mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-07 13:13:57 +08:00
60a07bb9ba
vcpu.c provides processor virtualization logic for kvm. Signed-off-by: Anthony Xu <anthony.xu@intel.com> Signed-off-by: Xiantao Zhang <xiantao.zhang@intel.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2164 lines
48 KiB
C
2164 lines
48 KiB
C
/*
|
|
* kvm_vcpu.c: handling all virtual cpu related thing.
|
|
* Copyright (c) 2005, Intel Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
|
* Place - Suite 330, Boston, MA 02111-1307 USA.
|
|
*
|
|
* Shaofan Li (Susue Li) <susie.li@intel.com>
|
|
* Yaozu Dong (Eddie Dong) (Eddie.dong@intel.com)
|
|
* Xuefei Xu (Anthony Xu) (Anthony.xu@intel.com)
|
|
* Xiantao Zhang <xiantao.zhang@intel.com>
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/types.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/ia64regs.h>
|
|
#include <asm/gcc_intrin.h>
|
|
#include <asm/kregs.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tlb.h>
|
|
|
|
#include "asm-offsets.h"
|
|
#include "vcpu.h"
|
|
|
|
/*
|
|
* Special notes:
|
|
* - Index by it/dt/rt sequence
|
|
* - Only existing mode transitions are allowed in this table
|
|
* - RSE is placed at lazy mode when emulating guest partial mode
|
|
* - If gva happens to be rr0 and rr4, only allowed case is identity
|
|
* mapping (gva=gpa), or panic! (How?)
|
|
*/
|
|
int mm_switch_table[8][8] = {
|
|
/* 2004/09/12(Kevin): Allow switch to self */
|
|
/*
|
|
* (it,dt,rt): (0,0,0) -> (1,1,1)
|
|
* This kind of transition usually occurs in the very early
|
|
* stage of Linux boot up procedure. Another case is in efi
|
|
* and pal calls. (see "arch/ia64/kernel/head.S")
|
|
*
|
|
* (it,dt,rt): (0,0,0) -> (0,1,1)
|
|
* This kind of transition is found when OSYa exits efi boot
|
|
* service. Due to gva = gpa in this case (Same region),
|
|
* data access can be satisfied though itlb entry for physical
|
|
* emulation is hit.
|
|
*/
|
|
{SW_SELF, 0, 0, SW_NOP, 0, 0, 0, SW_P2V},
|
|
{0, 0, 0, 0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0, 0, 0, 0},
|
|
/*
|
|
* (it,dt,rt): (0,1,1) -> (1,1,1)
|
|
* This kind of transition is found in OSYa.
|
|
*
|
|
* (it,dt,rt): (0,1,1) -> (0,0,0)
|
|
* This kind of transition is found in OSYa
|
|
*/
|
|
{SW_NOP, 0, 0, SW_SELF, 0, 0, 0, SW_P2V},
|
|
/* (1,0,0)->(1,1,1) */
|
|
{0, 0, 0, 0, 0, 0, 0, SW_P2V},
|
|
/*
|
|
* (it,dt,rt): (1,0,1) -> (1,1,1)
|
|
* This kind of transition usually occurs when Linux returns
|
|
* from the low level TLB miss handlers.
|
|
* (see "arch/ia64/kernel/ivt.S")
|
|
*/
|
|
{0, 0, 0, 0, 0, SW_SELF, 0, SW_P2V},
|
|
{0, 0, 0, 0, 0, 0, 0, 0},
|
|
/*
|
|
* (it,dt,rt): (1,1,1) -> (1,0,1)
|
|
* This kind of transition usually occurs in Linux low level
|
|
* TLB miss handler. (see "arch/ia64/kernel/ivt.S")
|
|
*
|
|
* (it,dt,rt): (1,1,1) -> (0,0,0)
|
|
* This kind of transition usually occurs in pal and efi calls,
|
|
* which requires running in physical mode.
|
|
* (see "arch/ia64/kernel/head.S")
|
|
* (1,1,1)->(1,0,0)
|
|
*/
|
|
|
|
{SW_V2P, 0, 0, 0, SW_V2P, SW_V2P, 0, SW_SELF},
|
|
};
|
|
|
|
void physical_mode_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.mode_flags = GUEST_IN_PHY;
|
|
}
|
|
|
|
void switch_to_physical_rid(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long psr;
|
|
|
|
/* Save original virtual mode rr[0] and rr[4] */
|
|
psr = ia64_clear_ic();
|
|
ia64_set_rr(VRN0<<VRN_SHIFT, vcpu->arch.metaphysical_rr0);
|
|
ia64_srlz_d();
|
|
ia64_set_rr(VRN4<<VRN_SHIFT, vcpu->arch.metaphysical_rr4);
|
|
ia64_srlz_d();
|
|
|
|
ia64_set_psr(psr);
|
|
return;
|
|
}
|
|
|
|
|
|
void switch_to_virtual_rid(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long psr;
|
|
|
|
psr = ia64_clear_ic();
|
|
ia64_set_rr(VRN0 << VRN_SHIFT, vcpu->arch.metaphysical_saved_rr0);
|
|
ia64_srlz_d();
|
|
ia64_set_rr(VRN4 << VRN_SHIFT, vcpu->arch.metaphysical_saved_rr4);
|
|
ia64_srlz_d();
|
|
ia64_set_psr(psr);
|
|
return;
|
|
}
|
|
|
|
static int mm_switch_action(struct ia64_psr opsr, struct ia64_psr npsr)
|
|
{
|
|
return mm_switch_table[MODE_IND(opsr)][MODE_IND(npsr)];
|
|
}
|
|
|
|
void switch_mm_mode(struct kvm_vcpu *vcpu, struct ia64_psr old_psr,
|
|
struct ia64_psr new_psr)
|
|
{
|
|
int act;
|
|
act = mm_switch_action(old_psr, new_psr);
|
|
switch (act) {
|
|
case SW_V2P:
|
|
/*printk("V -> P mode transition: (0x%lx -> 0x%lx)\n",
|
|
old_psr.val, new_psr.val);*/
|
|
switch_to_physical_rid(vcpu);
|
|
/*
|
|
* Set rse to enforced lazy, to prevent active rse
|
|
*save/restor when guest physical mode.
|
|
*/
|
|
vcpu->arch.mode_flags |= GUEST_IN_PHY;
|
|
break;
|
|
case SW_P2V:
|
|
switch_to_virtual_rid(vcpu);
|
|
/*
|
|
* recover old mode which is saved when entering
|
|
* guest physical mode
|
|
*/
|
|
vcpu->arch.mode_flags &= ~GUEST_IN_PHY;
|
|
break;
|
|
case SW_SELF:
|
|
break;
|
|
case SW_NOP:
|
|
break;
|
|
default:
|
|
/* Sanity check */
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* In physical mode, insert tc/tr for region 0 and 4 uses
|
|
* RID[0] and RID[4] which is for physical mode emulation.
|
|
* However what those inserted tc/tr wants is rid for
|
|
* virtual mode. So original virtual rid needs to be restored
|
|
* before insert.
|
|
*
|
|
* Operations which required such switch include:
|
|
* - insertions (itc.*, itr.*)
|
|
* - purges (ptc.* and ptr.*)
|
|
* - tpa
|
|
* - tak
|
|
* - thash?, ttag?
|
|
* All above needs actual virtual rid for destination entry.
