2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-22 12:33:59 +08:00
linux-next/fs/namespace.c
Linus Torvalds f9b4240b07 fixes-v5.11
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCX9daOgAKCRCRxhvAZXjc
 ohPkAQChXUB2BAjtIzXlCkZoDBbzHHblm5DZ37oy/4xYFmAcEwEA5sw6dQqyGHnF
 GEP9def51HvXLpBV2BzNUGggo1SoGgQ=
 =w/cO
 -----END PGP SIGNATURE-----

Merge tag 'fixes-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux

Pull misc fixes from Christian Brauner:
 "This contains several fixes which felt worth being combined into a
  single branch:

   - Use put_nsproxy() instead of open-coding it switch_task_namespaces()

   - Kirill's work to unify lifecycle management for all namespaces. The
     lifetime counters are used identically for all namespaces types.
     Namespaces may of course have additional unrelated counters and
     these are not altered. This work allows us to unify the type of the
     counters and reduces maintenance cost by moving the counter in one
     place and indicating that basic lifetime management is identical
     for all namespaces.

   - Peilin's fix adding three byte padding to Dmitry's
     PTRACE_GET_SYSCALL_INFO uapi struct to prevent an info leak.

   - Two smal patches to convert from the /* fall through */ comment
     annotation to the fallthrough keyword annotation which I had taken
     into my branch and into -next before df561f6688 ("treewide: Use
     fallthrough pseudo-keyword") made it upstream which fixed this
     tree-wide.

     Since I didn't want to invalidate all testing for other commits I
     didn't rebase and kept them"

* tag 'fixes-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
  nsproxy: use put_nsproxy() in switch_task_namespaces()
  sys: Convert to the new fallthrough notation
  signal: Convert to the new fallthrough notation
  time: Use generic ns_common::count
  cgroup: Use generic ns_common::count
  mnt: Use generic ns_common::count
  user: Use generic ns_common::count
  pid: Use generic ns_common::count
  ipc: Use generic ns_common::count
  uts: Use generic ns_common::count
  net: Use generic ns_common::count
  ns: Add a common refcount into ns_common
  ptrace: Prevent kernel-infoleak in ptrace_get_syscall_info()
2020-12-14 16:40:27 -08:00

4108 lines
98 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/fs/namespace.c
*
* (C) Copyright Al Viro 2000, 2001
*
* Based on code from fs/super.c, copyright Linus Torvalds and others.
* Heavily rewritten.
*/
#include <linux/syscalls.h>
#include <linux/export.h>
#include <linux/capability.h>
#include <linux/mnt_namespace.h>
#include <linux/user_namespace.h>
#include <linux/namei.h>
#include <linux/security.h>
#include <linux/cred.h>
#include <linux/idr.h>
#include <linux/init.h> /* init_rootfs */
#include <linux/fs_struct.h> /* get_fs_root et.al. */
#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
#include <linux/file.h>
#include <linux/uaccess.h>
#include <linux/proc_ns.h>
#include <linux/magic.h>
#include <linux/memblock.h>
#include <linux/task_work.h>
#include <linux/sched/task.h>
#include <uapi/linux/mount.h>
#include <linux/fs_context.h>
#include <linux/shmem_fs.h>
#include "pnode.h"
#include "internal.h"
/* Maximum number of mounts in a mount namespace */
unsigned int sysctl_mount_max __read_mostly = 100000;
static unsigned int m_hash_mask __read_mostly;
static unsigned int m_hash_shift __read_mostly;
static unsigned int mp_hash_mask __read_mostly;
static unsigned int mp_hash_shift __read_mostly;
static __initdata unsigned long mhash_entries;
static int __init set_mhash_entries(char *str)
{
if (!str)
return 0;
mhash_entries = simple_strtoul(str, &str, 0);
return 1;
}
__setup("mhash_entries=", set_mhash_entries);
static __initdata unsigned long mphash_entries;
static int __init set_mphash_entries(char *str)
{
if (!str)
return 0;
mphash_entries = simple_strtoul(str, &str, 0);
return 1;
}
__setup("mphash_entries=", set_mphash_entries);
static u64 event;
static DEFINE_IDA(mnt_id_ida);
static DEFINE_IDA(mnt_group_ida);
static struct hlist_head *mount_hashtable __read_mostly;
static struct hlist_head *mountpoint_hashtable __read_mostly;
static struct kmem_cache *mnt_cache __read_mostly;
static DECLARE_RWSEM(namespace_sem);
static HLIST_HEAD(unmounted); /* protected by namespace_sem */
static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
/* /sys/fs */
struct kobject *fs_kobj;
EXPORT_SYMBOL_GPL(fs_kobj);
/*
* vfsmount lock may be taken for read to prevent changes to the
* vfsmount hash, ie. during mountpoint lookups or walking back
* up the tree.
*
* It should be taken for write in all cases where the vfsmount
* tree or hash is modified or when a vfsmount structure is modified.
*/
__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
{
unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
tmp = tmp + (tmp >> m_hash_shift);
return &mount_hashtable[tmp & m_hash_mask];
}
static inline struct hlist_head *mp_hash(struct dentry *dentry)
{
unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
tmp = tmp + (tmp >> mp_hash_shift);
return &mountpoint_hashtable[tmp & mp_hash_mask];
}
static int mnt_alloc_id(struct mount *mnt)
{
int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
if (res < 0)
return res;
mnt->mnt_id = res;
return 0;
}
static void mnt_free_id(struct mount *mnt)
{
ida_free(&mnt_id_ida, mnt->mnt_id);
}
/*
* Allocate a new peer group ID
*/
static int mnt_alloc_group_id(struct mount *mnt)
{
int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
if (res < 0)
return res;
mnt->mnt_group_id = res;
return 0;
}
/*
* Release a peer group ID
*/
void mnt_release_group_id(struct mount *mnt)
{
ida_free(&mnt_group_ida, mnt->mnt_group_id);
mnt->mnt_group_id = 0;
}
/*
* vfsmount lock must be held for read
*/
static inline void mnt_add_count(struct mount *mnt, int n)
{
#ifdef CONFIG_SMP
this_cpu_add(mnt->mnt_pcp->mnt_count, n);
#else
preempt_disable();
mnt->mnt_count += n;
preempt_enable();
#endif
}
/*
* vfsmount lock must be held for write
*/
unsigned int mnt_get_count(struct mount *mnt)
{
#ifdef CONFIG_SMP
unsigned int count = 0;
int cpu;
for_each_possible_cpu(cpu) {
count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
}
return count;
#else
return mnt->mnt_count;
#endif
}
static struct mount *alloc_vfsmnt(const char *name)
{
struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
if (mnt) {
int err;
err = mnt_alloc_id(mnt);
if (err)
goto out_free_cache;
if (name) {
mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
if (!mnt->mnt_devname)
goto out_free_id;
}
#ifdef CONFIG_SMP
mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
if (!mnt->mnt_pcp)
goto out_free_devname;
this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
#else
mnt->mnt_count = 1;
mnt->mnt_writers = 0;
#endif
INIT_HLIST_NODE(&mnt->mnt_hash);
INIT_LIST_HEAD(&mnt->mnt_child);
INIT_LIST_HEAD(&mnt->mnt_mounts);
INIT_LIST_HEAD(&mnt->mnt_list);
INIT_LIST_HEAD(&mnt->mnt_expire);
INIT_LIST_HEAD(&mnt->mnt_share);
INIT_LIST_HEAD(&mnt->mnt_slave_list);
INIT_LIST_HEAD(&mnt->mnt_slave);
INIT_HLIST_NODE(&mnt->mnt_mp_list);
INIT_LIST_HEAD(&mnt->mnt_umounting);
INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
}
return mnt;
#ifdef CONFIG_SMP
out_free_devname:
kfree_const(mnt->mnt_devname);
#endif
out_free_id:
mnt_free_id(mnt);
out_free_cache:
kmem_cache_free(mnt_cache, mnt);
return NULL;
}
/*
* Most r/o checks on a fs are for operations that take
* discrete amounts of time, like a write() or unlink().
* We must keep track of when those operations start
* (for permission checks) and when they end, so that
* we can determine when writes are able to occur to
* a filesystem.
*/
/*
* __mnt_is_readonly: check whether a mount is read-only
* @mnt: the mount to check for its write status
*
* This shouldn't be used directly ouside of the VFS.
* It does not guarantee that the filesystem will stay
* r/w, just that it is right *now*. This can not and
* should not be used in place of IS_RDONLY(inode).
* mnt_want/drop_write() will _keep_ the filesystem
* r/w.
*/
bool __mnt_is_readonly(struct vfsmount *mnt)
{
return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
}
EXPORT_SYMBOL_GPL(__mnt_is_readonly);
static inline void mnt_inc_writers(struct mount *mnt)
{
#ifdef CONFIG_SMP
this_cpu_inc(mnt->mnt_pcp->mnt_writers);
#else
mnt->mnt_writers++;
#endif
}
static inline void mnt_dec_writers(struct mount *mnt)
{
#ifdef CONFIG_SMP
this_cpu_dec(mnt->mnt_pcp->mnt_writers);
#else
mnt->mnt_writers--;
#endif
}
static unsigned int mnt_get_writers(struct mount *mnt)
{
#ifdef CONFIG_SMP
unsigned int count = 0;
int cpu;
for_each_possible_cpu(cpu) {
count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
}
return count;
#else
return mnt->mnt_writers;
#endif
}
static int mnt_is_readonly(struct vfsmount *mnt)
{
if (mnt->mnt_sb->s_readonly_remount)
return 1;
/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
smp_rmb();
return __mnt_is_readonly(mnt);
}
/*
* Most r/o & frozen checks on a fs are for operations that take discrete
* amounts of time, like a write() or unlink(). We must keep track of when
* those operations start (for permission checks) and when they end, so that we
* can determine when writes are able to occur to a filesystem.
*/
/**
* __mnt_want_write - get write access to a mount without freeze protection
* @m: the mount on which to take a write
*
* This tells the low-level filesystem that a write is about to be performed to
* it, and makes sure that writes are allowed (mnt it read-write) before
* returning success. This operation does not protect against filesystem being
* frozen. When the write operation is finished, __mnt_drop_write() must be
* called. This is effectively a refcount.
*/
int __mnt_want_write(struct vfsmount *m)
{
struct mount *mnt = real_mount(m);
int ret = 0;
preempt_disable();
mnt_inc_writers(mnt);
/*
* The store to mnt_inc_writers must be visible before we pass
* MNT_WRITE_HOLD loop below, so that the slowpath can see our
* incremented count after it has set MNT_WRITE_HOLD.
*/
smp_mb();
while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
cpu_relax();
/*
* After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
* be set to match its requirements. So we must not load that until
* MNT_WRITE_HOLD is cleared.
*/
smp_rmb();
if (mnt_is_readonly(m)) {
mnt_dec_writers(mnt);
ret = -EROFS;
}
preempt_enable();
return ret;
}
/**
* mnt_want_write - get write access to a mount
* @m: the mount on which to take a write
*
* This tells the low-level filesystem that a write is about to be performed to
* it, and makes sure that writes are allowed (mount is read-write, filesystem
* is not frozen) before returning success. When the write operation is
* finished, mnt_drop_write() must be called. This is effectively a refcount.
*/
int mnt_want_write(struct vfsmount *m)
{
int ret;
sb_start_write(m->mnt_sb);
ret = __mnt_want_write(m);
if (ret)
sb_end_write(m->mnt_sb);
return ret;
}
EXPORT_SYMBOL_GPL(mnt_want_write);
/**
* mnt_clone_write - get write access to a mount
* @mnt: the mount on which to take a write
*
* This is effectively like mnt_want_write, except
* it must only be used to take an extra write reference
* on a mountpoint that we already know has a write reference
* on it. This allows some optimisation.
*
* After finished, mnt_drop_write must be called as usual to
* drop the reference.
*/
int mnt_clone_write(struct vfsmount *mnt)
{
/* superblock may be r/o */
if (__mnt_is_readonly(mnt))
return -EROFS;
preempt_disable();
mnt_inc_writers(real_mount(mnt));
preempt_enable();
return 0;
}
EXPORT_SYMBOL_GPL(mnt_clone_write);
/**
* __mnt_want_write_file - get write access to a file's mount
* @file: the file who's mount on which to take a write
*
* This is like __mnt_want_write, but it takes a file and can
* do some optimisations if the file is open for write already
*/
int __mnt_want_write_file(struct file *file)
{
if (!(file->f_mode & FMODE_WRITER))
return __mnt_want_write(file->f_path.mnt);
else
return mnt_clone_write(file->f_path.mnt);
}
/**
* mnt_want_write_file - get write access to a file's mount
* @file: the file who's mount on which to take a write
*
* This is like mnt_want_write, but it takes a file and can
* do some optimisations if the file is open for write already
*/
int mnt_want_write_file(struct file *file)
{
int ret;
sb_start_write(file_inode(file)->i_sb);
ret = __mnt_want_write_file(file);
if (ret)
sb_end_write(file_inode(file)->i_sb);
return ret;
}
EXPORT_SYMBOL_GPL(mnt_want_write_file);
/**
* __mnt_drop_write - give up write access to a mount
* @mnt: the mount on which to give up write access
*
* Tells the low-level filesystem that we are done
* performing writes to it. Must be matched with
* __mnt_want_write() call above.
