return budget;
if (rx_cleaned < budget) {
napi_complete(napi);
/* Clear the halt bit in RSTAT */
gfar_write(&regs->rstat, gfargrp->rstat);
gfar_write(&regs->imask, IMASK_DEFAULT);
/* If we are coalescing interrupts, update the timer */
/* Otherwise, clear it */
gfar_configure_coalescing(priv,
gfargrp->rx_bit_map, gfargrp->tx_bit_map);
}
return rx_cleaned;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
* Polling 'interrupt' - used by things like netconsole to send skbs
* without having to re-enable interrupts. It's not called while
* the interrupt routine is executing.
*/
static void gfar_netpoll(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
int i = 0;
/* If the device has multiple interrupts, run tx/rx */
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
for (i = 0; i < priv->num_grps; i++) {
disable_irq(priv->gfargrp[i].interruptTransmit);
disable_irq(priv->gfargrp[i].interruptReceive);
disable_irq(priv->gfargrp[i].interruptError);
gfar_interrupt(priv->gfargrp[i].interruptTransmit,
&priv->gfargrp[i]);
enable_irq(priv->gfargrp[i].interruptError);
enable_irq(priv->gfargrp[i].interruptReceive);
enable_irq(priv->gfargrp[i].interruptTransmit);
}
} else {
for (i = 0; i < priv->num_grps; i++) {
disable_irq(priv->gfargrp[i].interruptTransmit);
gfar_interrupt(priv->gfargrp[i].interruptTransmit,
&priv->gfargrp[i]);
enable_irq(priv->gfargrp[i].interruptTransmit);
}
}
}
#endif
/* The interrupt handler for devices with one interrupt */
static irqreturn_t gfar_interrupt(int irq, void *grp_id)
{
struct gfar_priv_grp *gfargrp = grp_id;
/* Save ievent for future reference */
u32 events = gfar_read(&gfargrp->regs->ievent);
/* Check for reception */
if (events & IEVENT_RX_MASK)
gfar_receive(irq, grp_id);
/* Check for transmit completion */
if (events & IEVENT_TX_MASK)
gfar_transmit(irq, grp_id);
/* Check for errors */
if (events & IEVENT_ERR_MASK)
gfar_error(irq, grp_id);
return IRQ_HANDLED;
}
/* Called every time the controller might need to be made
* aware of new link state. The PHY code conveys this
* information through variables in the phydev structure, and this
* function converts those variables into the appropriate
* register values, and can bring down the device if needed.
*/
static void adjust_link(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->gfargrp[0].regs;
unsigned long flags;
struct phy_device *phydev = priv->phydev;
int new_state = 0;
local_irq_save(flags);
lock_tx_qs(priv);
if (phydev->link) {
u32 tempval = gfar_read(&regs->maccfg2);
u32 ecntrl = gfar_read(&regs->ecntrl);
/* Now we make sure that we can be in full duplex mode.
* If not, we operate in half-duplex mode. */
if (phydev->duplex != priv->oldduplex) {
new_state = 1;
if (!(phydev->duplex))
tempval &= ~(MACCFG2_FULL_DUPLEX);
else
tempval |= MACCFG2_FULL_DUPLEX;
priv->oldduplex = phydev->duplex;
}
if (phydev->speed != priv->oldspeed) {
new_state = 1;
switch (phydev->speed) {
case 1000:
tempval =
((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
ecntrl &= ~(ECNTRL_R100);
break;
case 100:
case 10:
tempval =
((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
/* Reduced mode distinguishes
* between 10 and 100 */
if (phydev->speed == SPEED_100)
ecntrl |= ECNTRL_R100;
else
ecntrl &= ~(ECNTRL_R100);
break;
default:
if (netif_msg_link(priv))
printk(KERN_WARNING
"%s: Ack! Speed (%d) is not 10/100/1000!\n",