|
|
*/
|
|
|
|
void check_mm_mode_switch(struct kvm_vcpu *vcpu, struct ia64_psr old_psr,
|
|
struct ia64_psr new_psr)
|
|
{
|
|
|
|
if ((old_psr.dt != new_psr.dt)
|
|
|| (old_psr.it != new_psr.it)
|
|
|| (old_psr.rt != new_psr.rt))
|
|
switch_mm_mode(vcpu, old_psr, new_psr);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* In physical mode, insert tc/tr for region 0 and 4 uses
|
|
* RID[0] and RID[4] which is for physical mode emulation.
|
|
* However what those inserted tc/tr wants is rid for
|
|
* virtual mode. So original virtual rid needs to be restored
|
|
* before insert.
|
|
*
|
|
* Operations which required such switch include:
|
|
* - insertions (itc.*, itr.*)
|
|
* - purges (ptc.* and ptr.*)
|
|
* - tpa
|
|
* - tak
|
|
* - thash?, ttag?
|
|
* All above needs actual virtual rid for destination entry.
|
|
*/
|
|
|
|
void prepare_if_physical_mode(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (is_physical_mode(vcpu)) {
|
|
vcpu->arch.mode_flags |= GUEST_PHY_EMUL;
|
|
switch_to_virtual_rid(vcpu);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Recover always follows prepare */
|
|
void recover_if_physical_mode(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (is_physical_mode(vcpu))
|
|
switch_to_physical_rid(vcpu);
|
|
vcpu->arch.mode_flags &= ~GUEST_PHY_EMUL;
|
|
return;
|
|
}
|
|
|
|
#define RPT(x) ((u16) &((struct kvm_pt_regs *)0)->x)
|
|
|
|
static u16 gr_info[32] = {
|
|
0, /* r0 is read-only : WE SHOULD NEVER GET THIS */
|
|
RPT(r1), RPT(r2), RPT(r3),
|
|
RPT(r4), RPT(r5), RPT(r6), RPT(r7),
|
|
RPT(r8), RPT(r9), RPT(r10), RPT(r11),
|
|
RPT(r12), RPT(r13), RPT(r14), RPT(r15),
|
|
RPT(r16), RPT(r17), RPT(r18), RPT(r19),
|
|
RPT(r20), RPT(r21), RPT(r22), RPT(r23),
|
|
RPT(r24), RPT(r25), RPT(r26), RPT(r27),
|
|
RPT(r28), RPT(r29), RPT(r30), RPT(r31)
|
|
};
|
|
|
|
#define IA64_FIRST_STACKED_GR 32
|
|
#define IA64_FIRST_ROTATING_FR 32
|
|
|
|
static inline unsigned long
|
|
rotate_reg(unsigned long sor, unsigned long rrb, unsigned long reg)
|
|
{
|
|
reg += rrb;
|
|
if (reg >= sor)
|
|
reg -= sor;
|
|
return reg;
|
|
}
|
|
|
|
/*
|
|
* Return the (rotated) index for floating point register
|
|
* be in the REGNUM (REGNUM must range from 32-127,
|
|
* result is in the range from 0-95.
|
|
*/
|
|
static inline unsigned long fph_index(struct kvm_pt_regs *regs,
|
|
long regnum)
|
|
{
|
|
unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f;
|
|
return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR));
|
|
}
|
|
|
|
|
|
/*
|
|
* The inverse of the above: given bspstore and the number of
|
|
* registers, calculate ar.bsp.
|
|
*/
|
|
static inline unsigned long *kvm_rse_skip_regs(unsigned long *addr,
|
|
long num_regs)
|
|
{
|
|
long delta = ia64_rse_slot_num(addr) + num_regs;
|
|
int i = 0;
|
|
|
|
if (num_regs < 0)
|
|
delta -= 0x3e;
|
|
if (delta < 0) {
|
|
while (delta <= -0x3f) {
|
|
i--;
|
|
delta += 0x3f;
|
|
}
|
|
} else {
|
|
while (delta >= 0x3f) {
|
|
i++;
|
|
delta -= 0x3f;
|
|
}
|
|
}
|
|
|
|
return addr + num_regs + i;
|
|
}
|
|
|
|
static void get_rse_reg(struct kvm_pt_regs *regs, unsigned long r1,
|
|
unsigned long *val, int *nat)
|
|
{
|
|
unsigned long *bsp, *addr, *rnat_addr, *bspstore;
|
|
unsigned long *kbs = (void *) current_vcpu + VMM_RBS_OFFSET;
|
|
unsigned long nat_mask;
|
|
unsigned long old_rsc, new_rsc;
|
|
long sof = (regs->cr_ifs) & 0x7f;
|
|
long sor = (((regs->cr_ifs >> 14) & 0xf) << 3);
|
|
long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
|
|
long ridx = r1 - 32;
|
|
|
|
if (ridx < sor)
|
|
ridx = rotate_reg(sor, rrb_gr, ridx);
|
|
|
|
old_rsc = ia64_getreg(_IA64_REG_AR_RSC);
|
|
new_rsc = old_rsc&(~(0x3));
|
|
ia64_setreg(_IA64_REG_AR_RSC, new_rsc);
|
|
|
|
bspstore = (unsigned long *)ia64_getreg(_IA64_REG_AR_BSPSTORE);
|
|
bsp = kbs + (regs->loadrs >> 19);
|
|
|
|
addr = kvm_rse_skip_regs(bsp, -sof + ridx);
|
|
nat_mask = 1UL << ia64_rse_slot_num(addr);
|
|
rnat_addr = ia64_rse_rnat_addr(addr);
|
|
|
|
if (addr >= bspstore) {
|
|
ia64_flushrs();
|
|
ia64_mf();
|
|
bspstore = (unsigned long *)ia64_getreg(_IA64_REG_AR_BSPSTORE);
|
|
}
|
|
*val = *addr;
|
|
if (nat) {
|
|
if (bspstore < rnat_addr)
|
|
*nat = (int)!!(ia64_getreg(_IA64_REG_AR_RNAT)
|
|
& nat_mask);
|
|
else
|
|
*nat = (int)!!((*rnat_addr) & nat_mask);
|
|
ia64_setreg(_IA64_REG_AR_RSC, old_rsc);
|
|
}
|
|
}
|
|
|
|
void set_rse_reg(struct kvm_pt_regs *regs, unsigned long r1,
|
|
unsigned long val, unsigned long nat)
|
|
{
|
|
unsigned long *bsp, *bspstore, *addr, *rnat_addr;
|