*/
void __mnt_drop_write(struct vfsmount *mnt)
{
preempt_disable();
mnt_dec_writers(real_mount(mnt));
preempt_enable();
}
/**
* mnt_drop_write - give up write access to a mount
* @mnt: the mount on which to give up write access
*
* Tells the low-level filesystem that we are done performing writes to it and
* also allows filesystem to be frozen again. Must be matched with
* mnt_want_write() call above.
*/
void mnt_drop_write(struct vfsmount *mnt)
{
__mnt_drop_write(mnt);
sb_end_write(mnt->mnt_sb);
}
EXPORT_SYMBOL_GPL(mnt_drop_write);
void __mnt_drop_write_file(struct file *file)
{
__mnt_drop_write(file->f_path.mnt);
}
void mnt_drop_write_file(struct file *file)
{
__mnt_drop_write_file(file);
sb_end_write(file_inode(file)->i_sb);
}
EXPORT_SYMBOL(mnt_drop_write_file);
static int mnt_make_readonly(struct mount *mnt)
{
int ret = 0;
lock_mount_hash();
mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
/*
* After storing MNT_WRITE_HOLD, we'll read the counters. This store
* should be visible before we do.
*/
smp_mb();
/*
* With writers on hold, if this value is zero, then there are
* definitely no active writers (although held writers may subsequently
* increment the count, they'll have to wait, and decrement it after
* seeing MNT_READONLY).
*
* It is OK to have counter incremented on one CPU and decremented on
* another: the sum will add up correctly. The danger would be when we
* sum up each counter, if we read a counter before it is incremented,
* but then read another CPU's count which it has been subsequently
* decremented from -- we would see more decrements than we should.
* MNT_WRITE_HOLD protects against this scenario, because
* mnt_want_write first increments count, then smp_mb, then spins on
* MNT_WRITE_HOLD, so it can't be decremented by another CPU while
* we're counting up here.
*/
if (mnt_get_writers(mnt) > 0)
ret = -EBUSY;
else
mnt->mnt.mnt_flags |= MNT_READONLY;
/*
* MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
* that become unheld will see MNT_READONLY.
*/
smp_wmb();
mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
unlock_mount_hash();
return ret;
}
static int __mnt_unmake_readonly(struct mount *mnt)
{
lock_mount_hash();
mnt->mnt.mnt_flags &= ~MNT_READONLY;
unlock_mount_hash();
return 0;
}
int sb_prepare_remount_readonly(struct super_block *sb)
{
struct mount *mnt;
int err = 0;
/* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
if (atomic_long_read(&sb->s_remove_count))
return -EBUSY;
lock_mount_hash();
list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
smp_mb();
if (mnt_get_writers(mnt) > 0) {
err = -EBUSY;
break;
}
}
}
if (!err && atomic_long_read(&sb->s_remove_count))
err = -EBUSY;
if (!err) {
sb->s_readonly_remount = 1;
smp_wmb();
}
list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
}
unlock_mount_hash();
return err;
}
static void free_vfsmnt(struct mount *mnt)
{
kfree_const(mnt->mnt_devname);
#ifdef CONFIG_SMP
free_percpu(mnt->mnt_pcp);
#endif
kmem_cache_free(mnt_cache, mnt);
}
static void delayed_free_vfsmnt(struct rcu_head *head)
{
free_vfsmnt(container_of(head, struct mount, mnt_rcu));
}
/* call under rcu_read_lock */
int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
{
struct mount *mnt;
if (read_seqretry(&mount_lock, seq))
return 1;
if (bastard == NULL)
return 0;
mnt = real_mount(bastard);
mnt_add_count(mnt, 1);
smp_mb(); // see mntput_no_expire()
if (likely(!read_seqretry(&mount_lock, seq)))
return 0;
if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
mnt_add_count(mnt, -1);
return 1;
}
lock_mount_hash();
if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
mnt_add_count(mnt, -1);
unlock_mount_hash();
return 1;
}
unlock_mount_hash();
/* caller will mntput() */
return -1;
}
/* call under rcu_read_lock */
bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
{
int res = __legitimize_mnt(bastard, seq);
if (likely(!res))
return true;
if (unlikely(res < 0)) {
rcu_read_unlock();
mntput(bastard);
rcu_read_lock();
}
return false;
}
/*
* find the first mount at @dentry on vfsmount @mnt.
* call under rcu_read_lock()
*/
struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
{
struct hlist_head *head = m_hash(mnt, dentry);
struct mount *p;
hlist_for_each_entry_rcu(p, head, mnt_hash)
if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
return p;
return NULL;
}
/*
* lookup_mnt - Return the first child mount mounted at path
*
* "First" means first mounted chronologically. If you create the
* following mounts:
*
* mount /dev/sda1 /mnt
* mount /dev/sda2 /mnt
* mount /dev/sda3 /mnt
*
* Then lookup_mnt() on the base /mnt dentry in the root mount will
* return successively the root dentry and vfsmount of /dev/sda1, then
* /dev/sda2, then /dev/sda3, then NULL.
*
* lookup_mnt takes a reference to the found vfsmount.
*/
struct vfsmount *lookup_mnt(const struct path *path)
{
struct mount *child_mnt;
struct vfsmount *m;
unsigned seq;
rcu_read_lock();
do {
seq = read_seqbegin(&mount_lock);
child_mnt = __lookup_mnt(path->mnt, path->dentry);
m = child_mnt ? &child_mnt->mnt : NULL;
} while (!legitimize_mnt(m, seq));
rcu_read_unlock();
return m;
}
static inline void lock_ns_list(struct mnt_namespace *ns)
{
spin_lock(&ns->ns_lock);
}
static inline void unlock_ns_list(struct mnt_namespace *ns)
{
spin_unlock(&ns->ns_lock);
}
static inline bool mnt_is_cursor(struct mount *mnt)
{
return mnt->mnt.mnt_flags & MNT_CURSOR;
}
/*
* __is_local_mountpoint - Test to see if dentry is a mountpoint in the
* current mount namespace.
*
* The common case is dentries are not mountpoints at all and that
* test is handled inline. For the slow case when we are actually
* dealing with a mountpoint of some kind, walk through all of the
* mounts in the current mount namespace and test to see if the dentry
* is a mountpoint.
*
* The mount_hashtable is not usable in the context because we
* need to identify all mounts that may be in the current mount
* namespace not just a mount that happens to have some specified
* parent mount.
*/
bool __is_local_mountpoint(struct dentry *dentry)
{
struct mnt_namespace *ns = current->nsproxy->mnt_ns;
struct mount *mnt;
bool is_covered = false;
down_read(&namespace_sem);
lock_ns_list(ns);
list_for_each_entry(mnt, &ns->list, mnt_list) {
if (mnt_is_cursor(mnt))
continue;
is_covered = (mnt->mnt_mountpoint == dentry);
if (is_covered)
break;
}
unlock_ns_list(ns);
up_read(&namespace_sem);
return is_covered;
}
static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
{
struct hlist_head *chain = mp_hash(dentry);
struct mountpoint *mp;
hlist_for_each_entry(mp, chain, m_hash) {
if (mp->m_dentry == dentry) {
mp->m_count++;
return mp;
}
}
return NULL;
}
static struct mountpoint *get_mountpoint(struct dentry *dentry)
{
struct mountpoint *mp, *new = NULL;
int ret;
if (d_mountpoint(dentry)) {
/* might be worth a WARN_ON() */
if (d_unlinked(dentry))
return ERR_PTR(-ENOENT);
mountpoint:
read_seqlock_excl(&mount_lock);
mp = lookup_mountpoint(dentry);
read_sequnlock_excl(&mount_lock);
if (mp)
goto done;
}
if (!new)
new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
if (!new)
return ERR_PTR(-ENOMEM);
/* Exactly one processes may set d_mounted */
ret = d_set_mounted(dentry);
/* Someone else set d_mounted? */
if (ret == -EBUSY)
goto mountpoint;
/* The dentry is not available as a mountpoint? */
mp = ERR_PTR(ret);
if (ret)
goto done;
/* Add the new mountpoint to the hash table */
read_seqlock_excl(&mount_lock);
new->m_dentry = dget(dentry);
new->m_count = 1;
hlist_add_head(&new->m_hash, mp_hash(dentry));
INIT_HLIST_HEAD(&new->m_list);
read_sequnlock_excl(&mount_lock);
mp = new;
new = NULL;
done:
kfree(new);
return mp;
}
/*
* vfsmount lock must be held. Additionally, the caller is responsible
* for serializing calls for given disposal list.
*/
static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
{
if (!--mp->m_count) {
struct dentry *dentry = mp->m_dentry;
BUG_ON(!hlist_empty(&mp->m_list));
spin_lock(&dentry->d_lock);
dentry->d_flags &= ~DCACHE_MOUNTED;
spin_unlock(&dentry->d_lock);
dput_to_list(dentry, list);
hlist_del(&mp->m_hash);
kfree(mp);
}
}
/* called with namespace_lock and vfsmount lock */
static void put_mountpoint(struct mountpoint *mp)
{
__put_mountpoint(mp, &ex_mountpoints);
}
static inline int check_mnt(struct mount *mnt)
{
return mnt->mnt_ns == current->nsproxy->mnt_ns;
}
/*
* vfsmount lock must be held for write
*/
static void touch_mnt_namespace(struct mnt_namespace *ns)
{
if (ns) {
ns->event = ++event;
wake_up_interruptible(&ns->poll);
}
}
/*
* vfsmount lock must be held for write
*/
static void __touch_mnt_namespace(struct mnt_namespace *ns)
{
if (ns && ns->event != event) {
ns->event = event;
wake_up_interruptible(&ns->poll);
}
}
/*
* vfsmount lock must be held for write
*/
static struct mountpoint *unhash_mnt(struct mount *mnt)
{
struct mountpoint *mp;
mnt->mnt_parent = mnt;
mnt->mnt_mountpoint = mnt->mnt.mnt_root;
list_del_init(&mnt->mnt_child);
hlist_del_init_rcu(&mnt->mnt_hash);
hlist_del_init(&mnt->mnt_mp_list);
mp = mnt->mnt_mp;
mnt->mnt_mp = NULL;
return mp;
}
/*
* vfsmount lock must be held for write
*/
static void umount_mnt(struct mount *mnt)
{
put_mountpoint(unhash_mnt(mnt));
}
/*
* vfsmount lock must be held for write
*/
void mnt_set_mountpoint(struct mount *mnt,
struct mountpoint *mp,
struct mount *child_mnt)
{
mp->m_count++;
mnt_add_count(mnt, 1); /* essentially, that's mntget */
child_mnt->mnt_mountpoint = mp->m_dentry;
child_mnt->mnt_parent = mnt;
child_mnt->mnt_mp = mp;
hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
}
static void __attach_mnt(struct mount *mnt, struct mount *parent)
{
hlist_add_head_rcu(&mnt->mnt_hash,
m_hash(&parent->mnt, mnt->mnt_mountpoint));
list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
}
/*
* vfsmount lock must be held for write
*/
static void attach_mnt(struct mount *mnt,
struct mount *parent,
struct mountpoint *mp)
{
mnt_set_mountpoint(parent, mp, mnt);
__attach_mnt(mnt, parent);
}
void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
{
struct mountpoint *old_mp = mnt->mnt_mp;
struct mount *old_parent = mnt->mnt_parent;
list_del_init(&mnt->mnt_child);
hlist_del_init(&mnt->mnt_mp_list);
hlist_del_init_rcu(&mnt->mnt_hash);
attach_mnt(mnt, parent, mp);
put_mountpoint(old_mp);
mnt_add_count(old_parent, -1);
}
/*
* vfsmount lock must be held for write
*/
static void commit_tree(struct mount *mnt)
{
struct mount *parent = mnt->mnt_parent;
struct mount *m;
LIST_HEAD(head);
struct mnt_namespace *n = parent->mnt_ns;
BUG_ON(parent == mnt);
list_add_tail(&head, &mnt->mnt_list);
list_for_each_entry(m, &head, mnt_list)
m->mnt_ns = n;
list_splice(&head, n->list.prev);
n->mounts += n->pending_mounts;
n->pending_mounts = 0;
__attach_mnt(mnt, parent);
touch_mnt_namespace(n);
}
static struct mount *next_mnt(struct mount *p, struct mount *root)
{
struct list_head *next = p->mnt_mounts.next;
if (next == &p->mnt_mounts) {
while (1) {
if (p == root)
return NULL;
next = p->mnt_child.next;
if (next != &p->mnt_parent->mnt_mounts)
break;
p = p->mnt_parent;
}
}
return list_entry(next, struct mount, mnt_child);
}
static struct mount *skip_mnt_tree(struct mount *p)
{
struct list_head *prev = p->mnt_mounts.prev;
while (prev != &p->mnt_mounts) {
p = list_entry(prev, struct mount, mnt_child);
prev = p->mnt_mounts.prev;
}
return p;
}
/**
* vfs_create_mount - Create a mount for a configured superblock
* @fc: The configuration context with the superblock attached
*
* Create a mount to an already configured superblock. If necessary, the
* caller should invoke vfs_get_tree() before calling this.