dev->name, phydev->speed);
break;
}
priv->oldspeed = phydev->speed;
}
gfar_write(&regs->maccfg2, tempval);
gfar_write(&regs->ecntrl, ecntrl);
if (!priv->oldlink) {
new_state = 1;
priv->oldlink = 1;
}
} else if (priv->oldlink) {
new_state = 1;
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
}
if (new_state && netif_msg_link(priv))
phy_print_status(phydev);
unlock_tx_qs(priv);
local_irq_restore(flags);
}
/* Update the hash table based on the current list of multicast
* addresses we subscribe to. Also, change the promiscuity of
* the device based on the flags (this function is called
* whenever dev->flags is changed */
static void gfar_set_multi(struct net_device *dev)
{
struct dev_mc_list *mc_ptr;
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 tempval;
if (dev->flags & IFF_PROMISC) {
/* Set RCTRL to PROM */
tempval = gfar_read(&regs->rctrl);
tempval |= RCTRL_PROM;
gfar_write(&regs->rctrl, tempval);
} else {
/* Set RCTRL to not PROM */
tempval = gfar_read(&regs->rctrl);
tempval &= ~(RCTRL_PROM);
gfar_write(&regs->rctrl, tempval);
}
if (dev->flags & IFF_ALLMULTI) {
/* Set the hash to rx all multicast frames */
gfar_write(&regs->igaddr0, 0xffffffff);
gfar_write(&regs->igaddr1, 0xffffffff);
gfar_write(&regs->igaddr2, 0xffffffff);
gfar_write(&regs->igaddr3, 0xffffffff);
gfar_write(&regs->igaddr4, 0xffffffff);
gfar_write(&regs->igaddr5, 0xffffffff);
gfar_write(&regs->igaddr6, 0xffffffff);
gfar_write(&regs->igaddr7, 0xffffffff);
gfar_write(&regs->gaddr0, 0xffffffff);
gfar_write(&regs->gaddr1, 0xffffffff);
gfar_write(&regs->gaddr2, 0xffffffff);
gfar_write(&regs->gaddr3, 0xffffffff);
gfar_write(&regs->gaddr4, 0xffffffff);
gfar_write(&regs->gaddr5, 0xffffffff);
gfar_write(&regs->gaddr6, 0xffffffff);
gfar_write(&regs->gaddr7, 0xffffffff);
} else {
int em_num;
int idx;
/* zero out the hash */
gfar_write(&regs->igaddr0, 0x0);
gfar_write(&regs->igaddr1, 0x0);
gfar_write(&regs->igaddr2, 0x0);
gfar_write(&regs->igaddr3, 0x0);
gfar_write(&regs->igaddr4, 0x0);
gfar_write(&regs->igaddr5, 0x0);
gfar_write(&regs->igaddr6, 0x0);
gfar_write(&regs->igaddr7, 0x0);
gfar_write(&regs->gaddr0, 0x0);
gfar_write(&regs->gaddr1, 0x0);
gfar_write(&regs->gaddr2, 0x0);
gfar_write(&regs->gaddr3, 0x0);
gfar_write(&regs->gaddr4, 0x0);
gfar_write(&regs->gaddr5, 0x0);
gfar_write(&regs->gaddr6, 0x0);
gfar_write(&regs->gaddr7, 0x0);
/* If we have extended hash tables, we need to
* clear the exact match registers to prepare for
* setting them */
if (priv->extended_hash) {
em_num = GFAR_EM_NUM + 1;
gfar_clear_exact_match(dev);
idx = 1;
} else {
idx = 0;
em_num = 0;
}
if (dev->mc_count == 0)
return;
/* Parse the list, and set the appropriate bits */
for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
if (idx < em_num) {
gfar_set_mac_for_addr(dev, idx,
mc_ptr->dmi_addr);
idx++;
} else
gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
}
}
return;
}
/* Clears each of the exact match registers to zero, so they
* don't interfere with normal reception */
static void gfar_clear_exact_match(struct net_device *dev)
{
int idx;
u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
}
/* Set the appropriate hash bit for the given addr */
/* The algorithm works like so:
* 1) Take the Destination Address (ie the multicast address), and
* do a CRC on it (little endian), and reverse the bits of the
* result.