|
unsigned long *kbs = (void *) current_vcpu + VMM_RBS_OFFSET;
|
|
unsigned long nat_mask;
|
|
unsigned long old_rsc, new_rsc, psr;
|
|
unsigned long rnat;
|
|
long sof = (regs->cr_ifs) & 0x7f;
|
|
long sor = (((regs->cr_ifs >> 14) & 0xf) << 3);
|
|
long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
|
|
long ridx = r1 - 32;
|
|
|
|
if (ridx < sor)
|
|
ridx = rotate_reg(sor, rrb_gr, ridx);
|
|
|
|
old_rsc = ia64_getreg(_IA64_REG_AR_RSC);
|
|
/* put RSC to lazy mode, and set loadrs 0 */
|
|
new_rsc = old_rsc & (~0x3fff0003);
|
|
ia64_setreg(_IA64_REG_AR_RSC, new_rsc);
|
|
bsp = kbs + (regs->loadrs >> 19); /* 16 + 3 */
|
|
|
|
addr = kvm_rse_skip_regs(bsp, -sof + ridx);
|
|
nat_mask = 1UL << ia64_rse_slot_num(addr);
|
|
rnat_addr = ia64_rse_rnat_addr(addr);
|
|
|
|
local_irq_save(psr);
|
|
bspstore = (unsigned long *)ia64_getreg(_IA64_REG_AR_BSPSTORE);
|
|
if (addr >= bspstore) {
|
|
|
|
ia64_flushrs();
|
|
ia64_mf();
|
|
*addr = val;
|
|
bspstore = (unsigned long *)ia64_getreg(_IA64_REG_AR_BSPSTORE);
|
|
rnat = ia64_getreg(_IA64_REG_AR_RNAT);
|
|
if (bspstore < rnat_addr)
|
|
rnat = rnat & (~nat_mask);
|
|
else
|
|
*rnat_addr = (*rnat_addr)&(~nat_mask);
|
|
|
|
ia64_mf();
|
|
ia64_loadrs();
|
|
ia64_setreg(_IA64_REG_AR_RNAT, rnat);
|
|
} else {
|
|
rnat = ia64_getreg(_IA64_REG_AR_RNAT);
|
|
*addr = val;
|
|
if (bspstore < rnat_addr)
|
|
rnat = rnat&(~nat_mask);
|
|
else
|
|
*rnat_addr = (*rnat_addr) & (~nat_mask);
|
|
|
|
ia64_setreg(_IA64_REG_AR_BSPSTORE, bspstore);
|
|
ia64_setreg(_IA64_REG_AR_RNAT, rnat);
|
|
}
|
|
local_irq_restore(psr);
|
|
ia64_setreg(_IA64_REG_AR_RSC, old_rsc);
|
|
}
|
|
|
|
void getreg(unsigned long regnum, unsigned long *val,
|
|
int *nat, struct kvm_pt_regs *regs)
|
|
{
|
|
unsigned long addr, *unat;
|
|
if (regnum >= IA64_FIRST_STACKED_GR) {
|
|
get_rse_reg(regs, regnum, val, nat);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Now look at registers in [0-31] range and init correct UNAT
|
|
*/
|
|
addr = (unsigned long)regs;
|
|
unat = ®s->eml_unat;;
|
|
|
|
addr += gr_info[regnum];
|
|
|
|
*val = *(unsigned long *)addr;
|
|
/*
|
|
* do it only when requested
|
|
*/
|
|
if (nat)
|
|
*nat = (*unat >> ((addr >> 3) & 0x3f)) & 0x1UL;
|
|
}
|
|
|
|
void setreg(unsigned long regnum, unsigned long val,
|
|
int nat, struct kvm_pt_regs *regs)
|
|
{
|
|
unsigned long addr;
|
|
unsigned long bitmask;
|
|
unsigned long *unat;
|
|
|
|
/*
|
|
* First takes care of stacked registers
|
|
*/
|
|
if (regnum >= IA64_FIRST_STACKED_GR) {
|
|
set_rse_reg(regs, regnum, val, nat);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Now look at registers in [0-31] range and init correct UNAT
|
|
*/
|
|
addr = (unsigned long)regs;
|
|
unat = ®s->eml_unat;
|
|
/*
|
|
* add offset from base of struct
|
|
* and do it !
|
|
*/
|
|
addr += gr_info[regnum];
|
|
|
|
*(unsigned long *)addr = val;
|
|
|
|
/*
|
|
* We need to clear the corresponding UNAT bit to fully emulate the load
|
|
* UNAT bit_pos = GR[r3]{8:3} form EAS-2.4
|
|
*/
|
|
bitmask = 1UL << ((addr >> 3) & 0x3f);
|
|
if (nat)
|
|
*unat |= bitmask;
|
|
else
|
|
*unat &= ~bitmask;
|
|
|
|
}
|
|
|
|
u64 vcpu_get_gr(struct kvm_vcpu *vcpu, unsigned long reg)
|
|
{
|
|
struct kvm_pt_regs *regs = vcpu_regs(vcpu);
|
|
u64 val;
|
|
|
|
if (!reg)
|
|
return 0;
|
|
getreg(reg, &val, 0, regs);
|
|
return val;
|
|
}
|
|
|
|
void vcpu_set_gr(struct kvm_vcpu *vcpu, u64 reg, u64 value, int nat)
|
|
{
|
|
struct kvm_pt_regs *regs = vcpu_regs(vcpu);
|
|
long sof = (regs->cr_ifs) & 0x7f;
|
|
|
|
if (!reg)
|
|
return;
|
|
if (reg >= sof + 32)
|
|
return;
|
|
setreg(reg, value, nat, regs); /* FIXME: handle NATs later*/
|
|
}
|
|
|
|
void getfpreg(unsigned long regnum, struct ia64_fpreg *fpval,
|
|
struct kvm_pt_regs *regs)
|
|
{
|
|
/* Take floating register rotation into consideration*/
|
|
if (regnum >= IA64_FIRST_ROTATING_FR)
|
|
regnum = IA64_FIRST_ROTATING_FR + fph_index(regs, regnum);
|
|
#define CASE_FIXED_FP(reg) \
|
|
case (reg) : \
|
|
ia64_stf_spill(fpval, reg); \
|
|
break
|
|
|
|
switch (regnum) {
|
|
CASE_FIXED_FP(0);
|
|
CASE_FIXED_FP(1);
|
|
CASE_FIXED_FP(2);
|
|
CASE_FIXED_FP(3);
|
|
CASE_FIXED_FP(4);
|
|
CASE_FIXED_FP(5);
|
|
|
|
CASE_FIXED_FP(6);
|
|
CASE_FIXED_FP(7);
|
|
CASE_FIXED_FP(8);
|
|
CASE_FIXED_FP(9);
|
|
CASE_FIXED_FP(10);
|
|
CASE_FIXED_FP(11);
|
|
|
|
CASE_FIXED_FP(12);
|
|
CASE_FIXED_FP(13);
|
|
CASE_FIXED_FP(14);
|
|
CASE_FIXED_FP(15);
|
|
CASE_FIXED_FP(16);
|
|
CASE_FIXED_FP(17);
|
|
CASE_FIXED_FP(18);
|
|
CASE_FIXED_FP(19);
|
|