*
* Note that this does not attach the mount to anything.
*/
struct vfsmount *vfs_create_mount(struct fs_context *fc)
{
struct mount *mnt;
if (!fc->root)
return ERR_PTR(-EINVAL);
mnt = alloc_vfsmnt(fc->source ?: "none");
if (!mnt)
return ERR_PTR(-ENOMEM);
if (fc->sb_flags & SB_KERNMOUNT)
mnt->mnt.mnt_flags = MNT_INTERNAL;
atomic_inc(&fc->root->d_sb->s_active);
mnt->mnt.mnt_sb = fc->root->d_sb;
mnt->mnt.mnt_root = dget(fc->root);
mnt->mnt_mountpoint = mnt->mnt.mnt_root;
mnt->mnt_parent = mnt;
lock_mount_hash();
list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
unlock_mount_hash();
return &mnt->mnt;
}
EXPORT_SYMBOL(vfs_create_mount);
struct vfsmount *fc_mount(struct fs_context *fc)
{
int err = vfs_get_tree(fc);
if (!err) {
up_write(&fc->root->d_sb->s_umount);
return vfs_create_mount(fc);
}
return ERR_PTR(err);
}
EXPORT_SYMBOL(fc_mount);
struct vfsmount *vfs_kern_mount(struct file_system_type *type,
int flags, const char *name,
void *data)
{
struct fs_context *fc;
struct vfsmount *mnt;
int ret = 0;
if (!type)
return ERR_PTR(-EINVAL);
fc = fs_context_for_mount(type, flags);
if (IS_ERR(fc))
return ERR_CAST(fc);
if (name)
ret = vfs_parse_fs_string(fc, "source",
name, strlen(name));
if (!ret)
ret = parse_monolithic_mount_data(fc, data);
if (!ret)
mnt = fc_mount(fc);
else
mnt = ERR_PTR(ret);
put_fs_context(fc);
return mnt;
}
EXPORT_SYMBOL_GPL(vfs_kern_mount);
struct vfsmount *
vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
const char *name, void *data)
{
/* Until it is worked out how to pass the user namespace
* through from the parent mount to the submount don't support
* unprivileged mounts with submounts.
*/
if (mountpoint->d_sb->s_user_ns != &init_user_ns)
return ERR_PTR(-EPERM);
return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
}
EXPORT_SYMBOL_GPL(vfs_submount);
static struct mount *clone_mnt(struct mount *old, struct dentry *root,
int flag)
{
struct super_block *sb = old->mnt.mnt_sb;
struct mount *mnt;
int err;
mnt = alloc_vfsmnt(old->mnt_devname);
if (!mnt)
return ERR_PTR(-ENOMEM);
if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
mnt->mnt_group_id = 0; /* not a peer of original */
else
mnt->mnt_group_id = old->mnt_group_id;
if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
err = mnt_alloc_group_id(mnt);
if (err)
goto out_free;
}
mnt->mnt.mnt_flags = old->mnt.mnt_flags;
mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
atomic_inc(&sb->s_active);
mnt->mnt.mnt_sb = sb;
mnt->mnt.mnt_root = dget(root);
mnt->mnt_mountpoint = mnt->mnt.mnt_root;
mnt->mnt_parent = mnt;
lock_mount_hash();
list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
unlock_mount_hash();
if ((flag & CL_SLAVE) ||
((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
list_add(&mnt->mnt_slave, &old->mnt_slave_list);
mnt->mnt_master = old;
CLEAR_MNT_SHARED(mnt);
} else if (!(flag & CL_PRIVATE)) {
if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
list_add(&mnt->mnt_share, &old->mnt_share);
if (IS_MNT_SLAVE(old))
list_add(&mnt->mnt_slave, &old->mnt_slave);
mnt->mnt_master = old->mnt_master;
} else {
CLEAR_MNT_SHARED(mnt);
}
if (flag & CL_MAKE_SHARED)
set_mnt_shared(mnt);
/* stick the duplicate mount on the same expiry list
* as the original if that was on one */
if (flag & CL_EXPIRE) {
if (!list_empty(&old->mnt_expire))
list_add(&mnt->mnt_expire, &old->mnt_expire);
}
return mnt;
out_free:
mnt_free_id(mnt);
free_vfsmnt(mnt);
return ERR_PTR(err);
}
static void cleanup_mnt(struct mount *mnt)
{
struct hlist_node *p;
struct mount *m;
/*
* The warning here probably indicates that somebody messed
* up a mnt_want/drop_write() pair. If this happens, the
* filesystem was probably unable to make r/w->r/o transitions.
* The locking used to deal with mnt_count decrement provides barriers,
* so mnt_get_writers() below is safe.
*/
WARN_ON(mnt_get_writers(mnt));
if (unlikely(mnt->mnt_pins.first))
mnt_pin_kill(mnt);
hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
hlist_del(&m->mnt_umount);
mntput(&m->mnt);
}
fsnotify_vfsmount_delete(&mnt->mnt);
dput(mnt->mnt.mnt_root);
deactivate_super(mnt->mnt.mnt_sb);
mnt_free_id(mnt);
call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
}
static void __cleanup_mnt(struct rcu_head *head)
{
cleanup_mnt(container_of(head, struct mount, mnt_rcu));
}
static LLIST_HEAD(delayed_mntput_list);
static void delayed_mntput(struct work_struct *unused)
{
struct llist_node *node = llist_del_all(&delayed_mntput_list);
struct mount *m, *t;
llist_for_each_entry_safe(m, t, node, mnt_llist)
cleanup_mnt(m);
}
static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
static void mntput_no_expire(struct mount *mnt)
{
LIST_HEAD(list);
rcu_read_lock();
if (likely(READ_ONCE(mnt->mnt_ns))) {
/*
* Since we don't do lock_mount_hash() here,
* ->mnt_ns can change under us. However, if it's
* non-NULL, then there's a reference that won't
* be dropped until after an RCU delay done after
* turning ->mnt_ns NULL. So if we observe it
* non-NULL under rcu_read_lock(), the reference
* we are dropping is not the final one.
*/
mnt_add_count(mnt, -1);
rcu_read_unlock();
return;
}
lock_mount_hash();
/*
* make sure that if __legitimize_mnt() has not seen us grab
* mount_lock, we'll see their refcount increment here.
*/
smp_mb();
mnt_add_count(mnt, -1);
if (mnt_get_count(mnt)) {
rcu_read_unlock();
unlock_mount_hash();
return;
}
if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
rcu_read_unlock();
unlock_mount_hash();
return;
}
mnt->mnt.mnt_flags |= MNT_DOOMED;
rcu_read_unlock();
list_del(&mnt->mnt_instance);
if (unlikely(!list_empty(&mnt->mnt_mounts))) {
struct mount *p, *tmp;
list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
__put_mountpoint(unhash_mnt(p), &list);
hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
}
}
unlock_mount_hash();
shrink_dentry_list(&list);
if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
struct task_struct *task = current;
if (likely(!(task->flags & PF_KTHREAD))) {
init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
return;
}
if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
schedule_delayed_work(&delayed_mntput_work, 1);
return;
}
cleanup_mnt(mnt);
}
void mntput(struct vfsmount *mnt)
{
if (mnt) {
struct mount *m = real_mount(mnt);
/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
if (unlikely(m->mnt_expiry_mark))
m->mnt_expiry_mark = 0;
mntput_no_expire(m);
}
}
EXPORT_SYMBOL(mntput);
struct vfsmount *mntget(struct vfsmount *mnt)
{
if (mnt)
mnt_add_count(real_mount(mnt), 1);
return mnt;
}
EXPORT_SYMBOL(mntget);
/* path_is_mountpoint() - Check if path is a mount in the current
* namespace.
*
* d_mountpoint() can only be used reliably to establish if a dentry is
* not mounted in any namespace and that common case is handled inline.
* d_mountpoint() isn't aware of the possibility there may be multiple
* mounts using a given dentry in a different namespace. This function
* checks if the passed in path is a mountpoint rather than the dentry
* alone.
*/
bool path_is_mountpoint(const struct path *path)
{
unsigned seq;
bool res;
if (!d_mountpoint(path->dentry))
return false;
rcu_read_lock();
do {
seq = read_seqbegin(&mount_lock);
res = __path_is_mountpoint(path);
} while (read_seqretry(&mount_lock, seq));
rcu_read_unlock();
return res;
}
EXPORT_SYMBOL(path_is_mountpoint);
struct vfsmount *mnt_clone_internal(const struct path *path)
{
struct mount *p;
p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
if (IS_ERR(p))
return ERR_CAST(p);
p->mnt.mnt_flags |= MNT_INTERNAL;
return &p->mnt;
}
#ifdef CONFIG_PROC_FS
static struct mount *mnt_list_next(struct mnt_namespace *ns,
struct list_head *p)
{
struct mount *mnt, *ret = NULL;
lock_ns_list(ns);
list_for_each_continue(p, &ns->list) {
mnt = list_entry(p, typeof(*mnt), mnt_list);
if (!mnt_is_cursor(mnt)) {
ret = mnt;
break;
}
}
unlock_ns_list(ns);
return ret;
}
/* iterator; we want it to have access to namespace_sem, thus here... */
static void *m_start(struct seq_file *m, loff_t *pos)
{
struct proc_mounts *p = m->private;
struct list_head *prev;
down_read(&namespace_sem);
if (!*pos) {
prev = &p->ns->list;
} else {
prev = &p->cursor.mnt_list;
/* Read after we'd reached the end? */
if (list_empty(prev))
return NULL;
}
return mnt_list_next(p->ns, prev);
}
static void *m_next(struct seq_file *m, void *v, loff_t *pos)
{
struct proc_mounts *p = m->private;
struct mount *mnt = v;
++*pos;
return mnt_list_next(p->ns, &mnt->mnt_list);
}
static void m_stop(struct seq_file *m, void *v)
{
struct proc_mounts *p = m->private;
struct mount *mnt = v;
lock_ns_list(p->ns);
if (mnt)
list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
else
list_del_init(&p->cursor.mnt_list);
unlock_ns_list(p->ns);
up_read(&namespace_sem);
}
static int m_show(struct seq_file *m, void *v)
{
struct proc_mounts *p = m->private;
struct mount *r = v;
return p->show(m, &r->mnt);
}
const struct seq_operations mounts_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = m_show,
};
void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
{
down_read(&namespace_sem);
lock_ns_list(ns);
list_del(&cursor->mnt_list);
unlock_ns_list(ns);
up_read(&namespace_sem);
}
#endif /* CONFIG_PROC_FS */
/**
* may_umount_tree - check if a mount tree is busy
* @mnt: root of mount tree
*
* This is called to check if a tree of mounts has any
* open files, pwds, chroots or sub mounts that are
* busy.
*/
int may_umount_tree(struct vfsmount *m)
{
struct mount *mnt = real_mount(m);
int actual_refs = 0;
int minimum_refs = 0;
struct mount *p;
BUG_ON(!m);
/* write lock needed for mnt_get_count */
lock_mount_hash();
for (p = mnt; p; p = next_mnt(p, mnt)) {
actual_refs += mnt_get_count(p);
minimum_refs += 2;
}
unlock_mount_hash();
if (actual_refs > minimum_refs)
return 0;
return 1;
}
EXPORT_SYMBOL(may_umount_tree);
/**
* may_umount - check if a mount point is busy
* @mnt: root of mount
*
* This is called to check if a mount point has any
* open files, pwds, chroots or sub mounts. If the
* mount has sub mounts this will return busy
* regardless of whether the sub mounts are busy.
*
* Doesn't take quota and stuff into account. IOW, in some cases it will
* give false negatives. The main reason why it's here is that we need
* a non-destructive way to look for easily umountable filesystems.
*/
int may_umount(struct vfsmount *mnt)
{
int ret = 1;
down_read(&namespace_sem);
lock_mount_hash();
if (propagate_mount_busy(real_mount(mnt), 2))
ret = 0;
unlock_mount_hash();
up_read(&namespace_sem);
return ret;
}
EXPORT_SYMBOL(may_umount);
static void namespace_unlock(void)
{
struct hlist_head head;
struct hlist_node *p;
struct mount *m;
LIST_HEAD(list);
hlist_move_list(&unmounted, &head);
list_splice_init(&ex_mountpoints, &list);
up_write(&namespace_sem);
shrink_dentry_list(&list);
if (likely(hlist_empty(&head)))
return;
synchronize_rcu_expedited();
hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
hlist_del(&m->mnt_umount);
mntput(&m->mnt);
}
}
static inline void namespace_lock(void)
{
down_write(&namespace_sem);
}
enum umount_tree_flags {
UMOUNT_SYNC = 1,
UMOUNT_PROPAGATE = 2,
UMOUNT_CONNECTED = 4,
};
static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
{
/* Leaving mounts connected is only valid for lazy umounts */
if (how & UMOUNT_SYNC)
return true;
/* A mount without a parent has nothing to be connected to */
if (!mnt_has_parent(mnt))
return true;
/* Because the reference counting rules change when mounts are
* unmounted and connected, umounted mounts may not be
* connected to mounted mounts.