* 2) Use the 8 most significant bits as a hash into a 256-entry
* table. The table is controlled through 8 32-bit registers:
* gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
* gaddr7. This means that the 3 most significant bits in the
* hash index which gaddr register to use, and the 5 other bits
* indicate which bit (assuming an IBM numbering scheme, which
* for PowerPC (tm) is usually the case) in the register holds
* the entry. */
static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
{
u32 tempval;
struct gfar_private *priv = netdev_priv(dev);
u32 result = ether_crc(MAC_ADDR_LEN, addr);
int width = priv->hash_width;
u8 whichbit = (result >> (32 - width)) & 0x1f;
u8 whichreg = result >> (32 - width + 5);
u32 value = (1 << (31-whichbit));
tempval = gfar_read(priv->hash_regs[whichreg]);
tempval |= value;
gfar_write(priv->hash_regs[whichreg], tempval);
return;
}
/* There are multiple MAC Address register pairs on some controllers
* This function sets the numth pair to a given address
*/
static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->gfargrp[0].regs;
int idx;
char tmpbuf[MAC_ADDR_LEN];
u32 tempval;
u32 __iomem *macptr = &regs->macstnaddr1;
macptr += num*2;
/* Now copy it into the mac registers backwards, cuz */
/* little endian is silly */
for (idx = 0; idx < MAC_ADDR_LEN; idx++)
tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
gfar_write(macptr, *((u32 *) (tmpbuf)));
tempval = *((u32 *) (tmpbuf + 4));
gfar_write(macptr+1, tempval);
}
/* GFAR error interrupt handler */
static irqreturn_t gfar_error(int irq, void *grp_id)
{
struct gfar_priv_grp *gfargrp = grp_id;
struct gfar __iomem *regs = gfargrp->regs;
struct gfar_private *priv= gfargrp->priv;
struct net_device *dev = priv->ndev;
/* Save ievent for future reference */
u32 events = gfar_read(&regs->ievent);
/* Clear IEVENT */
gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
/* Magic Packet is not an error. */
if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
(events & IEVENT_MAG))
events &= ~IEVENT_MAG;
/* Hmm... */
if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
dev->name, events, gfar_read(&regs->imask));
/* Update the error counters */
if (events & IEVENT_TXE) {
dev->stats.tx_errors++;
if (events & IEVENT_LC)
dev->stats.tx_window_errors++;
if (events & IEVENT_CRL)
dev->stats.tx_aborted_errors++;
if (events & IEVENT_XFUN) {
unsigned long flags;
if (netif_msg_tx_err(priv))
printk(KERN_DEBUG "%s: TX FIFO underrun, "
"packet dropped.\n", dev->name);
dev->stats.tx_dropped++;
priv->extra_stats.tx_underrun++;
local_irq_save(flags);
lock_tx_qs(priv);
/* Reactivate the Tx Queues */
gfar_write(&regs->tstat, gfargrp->tstat);
unlock_tx_qs(priv);
local_irq_restore(flags);
}
if (netif_msg_tx_err(priv))
printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
}
if (events & IEVENT_BSY) {
dev->stats.rx_errors++;
priv->extra_stats.rx_bsy++;
gfar_receive(irq, grp_id);
if (netif_msg_rx_err(priv))
printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
dev->name, gfar_read(&regs->rstat));
}
if (events & IEVENT_BABR) {
dev->stats.rx_errors++;
priv->extra_stats.rx_babr++;
if (netif_msg_rx_err(priv))
printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
}
if (events & IEVENT_EBERR) {
priv->extra_stats.eberr++;
if (netif_msg_rx_err(priv))
printk(KERN_DEBUG "%s: bus error\n", dev->name);
}
if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
printk(KERN_DEBUG "%s: control frame\n", dev->name);
if (events & IEVENT_BABT) {
priv->extra_stats.tx_babt++;
if (netif_msg_tx_err(priv))
printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
}
return IRQ_HANDLED;
}
static struct of_device_id gfar_match[] =
{
{
.type = "network",
.compatible = "gianfar",
},
{
.compatible = "fsl,etsec2",
},
{},
};
MODULE_DEVICE_TABLE(of, gfar_match);
/* Structure for a device driver */
static struct of_platform_driver gfar_driver = {
.name = "fsl-gianfar",
.match_table = gfar_match,
.probe = gfar_probe,
.remove = gfar_remove,
.suspend = gfar_legacy_suspend,
.resume = gfar_legacy_resume,
.driver.pm = GFAR_PM_OPS,
};
static int __init gfar_init(void)
{
return of_register_platform_driver(&gfar_driver);
}
static void __exit gfar_exit(void)
{
of_unregister_platform_driver(&gfar_driver);
}
module_init(gfar_init);
module_exit(gfar_exit);