CASE_FIXED_FP(20);
|
|
CASE_FIXED_FP(21);
|
|
CASE_FIXED_FP(22);
|
|
CASE_FIXED_FP(23);
|
|
CASE_FIXED_FP(24);
|
|
CASE_FIXED_FP(25);
|
|
CASE_FIXED_FP(26);
|
|
CASE_FIXED_FP(27);
|
|
CASE_FIXED_FP(28);
|
|
CASE_FIXED_FP(29);
|
|
CASE_FIXED_FP(30);
|
|
CASE_FIXED_FP(31);
|
|
CASE_FIXED_FP(32);
|
|
CASE_FIXED_FP(33);
|
|
CASE_FIXED_FP(34);
|
|
CASE_FIXED_FP(35);
|
|
CASE_FIXED_FP(36);
|
|
CASE_FIXED_FP(37);
|
|
CASE_FIXED_FP(38);
|
|
CASE_FIXED_FP(39);
|
|
CASE_FIXED_FP(40);
|
|
CASE_FIXED_FP(41);
|
|
CASE_FIXED_FP(42);
|
|
CASE_FIXED_FP(43);
|
|
CASE_FIXED_FP(44);
|
|
CASE_FIXED_FP(45);
|
|
CASE_FIXED_FP(46);
|
|
CASE_FIXED_FP(47);
|
|
CASE_FIXED_FP(48);
|
|
CASE_FIXED_FP(49);
|
|
CASE_FIXED_FP(50);
|
|
CASE_FIXED_FP(51);
|
|
CASE_FIXED_FP(52);
|
|
CASE_FIXED_FP(53);
|
|
CASE_FIXED_FP(54);
|
|
CASE_FIXED_FP(55);
|
|
CASE_FIXED_FP(56);
|
|
CASE_FIXED_FP(57);
|
|
CASE_FIXED_FP(58);
|
|
CASE_FIXED_FP(59);
|
|
CASE_FIXED_FP(60);
|
|
CASE_FIXED_FP(61);
|
|
CASE_FIXED_FP(62);
|
|
CASE_FIXED_FP(63);
|
|
CASE_FIXED_FP(64);
|
|
CASE_FIXED_FP(65);
|
|
CASE_FIXED_FP(66);
|
|
CASE_FIXED_FP(67);
|
|
CASE_FIXED_FP(68);
|
|
CASE_FIXED_FP(69);
|
|
CASE_FIXED_FP(70);
|
|
CASE_FIXED_FP(71);
|
|
CASE_FIXED_FP(72);
|
|
CASE_FIXED_FP(73);
|
|
CASE_FIXED_FP(74);
|
|
CASE_FIXED_FP(75);
|
|
CASE_FIXED_FP(76);
|
|
CASE_FIXED_FP(77);
|
|
CASE_FIXED_FP(78);
|
|
CASE_FIXED_FP(79);
|
|
CASE_FIXED_FP(80);
|
|
CASE_FIXED_FP(81);
|
|
CASE_FIXED_FP(82);
|
|
CASE_FIXED_FP(83);
|
|
CASE_FIXED_FP(84);
|
|
CASE_FIXED_FP(85);
|
|
CASE_FIXED_FP(86);
|
|
CASE_FIXED_FP(87);
|
|
CASE_FIXED_FP(88);
|
|
CASE_FIXED_FP(89);
|
|
CASE_FIXED_FP(90);
|
|
CASE_FIXED_FP(91);
|
|
CASE_FIXED_FP(92);
|
|
CASE_FIXED_FP(93);
|
|
CASE_FIXED_FP(94);
|
|
CASE_FIXED_FP(95);
|
|
CASE_FIXED_FP(96);
|
|
CASE_FIXED_FP(97);
|
|
CASE_FIXED_FP(98);
|
|
CASE_FIXED_FP(99);
|
|
CASE_FIXED_FP(100);
|
|
CASE_FIXED_FP(101);
|
|
CASE_FIXED_FP(102);
|
|
CASE_FIXED_FP(103);
|
|
CASE_FIXED_FP(104);
|
|
CASE_FIXED_FP(105);
|
|
CASE_FIXED_FP(106);
|
|
CASE_FIXED_FP(107);
|
|
CASE_FIXED_FP(108);
|
|
CASE_FIXED_FP(109);
|
|
CASE_FIXED_FP(110);
|
|
CASE_FIXED_FP(111);
|
|
CASE_FIXED_FP(112);
|
|
CASE_FIXED_FP(113);
|
|
CASE_FIXED_FP(114);
|
|
CASE_FIXED_FP(115);
|
|
CASE_FIXED_FP(116);
|
|
CASE_FIXED_FP(117);
|
|
CASE_FIXED_FP(118);
|
|
CASE_FIXED_FP(119);
|
|
CASE_FIXED_FP(120);
|
|
CASE_FIXED_FP(121);
|
|
CASE_FIXED_FP(122);
|
|
CASE_FIXED_FP(123);
|
|
CASE_FIXED_FP(124);
|
|
CASE_FIXED_FP(125);
|
|
CASE_FIXED_FP(126);
|
|
CASE_FIXED_FP(127);
|
|
}
|
|
#undef CASE_FIXED_FP
|
|
}
|
|
|
|
void setfpreg(unsigned long regnum, struct ia64_fpreg *fpval,
|
|
struct kvm_pt_regs *regs)
|
|
{
|
|
/* Take floating register rotation into consideration*/
|
|
if (regnum >= IA64_FIRST_ROTATING_FR)
|
|
regnum = IA64_FIRST_ROTATING_FR + fph_index(regs, regnum);
|
|
|
|
#define CASE_FIXED_FP(reg) \
|
|
case (reg) : \
|
|
ia64_ldf_fill(reg, fpval); \
|
|
break
|
|
|
|
switch (regnum) {
|
|
CASE_FIXED_FP(2);
|
|
CASE_FIXED_FP(3);
|
|
CASE_FIXED_FP(4);
|
|
CASE_FIXED_FP(5);
|
|
|
|
CASE_FIXED_FP(6);
|
|
CASE_FIXED_FP(7);
|
|
CASE_FIXED_FP(8);
|
|
CASE_FIXED_FP(9);
|
|
CASE_FIXED_FP(10);
|
|
CASE_FIXED_FP(11);
|
|
|
|
CASE_FIXED_FP(12);
|
|
CASE_FIXED_FP(13);
|
|
CASE_FIXED_FP(14);
|
|
CASE_FIXED_FP(15);
|
|
CASE_FIXED_FP(16);
|
|
CASE_FIXED_FP(17);
|
|
CASE_FIXED_FP(18);
|
|
CASE_FIXED_FP(19);
|
|
CASE_FIXED_FP(20);
|
|
CASE_FIXED_FP(21);
|
|
CASE_FIXED_FP(22);
|
|
CASE_FIXED_FP(23);
|
|
CASE_FIXED_FP(24);
|
|
CASE_FIXED_FP(25);
|
|
CASE_FIXED_FP(26);
|
|
CASE_FIXED_FP(27);
|
|
CASE_FIXED_FP(28);
|
|
CASE_FIXED_FP(29);
|
|
CASE_FIXED_FP(30);
|
|
CASE_FIXED_FP(31);
|
|
CASE_FIXED_FP(32);
|
|
CASE_FIXED_FP(33);
|
|
CASE_FIXED_FP(34);
|
|
CASE_FIXED_FP(35);
|
|
CASE_FIXED_FP(36);
|
|
CASE_FIXED_FP(37);
|
|
CASE_FIXED_FP(38);
|
|
CASE_FIXED_FP(39);
|
|
CASE_FIXED_FP(40);
|
|
CASE_FIXED_FP(41);
|
|
CASE_FIXED_FP(42);
|
|
CASE_FIXED_FP(43);
|
|
CASE_FIXED_FP(44);
|
|
CASE_FIXED_FP(45);
|
|
CASE_FIXED_FP(46);
|
|
CASE_FIXED_FP(47);
|
|
CASE_FIXED_FP(48);
|
|
CASE_FIXED_FP(49);
|
|
CASE_FIXED_FP(50);
|
|
CASE_FIXED_FP(51);
|
|
CASE_FIXED_FP(52);
|
|
CASE_FIXED_FP(53);
|
|
CASE_FIXED_FP(54);
|
|
CASE_FIXED_FP(55);
|
|
CASE_FIXED_FP(56);
|
|
CASE_FIXED_FP(57);
|
|
CASE_FIXED_FP(58);
|
|
CASE_FIXED_FP(59);
|
|
CASE_FIXED_FP(60);
|
|
CASE_FIXED_FP(61);
|
|
CASE_FIXED_FP(62);
|
|
CASE_FIXED_FP(63);
|
|
CASE_FIXED_FP(64);
|
|
CASE_FIXED_FP(65);
|
|
CASE_FIXED_FP(66);
|
|
CASE_FIXED_FP(67);
|
|
CASE_FIXED_FP(68);
|
|
CASE_FIXED_FP(69);