*/
if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
return true;
/* Has it been requested that the mount remain connected? */
if (how & UMOUNT_CONNECTED)
return false;
/* Is the mount locked such that it needs to remain connected? */
if (IS_MNT_LOCKED(mnt))
return false;
/* By default disconnect the mount */
return true;
}
/*
* mount_lock must be held
* namespace_sem must be held for write
*/
static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
{
LIST_HEAD(tmp_list);
struct mount *p;
if (how & UMOUNT_PROPAGATE)
propagate_mount_unlock(mnt);
/* Gather the mounts to umount */
for (p = mnt; p; p = next_mnt(p, mnt)) {
p->mnt.mnt_flags |= MNT_UMOUNT;
list_move(&p->mnt_list, &tmp_list);
}
/* Hide the mounts from mnt_mounts */
list_for_each_entry(p, &tmp_list, mnt_list) {
list_del_init(&p->mnt_child);
}
/* Add propogated mounts to the tmp_list */
if (how & UMOUNT_PROPAGATE)
propagate_umount(&tmp_list);
while (!list_empty(&tmp_list)) {
struct mnt_namespace *ns;
bool disconnect;
p = list_first_entry(&tmp_list, struct mount, mnt_list);
list_del_init(&p->mnt_expire);
list_del_init(&p->mnt_list);
ns = p->mnt_ns;
if (ns) {
ns->mounts--;
__touch_mnt_namespace(ns);
}
p->mnt_ns = NULL;
if (how & UMOUNT_SYNC)
p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
disconnect = disconnect_mount(p, how);
if (mnt_has_parent(p)) {
mnt_add_count(p->mnt_parent, -1);
if (!disconnect) {
/* Don't forget about p */
list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
} else {
umount_mnt(p);
}
}
change_mnt_propagation(p, MS_PRIVATE);
if (disconnect)
hlist_add_head(&p->mnt_umount, &unmounted);
}
}
static void shrink_submounts(struct mount *mnt);
static int do_umount_root(struct super_block *sb)
{
int ret = 0;
down_write(&sb->s_umount);
if (!sb_rdonly(sb)) {
struct fs_context *fc;
fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
SB_RDONLY);
if (IS_ERR(fc)) {
ret = PTR_ERR(fc);
} else {
ret = parse_monolithic_mount_data(fc, NULL);
if (!ret)
ret = reconfigure_super(fc);
put_fs_context(fc);
}
}
up_write(&sb->s_umount);
return ret;
}
static int do_umount(struct mount *mnt, int flags)
{
struct super_block *sb = mnt->mnt.mnt_sb;
int retval;
retval = security_sb_umount(&mnt->mnt, flags);
if (retval)
return retval;
/*
* Allow userspace to request a mountpoint be expired rather than
* unmounting unconditionally. Unmount only happens if:
* (1) the mark is already set (the mark is cleared by mntput())
* (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
*/
if (flags & MNT_EXPIRE) {
if (&mnt->mnt == current->fs->root.mnt ||
flags & (MNT_FORCE | MNT_DETACH))
return -EINVAL;
/*
* probably don't strictly need the lock here if we examined
* all race cases, but it's a slowpath.
*/
lock_mount_hash();
if (mnt_get_count(mnt) != 2) {
unlock_mount_hash();
return -EBUSY;
}
unlock_mount_hash();
if (!xchg(&mnt->mnt_expiry_mark, 1))
return -EAGAIN;
}
/*
* If we may have to abort operations to get out of this
* mount, and they will themselves hold resources we must
* allow the fs to do things. In the Unix tradition of
* 'Gee thats tricky lets do it in userspace' the umount_begin
* might fail to complete on the first run through as other tasks
* must return, and the like. Thats for the mount program to worry
* about for the moment.
*/
if (flags & MNT_FORCE && sb->s_op->umount_begin) {
sb->s_op->umount_begin(sb);
}
/*
* No sense to grab the lock for this test, but test itself looks
* somewhat bogus. Suggestions for better replacement?
* Ho-hum... In principle, we might treat that as umount + switch
* to rootfs. GC would eventually take care of the old vfsmount.
* Actually it makes sense, especially if rootfs would contain a
* /reboot - static binary that would close all descriptors and
* call reboot(9). Then init(8) could umount root and exec /reboot.
*/
if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
/*
* Special case for "unmounting" root ...
* we just try to remount it readonly.
*/
if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
return -EPERM;
return do_umount_root(sb);
}
namespace_lock();
lock_mount_hash();
/* Recheck MNT_LOCKED with the locks held */
retval = -EINVAL;
if (mnt->mnt.mnt_flags & MNT_LOCKED)
goto out;
event++;
if (flags & MNT_DETACH) {
if (!list_empty(&mnt->mnt_list))
umount_tree(mnt, UMOUNT_PROPAGATE);
retval = 0;
} else {
shrink_submounts(mnt);
retval = -EBUSY;
if (!propagate_mount_busy(mnt, 2)) {
if (!list_empty(&mnt->mnt_list))
umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
retval = 0;
}
}
out:
unlock_mount_hash();
namespace_unlock();
return retval;
}
/*
* __detach_mounts - lazily unmount all mounts on the specified dentry
*
* During unlink, rmdir, and d_drop it is possible to loose the path
* to an existing mountpoint, and wind up leaking the mount.
* detach_mounts allows lazily unmounting those mounts instead of
* leaking them.
*
* The caller may hold dentry->d_inode->i_mutex.
*/
void __detach_mounts(struct dentry *dentry)
{
struct mountpoint *mp;
struct mount *mnt;
namespace_lock();
lock_mount_hash();
mp = lookup_mountpoint(dentry);
if (!mp)
goto out_unlock;
event++;
while (!hlist_empty(&mp->m_list)) {
mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
umount_mnt(mnt);
hlist_add_head(&mnt->mnt_umount, &unmounted);
}
else umount_tree(mnt, UMOUNT_CONNECTED);
}
put_mountpoint(mp);
out_unlock:
unlock_mount_hash();
namespace_unlock();
}
/*
* Is the caller allowed to modify his namespace?
*/
static inline bool may_mount(void)
{
return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
}
#ifdef CONFIG_MANDATORY_FILE_LOCKING
static inline bool may_mandlock(void)
{
return capable(CAP_SYS_ADMIN);
}
#else
static inline bool may_mandlock(void)
{
pr_warn("VFS: \"mand\" mount option not supported");
return false;
}
#endif
static int can_umount(const struct path *path, int flags)
{
struct mount *mnt = real_mount(path->mnt);
if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
return -EINVAL;
if (!may_mount())
return -EPERM;
if (path->dentry != path->mnt->mnt_root)
return -EINVAL;
if (!check_mnt(mnt))
return -EINVAL;
if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
return -EINVAL;
if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
return -EPERM;
return 0;
}
int path_umount(struct path *path, int flags)
{
struct mount *mnt = real_mount(path->mnt);
int ret;
ret = can_umount(path, flags);
if (!ret)
ret = do_umount(mnt, flags);
/* we mustn't call path_put() as that would clear mnt_expiry_mark */
dput(path->dentry);
mntput_no_expire(mnt);
return ret;
}
static int ksys_umount(char __user *name, int flags)
{
int lookup_flags = LOOKUP_MOUNTPOINT;
struct path path;
int ret;
if (!(flags & UMOUNT_NOFOLLOW))
lookup_flags |= LOOKUP_FOLLOW;
ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
if (ret)
return ret;
return path_umount(&path, flags);
}
SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
{
return ksys_umount(name, flags);
}
#ifdef __ARCH_WANT_SYS_OLDUMOUNT
/*
* The 2.0 compatible umount. No flags.
*/
SYSCALL_DEFINE1(oldumount, char __user *, name)
{
return ksys_umount(name, 0);
}
#endif
static bool is_mnt_ns_file(struct dentry *dentry)
{
/* Is this a proxy for a mount namespace? */
return dentry->d_op == &ns_dentry_operations &&
dentry->d_fsdata == &mntns_operations;
}
static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
{
return container_of(ns, struct mnt_namespace, ns);
}
struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
{
return &mnt->ns;
}
static bool mnt_ns_loop(struct dentry *dentry)
{
/* Could bind mounting the mount namespace inode cause a
* mount namespace loop?
*/
struct mnt_namespace *mnt_ns;
if (!is_mnt_ns_file(dentry))
return false;
mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
}
struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
int flag)
{
struct mount *res, *p, *q, *r, *parent;
if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
return ERR_PTR(-EINVAL);
if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
return ERR_PTR(-EINVAL);
res = q = clone_mnt(mnt, dentry, flag);
if (IS_ERR(q))
return q;
q->mnt_mountpoint = mnt->mnt_mountpoint;
p = mnt;
list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
struct mount *s;
if (!is_subdir(r->mnt_mountpoint, dentry))
continue;
for (s = r; s; s = next_mnt(s, r)) {
if (!(flag & CL_COPY_UNBINDABLE) &&
IS_MNT_UNBINDABLE(s)) {
if (s->mnt.mnt_flags & MNT_LOCKED) {
/* Both unbindable and locked. */
q = ERR_PTR(-EPERM);
goto out;
} else {
s = skip_mnt_tree(s);
continue;
}
}
if (!(flag & CL_COPY_MNT_NS_FILE) &&
is_mnt_ns_file(s->mnt.mnt_root)) {
s = skip_mnt_tree(s);
continue;
}
while (p != s->mnt_parent) {
p = p->mnt_parent;
q = q->mnt_parent;
}
p = s;
parent = q;
q = clone_mnt(p, p->mnt.mnt_root, flag);
if (IS_ERR(q))
goto out;
lock_mount_hash();
list_add_tail(&q->mnt_list, &res->mnt_list);
attach_mnt(q, parent, p->mnt_mp);
unlock_mount_hash();
}
}
return res;
out:
if (res) {
lock_mount_hash();
umount_tree(res, UMOUNT_SYNC);
unlock_mount_hash();
}
return q;
}
/* Caller should check returned pointer for errors */
struct vfsmount *collect_mounts(const struct path *path)
{
struct mount *tree;
namespace_lock();
if (!check_mnt(real_mount(path->mnt)))
tree = ERR_PTR(-EINVAL);
else
tree = copy_tree(real_mount(path->mnt), path->dentry,
CL_COPY_ALL | CL_PRIVATE);
namespace_unlock();
if (IS_ERR(tree))
return ERR_CAST(tree);
return &tree->mnt;
}
static void free_mnt_ns(struct mnt_namespace *);
static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
void dissolve_on_fput(struct vfsmount *mnt)
{
struct mnt_namespace *ns;
namespace_lock();
lock_mount_hash();
ns = real_mount(mnt)->mnt_ns;
if (ns) {
if (is_anon_ns(ns))
umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
else
ns = NULL;
}
unlock_mount_hash();
namespace_unlock();
if (ns)
free_mnt_ns(ns);
}
void drop_collected_mounts(struct vfsmount *mnt)
{
namespace_lock();
lock_mount_hash();
umount_tree(real_mount(mnt), 0);
unlock_mount_hash();
namespace_unlock();
}
/**
* clone_private_mount - create a private clone of a path
*
* This creates a new vfsmount, which will be the clone of @path. The new will
* not be attached anywhere in the namespace and will be private (i.e. changes
* to the originating mount won't be propagated into this).
*
* Release with mntput().