|
|
CASE_FIXED_FP(70);
|
|
CASE_FIXED_FP(71);
|
|
CASE_FIXED_FP(72);
|
|
CASE_FIXED_FP(73);
|
|
CASE_FIXED_FP(74);
|
|
CASE_FIXED_FP(75);
|
|
CASE_FIXED_FP(76);
|
|
CASE_FIXED_FP(77);
|
|
CASE_FIXED_FP(78);
|
|
CASE_FIXED_FP(79);
|
|
CASE_FIXED_FP(80);
|
|
CASE_FIXED_FP(81);
|
|
CASE_FIXED_FP(82);
|
|
CASE_FIXED_FP(83);
|
|
CASE_FIXED_FP(84);
|
|
CASE_FIXED_FP(85);
|
|
CASE_FIXED_FP(86);
|
|
CASE_FIXED_FP(87);
|
|
CASE_FIXED_FP(88);
|
|
CASE_FIXED_FP(89);
|
|
CASE_FIXED_FP(90);
|
|
CASE_FIXED_FP(91);
|
|
CASE_FIXED_FP(92);
|
|
CASE_FIXED_FP(93);
|
|
CASE_FIXED_FP(94);
|
|
CASE_FIXED_FP(95);
|
|
CASE_FIXED_FP(96);
|
|
CASE_FIXED_FP(97);
|
|
CASE_FIXED_FP(98);
|
|
CASE_FIXED_FP(99);
|
|
CASE_FIXED_FP(100);
|
|
CASE_FIXED_FP(101);
|
|
CASE_FIXED_FP(102);
|
|
CASE_FIXED_FP(103);
|
|
CASE_FIXED_FP(104);
|
|
CASE_FIXED_FP(105);
|
|
CASE_FIXED_FP(106);
|
|
CASE_FIXED_FP(107);
|
|
CASE_FIXED_FP(108);
|
|
CASE_FIXED_FP(109);
|
|
CASE_FIXED_FP(110);
|
|
CASE_FIXED_FP(111);
|
|
CASE_FIXED_FP(112);
|
|
CASE_FIXED_FP(113);
|
|
CASE_FIXED_FP(114);
|
|
CASE_FIXED_FP(115);
|
|
CASE_FIXED_FP(116);
|
|
CASE_FIXED_FP(117);
|
|
CASE_FIXED_FP(118);
|
|
CASE_FIXED_FP(119);
|
|
CASE_FIXED_FP(120);
|
|
CASE_FIXED_FP(121);
|
|
CASE_FIXED_FP(122);
|
|
CASE_FIXED_FP(123);
|
|
CASE_FIXED_FP(124);
|
|
CASE_FIXED_FP(125);
|
|
CASE_FIXED_FP(126);
|
|
CASE_FIXED_FP(127);
|
|
}
|
|
}
|
|
|
|
void vcpu_get_fpreg(struct kvm_vcpu *vcpu, unsigned long reg,
|
|
struct ia64_fpreg *val)
|
|
{
|
|
struct kvm_pt_regs *regs = vcpu_regs(vcpu);
|
|
|
|
getfpreg(reg, val, regs); /* FIXME: handle NATs later*/
|
|
}
|
|
|
|
void vcpu_set_fpreg(struct kvm_vcpu *vcpu, unsigned long reg,
|
|
struct ia64_fpreg *val)
|
|
{
|
|
struct kvm_pt_regs *regs = vcpu_regs(vcpu);
|
|
|
|
if (reg > 1)
|
|
setfpreg(reg, val, regs); /* FIXME: handle NATs later*/
|
|
}
|
|
|
|
/************************************************************************
|
|
* lsapic timer
|
|
***********************************************************************/
|
|
u64 vcpu_get_itc(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long guest_itc;
|
|
guest_itc = VMX(vcpu, itc_offset) + ia64_getreg(_IA64_REG_AR_ITC);
|
|
|
|
if (guest_itc >= VMX(vcpu, last_itc)) {
|
|
VMX(vcpu, last_itc) = guest_itc;
|
|
return guest_itc;
|
|
} else
|
|
return VMX(vcpu, last_itc);
|
|
}
|
|
|
|
static inline void vcpu_set_itm(struct kvm_vcpu *vcpu, u64 val);
|
|
static void vcpu_set_itc(struct kvm_vcpu *vcpu, u64 val)
|
|
{
|
|
struct kvm_vcpu *v;
|
|
int i;
|
|
long itc_offset = val - ia64_getreg(_IA64_REG_AR_ITC);
|
|
unsigned long vitv = VCPU(vcpu, itv);
|
|
|
|
if (vcpu->vcpu_id == 0) {
|
|
for (i = 0; i < MAX_VCPU_NUM; i++) {
|
|
v = (struct kvm_vcpu *)((char *)vcpu + VCPU_SIZE * i);
|
|
VMX(v, itc_offset) = itc_offset;
|
|
VMX(v, last_itc) = 0;
|
|
}
|
|
}
|
|
VMX(vcpu, last_itc) = 0;
|
|
if (VCPU(vcpu, itm) <= val) {
|
|
VMX(vcpu, itc_check) = 0;
|
|
vcpu_unpend_interrupt(vcpu, vitv);
|
|
} else {
|
|
VMX(vcpu, itc_check) = 1;
|
|
vcpu_set_itm(vcpu, VCPU(vcpu, itm));
|
|
}
|
|
|
|
}
|
|
|
|
static inline u64 vcpu_get_itm(struct kvm_vcpu *vcpu)
|
|
{
|
|
return ((u64)VCPU(vcpu, itm));
|
|
}
|
|
|
|
static inline void vcpu_set_itm(struct kvm_vcpu *vcpu, u64 val)
|
|
{
|
|
unsigned long vitv = VCPU(vcpu, itv);
|
|
VCPU(vcpu, itm) = val;
|
|
|
|
if (val > vcpu_get_itc(vcpu)) {
|
|
VMX(vcpu, itc_check) = 1;
|
|
vcpu_unpend_interrupt(vcpu, vitv);
|
|
VMX(vcpu, timer_pending) = 0;
|
|
} else
|
|
VMX(vcpu, itc_check) = 0;
|
|
}
|
|
|
|
#define ITV_VECTOR(itv) (itv&0xff)
|
|
#define ITV_IRQ_MASK(itv) (itv&(1<<16))
|
|
|
|
static inline void vcpu_set_itv(struct kvm_vcpu *vcpu, u64 val)
|
|
{
|
|
VCPU(vcpu, itv) = val;
|
|
if (!ITV_IRQ_MASK(val) && vcpu->arch.timer_pending) {
|
|
vcpu_pend_interrupt(vcpu, ITV_VECTOR(val));
|
|
vcpu->arch.timer_pending = 0;
|
|
}
|
|
}
|
|
|
|
static inline void vcpu_set_eoi(struct kvm_vcpu *vcpu, u64 val)
|
|
{
|
|
int vec;
|
|
|
|
vec = highest_inservice_irq(vcpu);
|
|
if (vec == NULL_VECTOR)
|
|
return;
|
|
VMX(vcpu, insvc[vec >> 6]) &= ~(1UL << (vec & 63));
|
|
VCPU(vcpu, eoi) = 0;
|
|
vcpu->arch.irq_new_pending = 1;
|
|
|
|
}
|
|
|
|
/* See Table 5-8 in SDM vol2 for the definition */
|
|
int irq_masked(struct kvm_vcpu *vcpu, int h_pending, int h_inservice)
|
|
{
|
|
union ia64_tpr vtpr;
|
|
|
|
vtpr.val = VCPU(vcpu, tpr);
|
|
|
|
if (h_inservice == NMI_VECTOR)
|
|
return IRQ_MASKED_BY_INSVC;
|
|
|
|
if (h_pending == NMI_VECTOR) {
|
|
/* Non Maskable Interrupt */
|
|