*/
struct vfsmount *clone_private_mount(const struct path *path)
{
struct mount *old_mnt = real_mount(path->mnt);
struct mount *new_mnt;
if (IS_MNT_UNBINDABLE(old_mnt))
return ERR_PTR(-EINVAL);
new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
if (IS_ERR(new_mnt))
return ERR_CAST(new_mnt);
/* Longterm mount to be removed by kern_unmount*() */
new_mnt->mnt_ns = MNT_NS_INTERNAL;
return &new_mnt->mnt;
}
EXPORT_SYMBOL_GPL(clone_private_mount);
int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
struct vfsmount *root)
{
struct mount *mnt;
int res = f(root, arg);
if (res)
return res;
list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
res = f(&mnt->mnt, arg);
if (res)
return res;
}
return 0;
}
static void lock_mnt_tree(struct mount *mnt)
{
struct mount *p;
for (p = mnt; p; p = next_mnt(p, mnt)) {
int flags = p->mnt.mnt_flags;
/* Don't allow unprivileged users to change mount flags */
flags |= MNT_LOCK_ATIME;
if (flags & MNT_READONLY)
flags |= MNT_LOCK_READONLY;
if (flags & MNT_NODEV)
flags |= MNT_LOCK_NODEV;
if (flags & MNT_NOSUID)
flags |= MNT_LOCK_NOSUID;
if (flags & MNT_NOEXEC)
flags |= MNT_LOCK_NOEXEC;
/* Don't allow unprivileged users to reveal what is under a mount */
if (list_empty(&p->mnt_expire))
flags |= MNT_LOCKED;
p->mnt.mnt_flags = flags;
}
}
static void cleanup_group_ids(struct mount *mnt, struct mount *end)
{
struct mount *p;
for (p = mnt; p != end; p = next_mnt(p, mnt)) {
if (p->mnt_group_id && !IS_MNT_SHARED(p))
mnt_release_group_id(p);
}
}
static int invent_group_ids(struct mount *mnt, bool recurse)
{
struct mount *p;
for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
int err = mnt_alloc_group_id(p);
if (err) {
cleanup_group_ids(mnt, p);
return err;
}
}
}
return 0;
}
int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
{
unsigned int max = READ_ONCE(sysctl_mount_max);
unsigned int mounts = 0, old, pending, sum;
struct mount *p;
for (p = mnt; p; p = next_mnt(p, mnt))
mounts++;
old = ns->mounts;
pending = ns->pending_mounts;
sum = old + pending;
if ((old > sum) ||
(pending > sum) ||
(max < sum) ||
(mounts > (max - sum)))
return -ENOSPC;
ns->pending_mounts = pending + mounts;
return 0;
}
/*
* @source_mnt : mount tree to be attached
* @nd : place the mount tree @source_mnt is attached
* @parent_nd : if non-null, detach the source_mnt from its parent and
* store the parent mount and mountpoint dentry.
* (done when source_mnt is moved)
*
* NOTE: in the table below explains the semantics when a source mount
* of a given type is attached to a destination mount of a given type.
* ---------------------------------------------------------------------------
* | BIND MOUNT OPERATION |
* |**************************************************************************
* | source-->| shared | private | slave | unbindable |
* | dest | | | | |
* | | | | | | |
* | v | | | | |
* |**************************************************************************
* | shared | shared (++) | shared (+) | shared(+++)| invalid |
* | | | | | |
* |non-shared| shared (+) | private | slave (*) | invalid |
* ***************************************************************************
* A bind operation clones the source mount and mounts the clone on the
* destination mount.
*
* (++) the cloned mount is propagated to all the mounts in the propagation
* tree of the destination mount and the cloned mount is added to
* the peer group of the source mount.
* (+) the cloned mount is created under the destination mount and is marked
* as shared. The cloned mount is added to the peer group of the source
* mount.
* (+++) the mount is propagated to all the mounts in the propagation tree
* of the destination mount and the cloned mount is made slave
* of the same master as that of the source mount. The cloned mount
* is marked as 'shared and slave'.
* (*) the cloned mount is made a slave of the same master as that of the
* source mount.
*
* ---------------------------------------------------------------------------
* | MOVE MOUNT OPERATION |
* |**************************************************************************
* | source-->| shared | private | slave | unbindable |
* | dest | | | | |
* | | | | | | |
* | v | | | | |
* |**************************************************************************
* | shared | shared (+) | shared (+) | shared(+++) | invalid |
* | | | | | |
* |non-shared| shared (+*) | private | slave (*) | unbindable |
* ***************************************************************************
*
* (+) the mount is moved to the destination. And is then propagated to
* all the mounts in the propagation tree of the destination mount.
* (+*) the mount is moved to the destination.
* (+++) the mount is moved to the destination and is then propagated to
* all the mounts belonging to the destination mount's propagation tree.
* the mount is marked as 'shared and slave'.
* (*) the mount continues to be a slave at the new location.
*
* if the source mount is a tree, the operations explained above is
* applied to each mount in the tree.
* Must be called without spinlocks held, since this function can sleep
* in allocations.
*/
static int attach_recursive_mnt(struct mount *source_mnt,
struct mount *dest_mnt,
struct mountpoint *dest_mp,
bool moving)
{
struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
HLIST_HEAD(tree_list);
struct mnt_namespace *ns = dest_mnt->mnt_ns;
struct mountpoint *smp;
struct mount *child, *p;
struct hlist_node *n;
int err;
/* Preallocate a mountpoint in case the new mounts need
* to be tucked under other mounts.
*/
smp = get_mountpoint(source_mnt->mnt.mnt_root);
if (IS_ERR(smp))
return PTR_ERR(smp);
/* Is there space to add these mounts to the mount namespace? */
if (!moving) {
err = count_mounts(ns, source_mnt);
if (err)
goto out;
}
if (IS_MNT_SHARED(dest_mnt)) {
err = invent_group_ids(source_mnt, true);
if (err)
goto out;
err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
lock_mount_hash();
if (err)
goto out_cleanup_ids;
for (p = source_mnt; p; p = next_mnt(p, source_mnt))
set_mnt_shared(p);
} else {
lock_mount_hash();
}
if (moving) {
unhash_mnt(source_mnt);
attach_mnt(source_mnt, dest_mnt, dest_mp);
touch_mnt_namespace(source_mnt->mnt_ns);
} else {
if (source_mnt->mnt_ns) {
/* move from anon - the caller will destroy */
list_del_init(&source_mnt->mnt_ns->list);
}
mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
commit_tree(source_mnt);
}
hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
struct mount *q;
hlist_del_init(&child->mnt_hash);
q = __lookup_mnt(&child->mnt_parent->mnt,
child->mnt_mountpoint);
if (q)
mnt_change_mountpoint(child, smp, q);
/* Notice when we are propagating across user namespaces */
if (child->mnt_parent->mnt_ns->user_ns != user_ns)
lock_mnt_tree(child);
child->mnt.mnt_flags &= ~MNT_LOCKED;
commit_tree(child);
}
put_mountpoint(smp);
unlock_mount_hash();
return 0;
out_cleanup_ids:
while (!hlist_empty(&tree_list)) {
child = hlist_entry(tree_list.first, struct mount, mnt_hash);
child->mnt_parent->mnt_ns->pending_mounts = 0;
umount_tree(child, UMOUNT_SYNC);
}
unlock_mount_hash();
cleanup_group_ids(source_mnt, NULL);
out:
ns->pending_mounts = 0;
read_seqlock_excl(&mount_lock);
put_mountpoint(smp);
read_sequnlock_excl(&mount_lock);
return err;
}
static struct mountpoint *lock_mount(struct path *path)
{
struct vfsmount *mnt;
struct dentry *dentry = path->dentry;
retry:
inode_lock(dentry->d_inode);
if (unlikely(cant_mount(dentry))) {
inode_unlock(dentry->d_inode);
return ERR_PTR(-ENOENT);
}
namespace_lock();
mnt = lookup_mnt(path);
if (likely(!mnt)) {
struct mountpoint *mp = get_mountpoint(dentry);
if (IS_ERR(mp)) {
namespace_unlock();
inode_unlock(dentry->d_inode);
return mp;
}
return mp;
}
namespace_unlock();
inode_unlock(path->dentry->d_inode);
path_put(path);
path->mnt = mnt;
dentry = path->dentry = dget(mnt->mnt_root);
goto retry;
}
static void unlock_mount(struct mountpoint *where)
{
struct dentry *dentry = where->m_dentry;
read_seqlock_excl(&mount_lock);
put_mountpoint(where);
read_sequnlock_excl(&mount_lock);
namespace_unlock();
inode_unlock(dentry->d_inode);
}
static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
{
if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
return -EINVAL;
if (d_is_dir(mp->m_dentry) !=
d_is_dir(mnt->mnt.mnt_root))
return -ENOTDIR;
return attach_recursive_mnt(mnt, p, mp, false);
}
/*
* Sanity check the flags to change_mnt_propagation.
*/
static int flags_to_propagation_type(int ms_flags)
{
int type = ms_flags & ~(MS_REC | MS_SILENT);
/* Fail if any non-propagation flags are set */
if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
return 0;
/* Only one propagation flag should be set */
if (!is_power_of_2(type))
return 0;
return type;
}
/*
* recursively change the type of the mountpoint.
*/
static int do_change_type(struct path *path, int ms_flags)
{
struct mount *m;
struct mount *mnt = real_mount(path->mnt);
int recurse = ms_flags & MS_REC;
int type;
int err = 0;
if (path->dentry != path->mnt->mnt_root)
return -EINVAL;
type = flags_to_propagation_type(ms_flags);
if (!type)
return -EINVAL;
namespace_lock();
if (type == MS_SHARED) {
err = invent_group_ids(mnt, recurse);
if (err)
goto out_unlock;
}
lock_mount_hash();
for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
change_mnt_propagation(m, type);
unlock_mount_hash();
out_unlock:
namespace_unlock();
return err;
}
static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
{
struct mount *child;
list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
if (!is_subdir(child->mnt_mountpoint, dentry))
continue;
if (child->mnt.mnt_flags & MNT_LOCKED)
return true;
}
return false;
}
static struct mount *__do_loopback(struct path *old_path, int recurse)
{
struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
if (IS_MNT_UNBINDABLE(old))
return mnt;
if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
return mnt;
if (!recurse && has_locked_children(old, old_path->dentry))
return mnt;
if (recurse)
mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
else
mnt = clone_mnt(old, old_path->dentry, 0);
if (!IS_ERR(mnt))
mnt->mnt.mnt_flags &= ~MNT_LOCKED;
return mnt;
}
/*
* do loopback mount.
*/
static int do_loopback(struct path *path, const char *old_name,
int recurse)
{
struct path old_path;
struct mount *mnt = NULL, *parent;
struct mountpoint *mp;
int err;
if (!old_name || !*old_name)
return -EINVAL;
err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
if (err)
return err;
err = -EINVAL;
if (mnt_ns_loop(old_path.dentry))
goto out;
mp = lock_mount(path);
if (IS_ERR(mp)) {
err = PTR_ERR(mp);
goto out;
}
parent = real_mount(path->mnt);
if (!check_mnt(parent))
goto out2;
mnt = __do_loopback(&old_path, recurse);
if (IS_ERR(mnt)) {
err = PTR_ERR(mnt);
goto out2;
}
err = graft_tree(mnt, parent, mp);
if (err) {
lock_mount_hash();
umount_tree(mnt, UMOUNT_SYNC);
unlock_mount_hash();
}
out2:
unlock_mount(mp);
out:
path_put(&old_path);
return err;
}
static struct file *open_detached_copy(struct path *path, bool recursive)
{
struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
struct mount *mnt, *p;
struct file *file;
if (IS_ERR(ns))
return ERR_CAST(ns);
namespace_lock();
mnt = __do_loopback(path, recursive);
if (IS_ERR(mnt)) {
namespace_unlock();
free_mnt_ns(ns);
return ERR_CAST(mnt);
}
lock_mount_hash();
for (p = mnt; p; p = next_mnt(p, mnt)) {
p->mnt_ns = ns;
ns->mounts++;
}
ns->root = mnt;
list_add_tail(&ns->list, &mnt->mnt_list);
mntget(&mnt->mnt);
unlock_mount_hash();
namespace_unlock();
mntput(path->mnt);
path->mnt = &mnt->mnt;
file = dentry_open(path, O_PATH, current_cred());
if (IS_ERR(file))
dissolve_on_fput(path->mnt);
else
file->f_mode |= FMODE_NEED_UNMOUNT;
return file;
}
SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
{
struct file *file;
struct path path;
int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
bool detached = flags & OPEN_TREE_CLONE;
int error;
int fd;
BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
OPEN_TREE_CLOEXEC))
return -EINVAL;
if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
return -EINVAL;
if (flags & AT_NO_AUTOMOUNT)
lookup_flags &= ~LOOKUP_AUTOMOUNT;
if (flags & AT_SYMLINK_NOFOLLOW)
lookup_flags &= ~LOOKUP_FOLLOW;
if (flags & AT_EMPTY_PATH)
lookup_flags |= LOOKUP_EMPTY;
if (detached && !may_mount())
return -EPERM;
fd = get_unused_fd_flags(flags & O_CLOEXEC);
if (fd < 0)
return fd;
error = user_path_at(dfd, filename, lookup_flags, &path);
if (unlikely(error)) {
file = ERR_PTR(error);
} else {
if (detached)
file = open_detached_copy(&path, flags & AT_RECURSIVE);
else
file = dentry_open(&path, O_PATH, current_cred());
path_put(&path);
}
if (IS_ERR(file)) {
put_unused_fd(fd);
return PTR_ERR(file);
}
fd_install(fd, file);
return fd;
}
/*
* Don't allow locked mount flags to be cleared.
*
* No locks need to be held here while testing the various MNT_LOCK
* flags because those flags can never be cleared once they are set.
*/
static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
{
unsigned int fl = mnt->mnt.mnt_flags;
if ((fl & MNT_LOCK_READONLY) &&
!(mnt_flags & MNT_READONLY))
return false;
if ((fl & MNT_LOCK_NODEV) &&
!(mnt_flags & MNT_NODEV))
return false;
if ((fl & MNT_LOCK_NOSUID) &&
!(mnt_flags & MNT_NOSUID))
return false;
if ((fl & MNT_LOCK_NOEXEC) &&
!(mnt_flags & MNT_NOEXEC))
return false;
if ((fl & MNT_LOCK_ATIME) &&
((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
return false;
return true;
}
static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
{
bool readonly_request = (mnt_flags & MNT_READONLY);
if (readonly_request == __mnt_is_readonly(&mnt->mnt))
return 0;
if (readonly_request)
return mnt_make_readonly(mnt);
return __mnt_unmake_readonly(mnt);
}
/*
* Update the user-settable attributes on a mount. The caller must hold
* sb->s_umount for writing.
*/
static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
{
lock_mount_hash();
mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
mnt->mnt.mnt_flags = mnt_flags;
touch_mnt_namespace(mnt->mnt_ns);
unlock_mount_hash();
}
static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
{
struct super_block *sb = mnt->mnt_sb;
if (!__mnt_is_readonly(mnt) &&
(ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
char *buf = (char *)__get_free_page(GFP_KERNEL);
char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
struct tm tm;
time64_to_tm(sb->s_time_max, 0, &tm);
pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
sb->s_type->name,
is_mounted(mnt) ? "remounted" : "mounted",
mntpath,
tm.tm_year+1900, (unsigned long long)sb->s_time_max);
free_page((unsigned long)buf);
}
}
/*
* Handle reconfiguration of the mountpoint only without alteration of the
* superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
* to mount(2).
*/
static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
{
struct super_block *sb = path->mnt->mnt_sb;
struct mount *mnt = real_mount(path->mnt);
int ret;
if (!check_mnt(mnt))
return -EINVAL;
if (path->dentry != mnt->mnt.mnt_root)
return -EINVAL;
if (!can_change_locked_flags(mnt, mnt_flags))
return -EPERM;
down_write(&sb->s_umount);
ret = change_mount_ro_state(mnt, mnt_flags);
if (ret == 0)
set_mount_attributes(mnt, mnt_flags);
up_write(&sb->s_umount);
mnt_warn_timestamp_expiry(path, &mnt->mnt);
return ret;
}
/*
* change filesystem flags. dir should be a physical root of filesystem.
* If you've mounted a non-root directory somewhere and want to do remount
* on it - tough luck.
*/
static int do_remount(struct path *path, int ms_flags, int sb_flags,
int mnt_flags, void *data)
{
int err;
struct super_block *sb = path->mnt->mnt_sb;
struct mount *mnt = real_mount(path->mnt);
struct fs_context *fc;
if (!check_mnt(mnt))
return -EINVAL;
if (path->dentry != path->mnt->mnt_root)
return -EINVAL;
if (!can_change_locked_flags(mnt, mnt_flags))
return -EPERM;
fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
if (IS_ERR(fc))
return PTR_ERR(fc);
fc->oldapi = true;
err = parse_monolithic_mount_data(fc, data);
if (!err) {
down_write(&sb->s_umount);
err = -EPERM;
if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
err = reconfigure_super(fc);
if (!err)
set_mount_attributes(mnt, mnt_flags);
}
up_write(&sb->s_umount);
}
mnt_warn_timestamp_expiry(path, &mnt->mnt);
put_fs_context(fc);
return err;
}
static inline int tree_contains_unbindable(struct mount *mnt)
{
struct mount *p;
for (p = mnt; p; p = next_mnt(p, mnt)) {
if (IS_MNT_UNBINDABLE(p))
return 1;
}
return 0;
}
/*
* Check that there aren't references to earlier/same mount namespaces in the
* specified subtree. Such references can act as pins for mount namespaces
* that aren't checked by the mount-cycle checking code, thereby allowing
* cycles to be made.
*/
static bool check_for_nsfs_mounts(struct mount *subtree)
{
struct mount *p;
bool ret = false;
lock_mount_hash();
for (p = subtree; p; p = next_mnt(p, subtree))
if (mnt_ns_loop(p->mnt.mnt_root))
goto out;
ret = true;
out:
unlock_mount_hash();
return ret;
}
static int do_move_mount(struct path *old_path, struct path *new_path)
{
struct mnt_namespace *ns;
struct mount *p;
struct mount *old;
struct mount *parent;
struct mountpoint *mp, *old_mp;
int err;
bool attached;
mp = lock_mount(new_path);
if (IS_ERR(mp))
return PTR_ERR(mp);
old = real_mount(old_path->mnt);
p = real_mount(new_path->mnt);
parent = old->mnt_parent;
attached = mnt_has_parent(old);
old_mp = old->mnt_mp;
ns = old->mnt_ns;
err = -EINVAL;
/* The mountpoint must be in our namespace. */
if (!check_mnt(p))
goto out;
/* The thing moved must be mounted... */
if (!is_mounted(&old->mnt))
goto out;
/* ... and either ours or the root of anon namespace */
if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
goto out;
if (old->mnt.mnt_flags & MNT_LOCKED)
goto out;
if (old_path->dentry != old_path->mnt->mnt_root)
goto out;
if (d_is_dir(new_path->dentry) !=
d_is_dir(old_path->dentry))
goto out;
/*
* Don't move a mount residing in a shared parent.
*/
if (attached && IS_MNT_SHARED(parent))
goto out;
/*
* Don't move a mount tree containing unbindable mounts to a destination
* mount which is shared.
*/
if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
goto out;
err = -ELOOP;
if (!check_for_nsfs_mounts(old))
goto out;
for (; mnt_has_parent(p); p = p->mnt_parent)
if (p == old)
goto out;
err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
attached);
if (err)
goto out;
/* if the mount is moved, it should no longer be expire
* automatically */
list_del_init(&old->mnt_expire);
if (attached)
put_mountpoint(old_mp);
out:
unlock_mount(mp);
if (!err) {
if (attached)
mntput_no_expire(parent);
else
free_mnt_ns(ns);
}
return err;
}
static int do_move_mount_old(struct path *path, const char *old_name)
{
struct path old_path;
int err;
if (!old_name || !*old_name)
return -EINVAL;
err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
if (err)
return err;
err = do_move_mount(&old_path, path);
path_put(&old_path);
return err;
}
/*
* add a mount into a namespace's mount tree
*/
static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
struct path *path, int mnt_flags)
{
struct mount *parent = real_mount(path->mnt);
mnt_flags &= ~MNT_INTERNAL_FLAGS;
if (unlikely(!check_mnt(parent))) {
/* that's acceptable only for automounts done in private ns */
if (!(mnt_flags & MNT_SHRINKABLE))
return -EINVAL;
/* ... and for those we'd better have mountpoint still alive */
if (!parent->mnt_ns)
return -EINVAL;
}
/* Refuse the same filesystem on the same mount point */
if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
path->mnt->mnt_root == path->dentry)
return -EBUSY;
if (d_is_symlink(newmnt->mnt.mnt_root))
return -EINVAL;
newmnt->mnt.mnt_flags = mnt_flags;
return graft_tree(newmnt, parent, mp);
}
static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
/*
* Create a new mount using a superblock configuration and request it
* be added to the namespace tree.
*/
static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
unsigned int mnt_flags)
{
struct vfsmount *mnt;
struct mountpoint *mp;
struct super_block *sb = fc->root->d_sb;
int error;
error = security_sb_kern_mount(sb);
if (!error && mount_too_revealing(sb, &mnt_flags))
error = -EPERM;
if (unlikely(error)) {
fc_drop_locked(fc);
return error;
}
up_write(&sb->s_umount);
mnt = vfs_create_mount(fc);
if (IS_ERR(mnt))
return PTR_ERR(mnt);
mnt_warn_timestamp_expiry(mountpoint, mnt);
mp = lock_mount(mountpoint);
if (IS_ERR(mp)) {
mntput(mnt);
return PTR_ERR(mp);
}
error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
unlock_mount(mp);
if (error < 0)
mntput(mnt);
return error;
}
/*
* create a new mount for userspace and request it to be added into the
* namespace's tree
*/
static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
int mnt_flags, const char *name, void *data)
{
struct file_system_type *type;
struct fs_context *fc;
const char *subtype = NULL;
int err = 0;
if (!fstype)
return -EINVAL;
type = get_fs_type(fstype);
if (!type)
return -ENODEV;
if (type->fs_flags & FS_HAS_SUBTYPE) {
subtype = strchr(fstype, '.');
if (subtype) {
subtype++;
if (!*subtype) {
put_filesystem(type);
return -EINVAL;
}
}
}
fc = fs_context_for_mount(type, sb_flags);
put_filesystem(type);
if (IS_ERR(fc))
return PTR_ERR(fc);
if (subtype)
err = vfs_parse_fs_string(fc, "subtype",
subtype, strlen(subtype));
if (!err && name)
err = vfs_parse_fs_string(fc, "source", name, strlen(name));
if (!err)
err = parse_monolithic_mount_data(fc, data);
if (!err && !mount_capable(fc))
err = -EPERM;
if (!err)
err = vfs_get_tree(fc);
if (!err)
err = do_new_mount_fc(fc, path, mnt_flags);
put_fs_context(fc);
return err;
}
int finish_automount(struct vfsmount *m, struct path *path)
{
struct dentry *dentry = path->dentry;
struct mountpoint *mp;
struct mount *mnt;
int err;
if (!m)
return 0;
if (IS_ERR(m))
return PTR_ERR(m);
mnt = real_mount(m);
/* The new mount record should have at least 2 refs to prevent it being
* expired before we get a chance to add it
*/
BUG_ON(mnt_get_count(mnt) < 2);
if (m->mnt_sb == path->mnt->mnt_sb &&
m->mnt_root == dentry) {
err = -ELOOP;
goto discard;
}
/*
* we don't want to use lock_mount() - in this case finding something
* that overmounts our mountpoint to be means "quitely drop what we've
* got", not "try to mount it on top".
*/
inode_lock(dentry->d_inode);
namespace_lock();
if (unlikely(cant_mount(dentry))) {
err = -ENOENT;
goto discard_locked;
}
rcu_read_lock();
if (unlikely(__lookup_mnt(path->mnt, dentry))) {
rcu_read_unlock();
err = 0;
goto discard_locked;
}
rcu_read_unlock();
mp = get_mountpoint(dentry);
if (IS_ERR(mp)) {
err = PTR_ERR(mp);
goto discard_locked;
}
err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
unlock_mount(mp);
if (unlikely(err))
goto discard;
mntput(m);
return 0;
discard_locked:
namespace_unlock();
inode_unlock(dentry->d_inode);
discard:
/* remove m from any expiration list it may be on */
if (!list_empty(&mnt->mnt_expire)) {
namespace_lock();
list_del_init(&mnt->mnt_expire);
namespace_unlock();
}
mntput(m);
mntput(m);
return err;
}
/**
* mnt_set_expiry - Put a mount on an expiration list
* @mnt: The mount to list.
* @expiry_list: The list to add the mount to.
*/
void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
{
namespace_lock();
list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
namespace_unlock();
}
EXPORT_SYMBOL(mnt_set_expiry);
/*
* process a list of expirable mountpoints with the intent of discarding any
* mountpoints that aren't in use and haven't been touched since last we came
* here
*/
void mark_mounts_for_expiry(struct list_head *mounts)
{
struct mount *mnt, *next;
LIST_HEAD(graveyard);
if (list_empty(mounts))
return;
namespace_lock();
lock_mount_hash();
/* extract from the expiration list every vfsmount that matches the
* following criteria:
* - only referenced by its parent vfsmount
* - still marked for expiry (marked on the last call here; marks are
* cleared by mntput())
*/
list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
if (!xchg(&mnt->mnt_expiry_mark, 1) ||
propagate_mount_busy(mnt, 1))
continue;
list_move(&mnt->mnt_expire, &graveyard);
}
while (!list_empty(&graveyard)) {
mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
touch_mnt_namespace(mnt->mnt_ns);
umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
}
unlock_mount_hash();
namespace_unlock();
}
EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
/*
* Ripoff of 'select_parent()'
*
* search the list of submounts for a given mountpoint, and move any
* shrinkable submounts to the 'graveyard' list.
*/
static int select_submounts(struct mount *parent, struct list_head *graveyard)
{
struct mount *this_parent = parent;
struct list_head *next;
int found = 0;
repeat:
next = this_parent->mnt_mounts.next;
resume:
while (next != &this_parent->mnt_mounts) {
struct list_head *tmp = next;
struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
next = tmp->next;
if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
continue;
/*
* Descend a level if the d_mounts list is non-empty.
*/
if (!list_empty(&mnt->mnt_mounts)) {
this_parent = mnt;
goto repeat;
}
if (!propagate_mount_busy(mnt, 1)) {
list_move_tail(&mnt->mnt_expire, graveyard);
found++;
}
}
/*
* All done at this level ... ascend and resume the search
*/
if (this_parent != parent) {
next = this_parent->mnt_child.next;
this_parent = this_parent->mnt_parent;
goto resume;
}
return found;
}
/*
* process a list of expirable mountpoints with the intent of discarding any
* submounts of a specific parent mountpoint
*
* mount_lock must be held for write
*/
static void shrink_submounts(struct mount *mnt)
{
LIST_HEAD(graveyard);
struct mount *m;
/* extract submounts of 'mountpoint' from the expiration list */
while (select_submounts(mnt, &graveyard)) {
while (!list_empty(&graveyard)) {
m = list_first_entry(&graveyard, struct mount,
mnt_expire);
touch_mnt_namespace(m->mnt_ns);
umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
}
}
}
static void *copy_mount_options(const void __user * data)
{
char *copy;
unsigned left, offset;
if (!data)
return NULL;
copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!copy)
return ERR_PTR(-ENOMEM);
left = copy_from_user(copy, data, PAGE_SIZE);
/*
* Not all architectures have an exact copy_from_user(). Resort to
* byte at a time.