return IRQ_NO_MASKED;
|
|
}
|
|
|
|
if (h_inservice == ExtINT_VECTOR)
|
|
return IRQ_MASKED_BY_INSVC;
|
|
|
|
if (h_pending == ExtINT_VECTOR) {
|
|
if (vtpr.mmi) {
|
|
/* mask all external IRQ */
|
|
return IRQ_MASKED_BY_VTPR;
|
|
} else
|
|
return IRQ_NO_MASKED;
|
|
}
|
|
|
|
if (is_higher_irq(h_pending, h_inservice)) {
|
|
if (is_higher_class(h_pending, vtpr.mic + (vtpr.mmi << 4)))
|
|
return IRQ_NO_MASKED;
|
|
else
|
|
return IRQ_MASKED_BY_VTPR;
|
|
} else {
|
|
return IRQ_MASKED_BY_INSVC;
|
|
}
|
|
}
|
|
|
|
void vcpu_pend_interrupt(struct kvm_vcpu *vcpu, u8 vec)
|
|
{
|
|
long spsr;
|
|
int ret;
|
|
|
|
local_irq_save(spsr);
|
|
ret = test_and_set_bit(vec, &VCPU(vcpu, irr[0]));
|
|
local_irq_restore(spsr);
|
|
|
|
vcpu->arch.irq_new_pending = 1;
|
|
}
|
|
|
|
void vcpu_unpend_interrupt(struct kvm_vcpu *vcpu, u8 vec)
|
|
{
|
|
long spsr;
|
|
int ret;
|
|
|
|
local_irq_save(spsr);
|
|
ret = test_and_clear_bit(vec, &VCPU(vcpu, irr[0]));
|
|
local_irq_restore(spsr);
|
|
if (ret) {
|
|
vcpu->arch.irq_new_pending = 1;
|
|
wmb();
|
|
}
|
|
}
|
|
|
|
void update_vhpi(struct kvm_vcpu *vcpu, int vec)
|
|
{
|
|
u64 vhpi;
|
|
|
|
if (vec == NULL_VECTOR)
|
|
vhpi = 0;
|
|
else if (vec == NMI_VECTOR)
|
|
vhpi = 32;
|
|
else if (vec == ExtINT_VECTOR)
|
|
vhpi = 16;
|
|
else
|
|
vhpi = vec >> 4;
|
|
|
|
VCPU(vcpu, vhpi) = vhpi;
|
|
if (VCPU(vcpu, vac).a_int)
|
|
ia64_call_vsa(PAL_VPS_SET_PENDING_INTERRUPT,
|
|
(u64)vcpu->arch.vpd, 0, 0, 0, 0, 0, 0);
|
|
}
|
|
|
|
u64 vcpu_get_ivr(struct kvm_vcpu *vcpu)
|
|
{
|
|
int vec, h_inservice, mask;
|
|
|
|
vec = highest_pending_irq(vcpu);
|
|
h_inservice = highest_inservice_irq(vcpu);
|
|
mask = irq_masked(vcpu, vec, h_inservice);
|
|
if (vec == NULL_VECTOR || mask == IRQ_MASKED_BY_INSVC) {
|
|
if (VCPU(vcpu, vhpi))
|
|
update_vhpi(vcpu, NULL_VECTOR);
|
|
return IA64_SPURIOUS_INT_VECTOR;
|
|
}
|
|
if (mask == IRQ_MASKED_BY_VTPR) {
|
|
update_vhpi(vcpu, vec);
|
|
return IA64_SPURIOUS_INT_VECTOR;
|
|
}
|
|
VMX(vcpu, insvc[vec >> 6]) |= (1UL << (vec & 63));
|
|
vcpu_unpend_interrupt(vcpu, vec);
|
|
return (u64)vec;
|
|
}
|
|
|
|
/**************************************************************************
|
|
Privileged operation emulation routines
|
|
**************************************************************************/
|
|
u64 vcpu_thash(struct kvm_vcpu *vcpu, u64 vadr)
|
|
{
|
|
union ia64_pta vpta;
|
|
union ia64_rr vrr;
|
|
u64 pval;
|
|
u64 vhpt_offset;
|
|
|
|
vpta.val = vcpu_get_pta(vcpu);
|
|
vrr.val = vcpu_get_rr(vcpu, vadr);
|
|
vhpt_offset = ((vadr >> vrr.ps) << 3) & ((1UL << (vpta.size)) - 1);
|
|
if (vpta.vf) {
|
|
pval = ia64_call_vsa(PAL_VPS_THASH, vadr, vrr.val,
|
|
vpta.val, 0, 0, 0, 0);
|
|
} else {
|
|
pval = (vadr & VRN_MASK) | vhpt_offset |
|
|
(vpta.val << 3 >> (vpta.size + 3) << (vpta.size));
|
|
}
|
|
return pval;
|
|
}
|
|
|
|
u64 vcpu_ttag(struct kvm_vcpu *vcpu, u64 vadr)
|
|
{
|
|
union ia64_rr vrr;
|
|
union ia64_pta vpta;
|
|
u64 pval;
|
|
|
|
vpta.val = vcpu_get_pta(vcpu);
|
|
vrr.val = vcpu_get_rr(vcpu, vadr);
|
|
if (vpta.vf) {
|
|
pval = ia64_call_vsa(PAL_VPS_TTAG, vadr, vrr.val,
|
|
0, 0, 0, 0, 0);
|
|
} else
|
|
pval = 1;
|
|
|
|
return pval;
|
|
}
|
|
|
|
u64 vcpu_tak(struct kvm_vcpu *vcpu, u64 vadr)
|
|
{
|
|
struct thash_data *data;
|
|
union ia64_pta vpta;
|
|
u64 key;
|
|
|
|
vpta.val = vcpu_get_pta(vcpu);
|
|
if (vpta.vf == 0) {
|
|
key = 1;
|
|
return key;
|
|
}
|
|
data = vtlb_lookup(vcpu, vadr, D_TLB);
|
|
if (!data || !data->p)
|
|
key = 1;
|
|
else
|
|
key = data->key;
|
|
|
|
return key;
|
|
}
|
|
|
|
|
|
|
|
void kvm_thash(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long thash, vadr;
|
|
|
|
vadr = vcpu_get_gr(vcpu, inst.M46.r3);
|
|
thash = vcpu_thash(vcpu, vadr);
|
|
vcpu_set_gr(vcpu, inst.M46.r1, thash, 0);
|
|
}
|
|
|
|
|
|
void kvm_ttag(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long tag, vadr;
|
|
|
|
vadr = vcpu_get_gr(vcpu, inst.M46.r3);
|
|
tag = vcpu_ttag(vcpu, vadr);
|
|
vcpu_set_gr(vcpu, inst.M46.r1, tag, 0);
|
|
}
|
|
|
|
int vcpu_tpa(struct kvm_vcpu *vcpu, u64 vadr, u64 *padr)
|
|
{
|
|
struct thash_data *data;
|
|
union ia64_isr visr, pt_isr;
|
|
struct kvm_pt_regs *regs;
|
|
struct ia64_psr vpsr;
|
|
|
|
regs = vcpu_regs(vcpu);
|
|
pt_isr.val = VMX(vcpu, cr_isr);
|
|
visr.val = 0;
|
|
visr.ei = pt_isr.ei;
|
|
visr.ir = pt_isr.ir;
|
|
vpsr = *(struct ia64_psr *)&VCPU(vcpu, vpsr);
|
|
visr.na = 1;
|
|
|
|
data = vhpt_lookup(vadr);
|
|
if (data) {
|
|
if (data->p == 0) {
|
|
vcpu_set_isr(vcpu, visr.val);