*/
offset = PAGE_SIZE - left;
while (left) {
char c;
if (get_user(c, (const char __user *)data + offset))
break;
copy[offset] = c;
left--;
offset++;
}
if (left == PAGE_SIZE) {
kfree(copy);
return ERR_PTR(-EFAULT);
}
return copy;
}
static char *copy_mount_string(const void __user *data)
{
return data ? strndup_user(data, PATH_MAX) : NULL;
}
/*
* Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
* be given to the mount() call (ie: read-only, no-dev, no-suid etc).
*
* data is a (void *) that can point to any structure up to
* PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
* information (or be NULL).
*
* Pre-0.97 versions of mount() didn't have a flags word.
* When the flags word was introduced its top half was required
* to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
* Therefore, if this magic number is present, it carries no information
* and must be discarded.
*/
int path_mount(const char *dev_name, struct path *path,
const char *type_page, unsigned long flags, void *data_page)
{
unsigned int mnt_flags = 0, sb_flags;
int ret;
/* Discard magic */
if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
flags &= ~MS_MGC_MSK;
/* Basic sanity checks */
if (data_page)
((char *)data_page)[PAGE_SIZE - 1] = 0;
if (flags & MS_NOUSER)
return -EINVAL;
ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
if (ret)
return ret;
if (!may_mount())
return -EPERM;
if ((flags & SB_MANDLOCK) && !may_mandlock())
return -EPERM;
/* Default to relatime unless overriden */
if (!(flags & MS_NOATIME))
mnt_flags |= MNT_RELATIME;
/* Separate the per-mountpoint flags */
if (flags & MS_NOSUID)
mnt_flags |= MNT_NOSUID;
if (flags & MS_NODEV)
mnt_flags |= MNT_NODEV;
if (flags & MS_NOEXEC)
mnt_flags |= MNT_NOEXEC;
if (flags & MS_NOATIME)
mnt_flags |= MNT_NOATIME;
if (flags & MS_NODIRATIME)
mnt_flags |= MNT_NODIRATIME;
if (flags & MS_STRICTATIME)
mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
if (flags & MS_RDONLY)
mnt_flags |= MNT_READONLY;
if (flags & MS_NOSYMFOLLOW)
mnt_flags |= MNT_NOSYMFOLLOW;
/* The default atime for remount is preservation */
if ((flags & MS_REMOUNT) &&
((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
MS_STRICTATIME)) == 0)) {
mnt_flags &= ~MNT_ATIME_MASK;
mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
}
sb_flags = flags & (SB_RDONLY |
SB_SYNCHRONOUS |
SB_MANDLOCK |
SB_DIRSYNC |
SB_SILENT |
SB_POSIXACL |
SB_LAZYTIME |
SB_I_VERSION);
if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
return do_reconfigure_mnt(path, mnt_flags);
if (flags & MS_REMOUNT)
return do_remount(path, flags, sb_flags, mnt_flags, data_page);
if (flags & MS_BIND)
return do_loopback(path, dev_name, flags & MS_REC);
if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
return do_change_type(path, flags);
if (flags & MS_MOVE)
return do_move_mount_old(path, dev_name);
return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
data_page);
}
long do_mount(const char *dev_name, const char __user *dir_name,
const char *type_page, unsigned long flags, void *data_page)
{
struct path path;
int ret;
ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
if (ret)
return ret;
ret = path_mount(dev_name, &path, type_page, flags, data_page);
path_put(&path);
return ret;
}
static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
{
return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
}
static void dec_mnt_namespaces(struct ucounts *ucounts)
{
dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
}
static void free_mnt_ns(struct mnt_namespace *ns)
{
if (!is_anon_ns(ns))
ns_free_inum(&ns->ns);
dec_mnt_namespaces(ns->ucounts);
put_user_ns(ns->user_ns);
kfree(ns);
}
/*
* Assign a sequence number so we can detect when we attempt to bind
* mount a reference to an older mount namespace into the current
* mount namespace, preventing reference counting loops. A 64bit
* number incrementing at 10Ghz will take 12,427 years to wrap which
* is effectively never, so we can ignore the possibility.
*/
static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
{
struct mnt_namespace *new_ns;
struct ucounts *ucounts;
int ret;
ucounts = inc_mnt_namespaces(user_ns);
if (!ucounts)
return ERR_PTR(-ENOSPC);
new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
if (!new_ns) {
dec_mnt_namespaces(ucounts);
return ERR_PTR(-ENOMEM);
}
if (!anon) {
ret = ns_alloc_inum(&new_ns->ns);
if (ret) {
kfree(new_ns);
dec_mnt_namespaces(ucounts);
return ERR_PTR(ret);
}
}
new_ns->ns.ops = &mntns_operations;
if (!anon)
new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
refcount_set(&new_ns->ns.count, 1);
INIT_LIST_HEAD(&new_ns->list);
init_waitqueue_head(&new_ns->poll);
spin_lock_init(&new_ns->ns_lock);
new_ns->user_ns = get_user_ns(user_ns);
new_ns->ucounts = ucounts;
return new_ns;
}
__latent_entropy
struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
struct user_namespace *user_ns, struct fs_struct *new_fs)
{
struct mnt_namespace *new_ns;
struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
struct mount *p, *q;
struct mount *old;
struct mount *new;
int copy_flags;
BUG_ON(!ns);
if (likely(!(flags & CLONE_NEWNS))) {
get_mnt_ns(ns);
return ns;
}
old = ns->root;
new_ns = alloc_mnt_ns(user_ns, false);
if (IS_ERR(new_ns))
return new_ns;
namespace_lock();
/* First pass: copy the tree topology */
copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
if (user_ns != ns->user_ns)
copy_flags |= CL_SHARED_TO_SLAVE;
new = copy_tree(old, old->mnt.mnt_root, copy_flags);
if (IS_ERR(new)) {
namespace_unlock();
free_mnt_ns(new_ns);
return ERR_CAST(new);
}
if (user_ns != ns->user_ns) {
lock_mount_hash();
lock_mnt_tree(new);
unlock_mount_hash();
}
new_ns->root = new;
list_add_tail(&new_ns->list, &new->mnt_list);
/*
* Second pass: switch the tsk->fs->* elements and mark new vfsmounts
* as belonging to new namespace. We have already acquired a private
* fs_struct, so tsk->fs->lock is not needed.
*/
p = old;
q = new;
while (p) {
q->mnt_ns = new_ns;
new_ns->mounts++;
if (new_fs) {
if (&p->mnt == new_fs->root.mnt) {
new_fs->root.mnt = mntget(&q->mnt);
rootmnt = &p->mnt;
}
if (&p->mnt == new_fs->pwd.mnt) {
new_fs->pwd.mnt = mntget(&q->mnt);
pwdmnt = &p->mnt;
}
}
p = next_mnt(p, old);
q = next_mnt(q, new);
if (!q)
break;
while (p->mnt.mnt_root != q->mnt.mnt_root)
p = next_mnt(p, old);
}
namespace_unlock();
if (rootmnt)
mntput(rootmnt);
if (pwdmnt)
mntput(pwdmnt);
return new_ns;
}
struct dentry *mount_subtree(struct vfsmount *m, const char *name)
{
struct mount *mnt = real_mount(m);
struct mnt_namespace *ns;
struct super_block *s;
struct path path;
int err;
ns = alloc_mnt_ns(&init_user_ns, true);
if (IS_ERR(ns)) {
mntput(m);
return ERR_CAST(ns);
}
mnt->mnt_ns = ns;
ns->root = mnt;
ns->mounts++;
list_add(&mnt->mnt_list, &ns->list);
err = vfs_path_lookup(m->mnt_root, m,
name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
put_mnt_ns(ns);
if (err)
return ERR_PTR(err);
/* trade a vfsmount reference for active sb one */
s = path.mnt->mnt_sb;
atomic_inc(&s->s_active);
mntput(path.mnt);
/* lock the sucker */
down_write(&s->s_umount);
/* ... and return the root of (sub)tree on it */
return path.dentry;
}
EXPORT_SYMBOL(mount_subtree);
SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
char __user *, type, unsigned long, flags, void __user *, data)
{
int ret;
char *kernel_type;
char *kernel_dev;
void *options;
kernel_type = copy_mount_string(type);
ret = PTR_ERR(kernel_type);
if (IS_ERR(kernel_type))
goto out_type;
kernel_dev = copy_mount_string(dev_name);
ret = PTR_ERR(kernel_dev);
if (IS_ERR(kernel_dev))
goto out_dev;
options = copy_mount_options(data);
ret = PTR_ERR(options);
if (IS_ERR(options))
goto out_data;
ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
kfree(options);
out_data:
kfree(kernel_dev);
out_dev:
kfree(kernel_type);
out_type:
return ret;
}
/*
* Create a kernel mount representation for a new, prepared superblock
* (specified by fs_fd) and attach to an open_tree-like file descriptor.
*/
SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
unsigned int, attr_flags)
{
struct mnt_namespace *ns;
struct fs_context *fc;
struct file *file;
struct path newmount;
struct mount *mnt;
struct fd f;
unsigned int mnt_flags = 0;
long ret;
if (!may_mount())
return -EPERM;
if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
return -EINVAL;
if (attr_flags & ~(MOUNT_ATTR_RDONLY |
MOUNT_ATTR_NOSUID |
MOUNT_ATTR_NODEV |
MOUNT_ATTR_NOEXEC |
MOUNT_ATTR__ATIME |
MOUNT_ATTR_NODIRATIME))
return -EINVAL;
if (attr_flags & MOUNT_ATTR_RDONLY)
mnt_flags |= MNT_READONLY;
if (attr_flags & MOUNT_ATTR_NOSUID)
mnt_flags |= MNT_NOSUID;
if (attr_flags & MOUNT_ATTR_NODEV)
mnt_flags |= MNT_NODEV;
if (attr_flags & MOUNT_ATTR_NOEXEC)
mnt_flags |= MNT_NOEXEC;
if (attr_flags & MOUNT_ATTR_NODIRATIME)
mnt_flags |= MNT_NODIRATIME;
switch (attr_flags & MOUNT_ATTR__ATIME) {
case MOUNT_ATTR_STRICTATIME:
break;
case MOUNT_ATTR_NOATIME:
mnt_flags |= MNT_NOATIME;
break;
case MOUNT_ATTR_RELATIME:
mnt_flags |= MNT_RELATIME;
break;
default:
return -EINVAL;
}
f = fdget(fs_fd);
if (!f.file)
return -EBADF;
ret = -EINVAL;
if (f.file->f_op != &fscontext_fops)
goto err_fsfd;
fc = f.file->private_data;
ret = mutex_lock_interruptible(&fc->uapi_mutex);
if (ret < 0)
goto err_fsfd;
/* There must be a valid superblock or we can't mount it */
ret = -EINVAL;
if (!fc->root)
goto err_unlock;
ret = -EPERM;
if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
pr_warn("VFS: Mount too revealing\n");
goto err_unlock;
}
ret = -EBUSY;
if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
goto err_unlock;
ret = -EPERM;
if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
goto err_unlock;
newmount.mnt = vfs_create_mount(fc);
if (IS_ERR(newmount.mnt)) {
ret = PTR_ERR(newmount.mnt);
goto err_unlock;
}
newmount.dentry = dget(fc->root);
newmount.mnt->mnt_flags = mnt_flags;
/* We've done the mount bit - now move the file context into more or
* less the same state as if we'd done an fspick(). We don't want to
* do any memory allocation or anything like that at this point as we
* don't want to have to handle any errors incurred.
*/
vfs_clean_context(fc);
ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
if (IS_ERR(ns)) {
ret = PTR_ERR(ns);
goto err_path;
}
mnt = real_mount(newmount.mnt);
mnt->mnt_ns = ns;
ns->root = mnt;
ns->mounts = 1;
list_add(&mnt->mnt_list, &ns->list);
mntget(newmount.mnt);
/* Attach to an apparent O_PATH fd with a note that we need to unmount
* it, not just simply put it.
*/
file = dentry_open(&newmount, O_PATH, fc->cred);
if (IS_ERR(file)) {
dissolve_on_fput(newmount.mnt);
ret = PTR_ERR(file);
goto err_path;
}
file->f_mode |= FMODE_NEED_UNMOUNT;
ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
if (ret >= 0)
fd_install(ret, file);
else
fput(file);
err_path:
path_put(&newmount);
err_unlock:
mutex_unlock(&fc->uapi_mutex);
err_fsfd:
fdput(f);
return ret;
}
/*
* Move a mount from one place to another. In combination with
* fsopen()/fsmount() this is used to install a new mount and in combination
* with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
* a mount subtree.