|
|
data_page_not_present(vcpu, vadr);
|
|
return IA64_FAULT;
|
|
} else if (data->ma == VA_MATTR_NATPAGE) {
|
|
vcpu_set_isr(vcpu, visr.val);
|
|
dnat_page_consumption(vcpu, vadr);
|
|
return IA64_FAULT;
|
|
} else {
|
|
*padr = (data->gpaddr >> data->ps << data->ps) |
|
|
(vadr & (PSIZE(data->ps) - 1));
|
|
return IA64_NO_FAULT;
|
|
}
|
|
}
|
|
|
|
data = vtlb_lookup(vcpu, vadr, D_TLB);
|
|
if (data) {
|
|
if (data->p == 0) {
|
|
vcpu_set_isr(vcpu, visr.val);
|
|
data_page_not_present(vcpu, vadr);
|
|
return IA64_FAULT;
|
|
} else if (data->ma == VA_MATTR_NATPAGE) {
|
|
vcpu_set_isr(vcpu, visr.val);
|
|
dnat_page_consumption(vcpu, vadr);
|
|
return IA64_FAULT;
|
|
} else{
|
|
*padr = ((data->ppn >> (data->ps - 12)) << data->ps)
|
|
| (vadr & (PSIZE(data->ps) - 1));
|
|
return IA64_NO_FAULT;
|
|
}
|
|
}
|
|
if (!vhpt_enabled(vcpu, vadr, NA_REF)) {
|
|
if (vpsr.ic) {
|
|
vcpu_set_isr(vcpu, visr.val);
|
|
alt_dtlb(vcpu, vadr);
|
|
return IA64_FAULT;
|
|
} else {
|
|
nested_dtlb(vcpu);
|
|
return IA64_FAULT;
|
|
}
|
|
} else {
|
|
if (vpsr.ic) {
|
|
vcpu_set_isr(vcpu, visr.val);
|
|
dvhpt_fault(vcpu, vadr);
|
|
return IA64_FAULT;
|
|
} else{
|
|
nested_dtlb(vcpu);
|
|
return IA64_FAULT;
|
|
}
|
|
}
|
|
|
|
return IA64_NO_FAULT;
|
|
}
|
|
|
|
|
|
int kvm_tpa(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long r1, r3;
|
|
|
|
r3 = vcpu_get_gr(vcpu, inst.M46.r3);
|
|
|
|
if (vcpu_tpa(vcpu, r3, &r1))
|
|
return IA64_FAULT;
|
|
|
|
vcpu_set_gr(vcpu, inst.M46.r1, r1, 0);
|
|
return(IA64_NO_FAULT);
|
|
}
|
|
|
|
void kvm_tak(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long r1, r3;
|
|
|
|
r3 = vcpu_get_gr(vcpu, inst.M46.r3);
|
|
r1 = vcpu_tak(vcpu, r3);
|
|
vcpu_set_gr(vcpu, inst.M46.r1, r1, 0);
|
|
}
|
|
|
|
|
|
/************************************
|
|
* Insert/Purge translation register/cache
|
|
************************************/
|
|
void vcpu_itc_i(struct kvm_vcpu *vcpu, u64 pte, u64 itir, u64 ifa)
|
|
{
|
|
thash_purge_and_insert(vcpu, pte, itir, ifa, I_TLB);
|
|
}
|
|
|
|
void vcpu_itc_d(struct kvm_vcpu *vcpu, u64 pte, u64 itir, u64 ifa)
|
|
{
|
|
thash_purge_and_insert(vcpu, pte, itir, ifa, D_TLB);
|
|
}
|
|
|
|
void vcpu_itr_i(struct kvm_vcpu *vcpu, u64 slot, u64 pte, u64 itir, u64 ifa)
|
|
{
|
|
u64 ps, va, rid;
|
|
struct thash_data *p_itr;
|
|
|
|
ps = itir_ps(itir);
|
|
va = PAGEALIGN(ifa, ps);
|
|
pte &= ~PAGE_FLAGS_RV_MASK;
|
|
rid = vcpu_get_rr(vcpu, ifa);
|
|
rid = rid & RR_RID_MASK;
|
|
p_itr = (struct thash_data *)&vcpu->arch.itrs[slot];
|
|
vcpu_set_tr(p_itr, pte, itir, va, rid);
|
|
vcpu_quick_region_set(VMX(vcpu, itr_regions), va);
|
|
}
|
|
|
|
|
|
void vcpu_itr_d(struct kvm_vcpu *vcpu, u64 slot, u64 pte, u64 itir, u64 ifa)
|
|
{
|
|
u64 gpfn;
|
|
u64 ps, va, rid;
|
|
struct thash_data *p_dtr;
|
|
|
|
ps = itir_ps(itir);
|
|
va = PAGEALIGN(ifa, ps);
|
|
pte &= ~PAGE_FLAGS_RV_MASK;
|
|
|
|
if (ps != _PAGE_SIZE_16M)
|
|
thash_purge_entries(vcpu, va, ps);
|
|
gpfn = (pte & _PAGE_PPN_MASK) >> PAGE_SHIFT;
|
|
if (__gpfn_is_io(gpfn))
|
|
pte |= VTLB_PTE_IO;
|
|
rid = vcpu_get_rr(vcpu, va);
|
|
rid = rid & RR_RID_MASK;
|
|
p_dtr = (struct thash_data *)&vcpu->arch.dtrs[slot];
|
|
vcpu_set_tr((struct thash_data *)&vcpu->arch.dtrs[slot],
|
|
pte, itir, va, rid);
|
|
vcpu_quick_region_set(VMX(vcpu, dtr_regions), va);
|
|
}
|
|
|
|
void vcpu_ptr_d(struct kvm_vcpu *vcpu, u64 ifa, u64 ps)
|
|
{
|
|
int index;
|
|
u64 va;
|
|
|
|
va = PAGEALIGN(ifa, ps);
|
|
while ((index = vtr_find_overlap(vcpu, va, ps, D_TLB)) >= 0)
|
|
vcpu->arch.dtrs[index].page_flags = 0;
|
|
|
|
thash_purge_entries(vcpu, va, ps);
|
|
}
|
|
|
|
void vcpu_ptr_i(struct kvm_vcpu *vcpu, u64 ifa, u64 ps)
|
|
{
|
|
int index;
|
|
u64 va;
|
|
|
|
va = PAGEALIGN(ifa, ps);
|
|
while ((index = vtr_find_overlap(vcpu, va, ps, I_TLB)) >= 0)
|
|
vcpu->arch.itrs[index].page_flags = 0;
|
|
|
|
thash_purge_entries(vcpu, va, ps);
|
|
}
|
|
|
|
void vcpu_ptc_l(struct kvm_vcpu *vcpu, u64 va, u64 ps)
|
|
{
|
|
va = PAGEALIGN(va, ps);
|
|
thash_purge_entries(vcpu, va, ps);
|
|
}
|
|
|
|
void vcpu_ptc_e(struct kvm_vcpu *vcpu, u64 va)
|
|
{
|
|
thash_purge_all(vcpu);
|
|
}
|
|
|
|
void vcpu_ptc_ga(struct kvm_vcpu *vcpu, u64 va, u64 ps)
|
|
{
|
|
struct exit_ctl_data *p = &vcpu->arch.exit_data;
|
|
long psr;
|
|
local_irq_save(psr);
|
|
p->exit_reason = EXIT_REASON_PTC_G;
|
|
|
|
p->u.ptc_g_data.rr = vcpu_get_rr(vcpu, va);
|
|
p->u.ptc_g_data.vaddr = va;
|
|
p->u.ptc_g_data.ps = ps;
|
|
vmm_transition(vcpu);
|
|
/* Do Local Purge Here*/
|
|