*
* Note the flags value is a combination of MOVE_MOUNT_* flags.
*/
SYSCALL_DEFINE5(move_mount,
int, from_dfd, const char __user *, from_pathname,
int, to_dfd, const char __user *, to_pathname,
unsigned int, flags)
{
struct path from_path, to_path;
unsigned int lflags;
int ret = 0;
if (!may_mount())
return -EPERM;
if (flags & ~MOVE_MOUNT__MASK)
return -EINVAL;
/* If someone gives a pathname, they aren't permitted to move
* from an fd that requires unmount as we can't get at the flag
* to clear it afterwards.
*/
lflags = 0;
if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
if (ret < 0)
return ret;
lflags = 0;
if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
if (ret < 0)
goto out_from;
ret = security_move_mount(&from_path, &to_path);
if (ret < 0)
goto out_to;
ret = do_move_mount(&from_path, &to_path);
out_to:
path_put(&to_path);
out_from:
path_put(&from_path);
return ret;
}
/*
* Return true if path is reachable from root
*
* namespace_sem or mount_lock is held
*/
bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
const struct path *root)
{
while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
dentry = mnt->mnt_mountpoint;
mnt = mnt->mnt_parent;
}
return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
}
bool path_is_under(const struct path *path1, const struct path *path2)
{
bool res;
read_seqlock_excl(&mount_lock);
res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
read_sequnlock_excl(&mount_lock);
return res;
}
EXPORT_SYMBOL(path_is_under);
/*
* pivot_root Semantics:
* Moves the root file system of the current process to the directory put_old,
* makes new_root as the new root file system of the current process, and sets
* root/cwd of all processes which had them on the current root to new_root.
*
* Restrictions:
* The new_root and put_old must be directories, and must not be on the
* same file system as the current process root. The put_old must be
* underneath new_root, i.e. adding a non-zero number of /.. to the string
* pointed to by put_old must yield the same directory as new_root. No other
* file system may be mounted on put_old. After all, new_root is a mountpoint.
*
* Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
* See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
* in this situation.
*
* Notes:
* - we don't move root/cwd if they are not at the root (reason: if something
* cared enough to change them, it's probably wrong to force them elsewhere)
* - it's okay to pick a root that isn't the root of a file system, e.g.
* /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
* though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
* first.
*/
SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
const char __user *, put_old)
{
struct path new, old, root;
struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
struct mountpoint *old_mp, *root_mp;
int error;
if (!may_mount())
return -EPERM;
error = user_path_at(AT_FDCWD, new_root,
LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
if (error)
goto out0;
error = user_path_at(AT_FDCWD, put_old,
LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
if (error)
goto out1;
error = security_sb_pivotroot(&old, &new);
if (error)
goto out2;
get_fs_root(current->fs, &root);
old_mp = lock_mount(&old);
error = PTR_ERR(old_mp);
if (IS_ERR(old_mp))
goto out3;
error = -EINVAL;
new_mnt = real_mount(new.mnt);
root_mnt = real_mount(root.mnt);
old_mnt = real_mount(old.mnt);
ex_parent = new_mnt->mnt_parent;
root_parent = root_mnt->mnt_parent;
if (IS_MNT_SHARED(old_mnt) ||
IS_MNT_SHARED(ex_parent) ||
IS_MNT_SHARED(root_parent))
goto out4;
if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
goto out4;
if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
goto out4;
error = -ENOENT;
if (d_unlinked(new.dentry))
goto out4;
error = -EBUSY;
if (new_mnt == root_mnt || old_mnt == root_mnt)
goto out4; /* loop, on the same file system */
error = -EINVAL;
if (root.mnt->mnt_root != root.dentry)
goto out4; /* not a mountpoint */
if (!mnt_has_parent(root_mnt))
goto out4; /* not attached */
if (new.mnt->mnt_root != new.dentry)
goto out4; /* not a mountpoint */
if (!mnt_has_parent(new_mnt))
goto out4; /* not attached */
/* make sure we can reach put_old from new_root */
if (!is_path_reachable(old_mnt, old.dentry, &new))
goto out4;
/* make certain new is below the root */
if (!is_path_reachable(new_mnt, new.dentry, &root))
goto out4;
lock_mount_hash();
umount_mnt(new_mnt);
root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
new_mnt->mnt.mnt_flags |= MNT_LOCKED;
root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
}
/* mount old root on put_old */
attach_mnt(root_mnt, old_mnt, old_mp);
/* mount new_root on / */
attach_mnt(new_mnt, root_parent, root_mp);
mnt_add_count(root_parent, -1);
touch_mnt_namespace(current->nsproxy->mnt_ns);
/* A moved mount should not expire automatically */
list_del_init(&new_mnt->mnt_expire);
put_mountpoint(root_mp);
unlock_mount_hash();
chroot_fs_refs(&root, &new);
error = 0;
out4:
unlock_mount(old_mp);
if (!error)
mntput_no_expire(ex_parent);
out3:
path_put(&root);
out2:
path_put(&old);
out1:
path_put(&new);
out0:
return error;
}
static void __init init_mount_tree(void)
{
struct vfsmount *mnt;
struct mount *m;
struct mnt_namespace *ns;
struct path root;
mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
if (IS_ERR(mnt))
panic("Can't create rootfs");
ns = alloc_mnt_ns(&init_user_ns, false);
if (IS_ERR(ns))
panic("Can't allocate initial namespace");
m = real_mount(mnt);
m->mnt_ns = ns;
ns->root = m;
ns->mounts = 1;
list_add(&m->mnt_list, &ns->list);
init_task.nsproxy->mnt_ns = ns;
get_mnt_ns(ns);
root.mnt = mnt;
root.dentry = mnt->mnt_root;
mnt->mnt_flags |= MNT_LOCKED;
set_fs_pwd(current->fs, &root);
set_fs_root(current->fs, &root);
}
void __init mnt_init(void)
{
int err;
mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
mount_hashtable = alloc_large_system_hash("Mount-cache",
sizeof(struct hlist_head),
mhash_entries, 19,
HASH_ZERO,
&m_hash_shift, &m_hash_mask, 0, 0);
mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
sizeof(struct hlist_head),
mphash_entries, 19,
HASH_ZERO,
&mp_hash_shift, &mp_hash_mask, 0, 0);
if (!mount_hashtable || !mountpoint_hashtable)
panic("Failed to allocate mount hash table\n");
kernfs_init();
err = sysfs_init();
if (err)
printk(KERN_WARNING "%s: sysfs_init error: %d\n",
__func__, err);
fs_kobj = kobject_create_and_add("fs", NULL);
if (!fs_kobj)
printk(KERN_WARNING "%s: kobj create error\n", __func__);
shmem_init();
init_rootfs();
init_mount_tree();
}
void put_mnt_ns(struct mnt_namespace *ns)
{
if (!refcount_dec_and_test(&ns->ns.count))
return;
drop_collected_mounts(&ns->root->mnt);
free_mnt_ns(ns);
}
struct vfsmount *kern_mount(struct file_system_type *type)
{
struct vfsmount *mnt;
mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
if (!IS_ERR(mnt)) {
/*
* it is a longterm mount, don't release mnt until
* we unmount before file sys is unregistered
*/
real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
}
return mnt;
}
EXPORT_SYMBOL_GPL(kern_mount);
void kern_unmount(struct vfsmount *mnt)
{
/* release long term mount so mount point can be released */
if (!IS_ERR_OR_NULL(mnt)) {
real_mount(mnt)->mnt_ns = NULL;
synchronize_rcu(); /* yecchhh... */
mntput(mnt);
}
}
EXPORT_SYMBOL(kern_unmount);
void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
{
unsigned int i;
for (i = 0; i < num; i++)
if (mnt[i])
real_mount(mnt[i])->mnt_ns = NULL;
synchronize_rcu_expedited();
for (i = 0; i < num; i++)
mntput(mnt[i]);
}
EXPORT_SYMBOL(kern_unmount_array);
bool our_mnt(struct vfsmount *mnt)
{
return check_mnt(real_mount(mnt));
}
bool current_chrooted(void)
{
/* Does the current process have a non-standard root */
struct path ns_root;
struct path fs_root;
bool chrooted;
/* Find the namespace root */
ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
ns_root.dentry = ns_root.mnt->mnt_root;
path_get(&ns_root);
while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
;
get_fs_root(current->fs, &fs_root);
chrooted = !path_equal(&fs_root, &ns_root);
path_put(&fs_root);
path_put(&ns_root);
return chrooted;
}
static bool mnt_already_visible(struct mnt_namespace *ns,
const struct super_block *sb,
int *new_mnt_flags)
{
int new_flags = *new_mnt_flags;
struct mount *mnt;
bool visible = false;
down_read(&namespace_sem);
lock_ns_list(ns);
list_for_each_entry(mnt, &ns->list, mnt_list) {
struct mount *child;
int mnt_flags;
if (mnt_is_cursor(mnt))
continue;
if (mnt->mnt.mnt_sb->s_type != sb->s_type)
continue;
/* This mount is not fully visible if it's root directory
* is not the root directory of the filesystem.
*/
if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
continue;
/* A local view of the mount flags */
mnt_flags = mnt->mnt.mnt_flags;
/* Don't miss readonly hidden in the superblock flags */
if (sb_rdonly(mnt->mnt.mnt_sb))
mnt_flags |= MNT_LOCK_READONLY;
/* Verify the mount flags are equal to or more permissive
* than the proposed new mount.
*/
if ((mnt_flags & MNT_LOCK_READONLY) &&
!(new_flags & MNT_READONLY))
continue;
if ((mnt_flags & MNT_LOCK_ATIME) &&
((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
continue;
/* This mount is not fully visible if there are any
* locked child mounts that cover anything except for
* empty directories.
*/
list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
struct inode *inode = child->mnt_mountpoint->d_inode;
/* Only worry about locked mounts */
if (!(child->mnt.mnt_flags & MNT_LOCKED))
continue;
/* Is the directory permanetly empty? */
if (!is_empty_dir_inode(inode))
goto next;
}
/* Preserve the locked attributes */
*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
MNT_LOCK_ATIME);
visible = true;
goto found;
next: ;
}
found:
unlock_ns_list(ns);
up_read(&namespace_sem);
return visible;
}
static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
{
const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
struct mnt_namespace *ns = current->nsproxy->mnt_ns;
unsigned long s_iflags;
if (ns->user_ns == &init_user_ns)
return false;
/* Can this filesystem be too revealing? */
s_iflags = sb->s_iflags;
if (!(s_iflags & SB_I_USERNS_VISIBLE))
return false;
if ((s_iflags & required_iflags) != required_iflags) {
WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
required_iflags);
return true;
}
return !mnt_already_visible(ns, sb, new_mnt_flags);
}
bool mnt_may_suid(struct vfsmount *mnt)
{
/*
* Foreign mounts (accessed via fchdir or through /proc
* symlinks) are always treated as if they are nosuid. This
* prevents namespaces from trusting potentially unsafe
* suid/sgid bits, file caps, or security labels that originate
* in other namespaces.
*/
return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
current_in_userns(mnt->mnt_sb->s_user_ns);
}
static struct ns_common *mntns_get(struct task_struct *task)
{
struct ns_common *ns = NULL;
struct nsproxy *nsproxy;
task_lock(task);
nsproxy = task->nsproxy;
if (nsproxy) {
ns = &nsproxy->mnt_ns->ns;
get_mnt_ns(to_mnt_ns(ns));
}
task_unlock(task);
return ns;
}
static void mntns_put(struct ns_common *ns)
{
put_mnt_ns(to_mnt_ns(ns));
}
static int mntns_install(struct nsset *nsset, struct ns_common *ns)
{
struct nsproxy *nsproxy = nsset->nsproxy;
struct fs_struct *fs = nsset->fs;
struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
struct user_namespace *user_ns = nsset->cred->user_ns;
struct path root;
int err;
if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
!ns_capable(user_ns, CAP_SYS_CHROOT) ||
!ns_capable(user_ns, CAP_SYS_ADMIN))
return -EPERM;
if (is_anon_ns(mnt_ns))
return -EINVAL;
if (fs->users != 1)
return -EINVAL;
get_mnt_ns(mnt_ns);
old_mnt_ns = nsproxy->mnt_ns;
nsproxy->mnt_ns = mnt_ns;
/* Find the root */
err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
"/", LOOKUP_DOWN, &root);
if (err) {
/* revert to old namespace */
nsproxy->mnt_ns = old_mnt_ns;
put_mnt_ns(mnt_ns);
return err;
}
put_mnt_ns(old_mnt_ns);
/* Update the pwd and root */
set_fs_pwd(fs, &root);
set_fs_root(fs, &root);
path_put(&root);
return 0;
}
static struct user_namespace *mntns_owner(struct ns_common *ns)
{
return to_mnt_ns(ns)->user_ns;
}
const struct proc_ns_operations mntns_operations = {
.name = "mnt",
.type = CLONE_NEWNS,
.get = mntns_get,
.put = mntns_put,
.install = mntns_install,
.owner = mntns_owner,
};