vcpu_ptc_l(vcpu, va, ps);
|
|
local_irq_restore(psr);
|
|
}
|
|
|
|
|
|
void vcpu_ptc_g(struct kvm_vcpu *vcpu, u64 va, u64 ps)
|
|
{
|
|
vcpu_ptc_ga(vcpu, va, ps);
|
|
}
|
|
|
|
void kvm_ptc_e(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long ifa;
|
|
|
|
ifa = vcpu_get_gr(vcpu, inst.M45.r3);
|
|
vcpu_ptc_e(vcpu, ifa);
|
|
}
|
|
|
|
void kvm_ptc_g(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long ifa, itir;
|
|
|
|
ifa = vcpu_get_gr(vcpu, inst.M45.r3);
|
|
itir = vcpu_get_gr(vcpu, inst.M45.r2);
|
|
vcpu_ptc_g(vcpu, ifa, itir_ps(itir));
|
|
}
|
|
|
|
void kvm_ptc_ga(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long ifa, itir;
|
|
|
|
ifa = vcpu_get_gr(vcpu, inst.M45.r3);
|
|
itir = vcpu_get_gr(vcpu, inst.M45.r2);
|
|
vcpu_ptc_ga(vcpu, ifa, itir_ps(itir));
|
|
}
|
|
|
|
void kvm_ptc_l(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long ifa, itir;
|
|
|
|
ifa = vcpu_get_gr(vcpu, inst.M45.r3);
|
|
itir = vcpu_get_gr(vcpu, inst.M45.r2);
|
|
vcpu_ptc_l(vcpu, ifa, itir_ps(itir));
|
|
}
|
|
|
|
void kvm_ptr_d(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long ifa, itir;
|
|
|
|
ifa = vcpu_get_gr(vcpu, inst.M45.r3);
|
|
itir = vcpu_get_gr(vcpu, inst.M45.r2);
|
|
vcpu_ptr_d(vcpu, ifa, itir_ps(itir));
|
|
}
|
|
|
|
void kvm_ptr_i(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long ifa, itir;
|
|
|
|
ifa = vcpu_get_gr(vcpu, inst.M45.r3);
|
|
itir = vcpu_get_gr(vcpu, inst.M45.r2);
|
|
vcpu_ptr_i(vcpu, ifa, itir_ps(itir));
|
|
}
|
|
|
|
void kvm_itr_d(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long itir, ifa, pte, slot;
|
|
|
|
slot = vcpu_get_gr(vcpu, inst.M45.r3);
|
|
pte = vcpu_get_gr(vcpu, inst.M45.r2);
|
|
itir = vcpu_get_itir(vcpu);
|
|
ifa = vcpu_get_ifa(vcpu);
|
|
vcpu_itr_d(vcpu, slot, pte, itir, ifa);
|
|
}
|
|
|
|
|
|
|
|
void kvm_itr_i(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long itir, ifa, pte, slot;
|
|
|
|
slot = vcpu_get_gr(vcpu, inst.M45.r3);
|
|
pte = vcpu_get_gr(vcpu, inst.M45.r2);
|
|
itir = vcpu_get_itir(vcpu);
|
|
ifa = vcpu_get_ifa(vcpu);
|
|
vcpu_itr_i(vcpu, slot, pte, itir, ifa);
|
|
}
|
|
|
|
void kvm_itc_d(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long itir, ifa, pte;
|
|
|
|
itir = vcpu_get_itir(vcpu);
|
|
ifa = vcpu_get_ifa(vcpu);
|
|
pte = vcpu_get_gr(vcpu, inst.M45.r2);
|
|
vcpu_itc_d(vcpu, pte, itir, ifa);
|
|
}
|
|
|
|
void kvm_itc_i(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long itir, ifa, pte;
|
|
|
|
itir = vcpu_get_itir(vcpu);
|
|
ifa = vcpu_get_ifa(vcpu);
|
|
pte = vcpu_get_gr(vcpu, inst.M45.r2);
|
|
vcpu_itc_i(vcpu, pte, itir, ifa);
|
|
}
|
|
|
|
/*************************************
|
|
* Moves to semi-privileged registers
|
|
*************************************/
|
|
|
|
void kvm_mov_to_ar_imm(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long imm;
|
|
|
|
if (inst.M30.s)
|
|
imm = -inst.M30.imm;
|
|
else
|
|
imm = inst.M30.imm;
|
|
|
|
vcpu_set_itc(vcpu, imm);
|
|
}
|
|
|
|
void kvm_mov_to_ar_reg(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long r2;
|
|
|
|
r2 = vcpu_get_gr(vcpu, inst.M29.r2);
|
|
vcpu_set_itc(vcpu, r2);
|
|
}
|
|
|
|
|
|
void kvm_mov_from_ar_reg(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long r1;
|
|
|
|
r1 = vcpu_get_itc(vcpu);
|
|
vcpu_set_gr(vcpu, inst.M31.r1, r1, 0);
|
|
}
|
|
/**************************************************************************
|
|
struct kvm_vcpu*protection key register access routines
|
|
**************************************************************************/
|
|
|
|
unsigned long vcpu_get_pkr(struct kvm_vcpu *vcpu, unsigned long reg)
|
|
{
|
|
return ((unsigned long)ia64_get_pkr(reg));
|
|
}
|
|
|
|
void vcpu_set_pkr(struct kvm_vcpu *vcpu, unsigned long reg, unsigned long val)
|
|
{
|
|
ia64_set_pkr(reg, val);
|
|
}
|
|
|
|
|
|
unsigned long vcpu_get_itir_on_fault(struct kvm_vcpu *vcpu, unsigned long ifa)
|
|
{
|
|
union ia64_rr rr, rr1;
|
|
|
|
rr.val = vcpu_get_rr(vcpu, ifa);
|
|
rr1.val = 0;
|
|
rr1.ps = rr.ps;
|
|
rr1.rid = rr.rid;
|
|
return (rr1.val);
|
|
}
|
|
|
|
|
|
|
|
/********************************
|
|
* Moves to privileged registers
|
|
********************************/
|
|
unsigned long vcpu_set_rr(struct kvm_vcpu *vcpu, unsigned long reg,
|
|
unsigned long val)
|
|
{
|
|
union ia64_rr oldrr, newrr;
|
|
unsigned long rrval;
|
|
struct exit_ctl_data *p = &vcpu->arch.exit_data;
|
|
unsigned long psr;
|
|
|
|
oldrr.val = vcpu_get_rr(vcpu, reg);
|
|
newrr.val = val;
|
|
vcpu->arch.vrr[reg >> VRN_SHIFT] = val;
|
|
|
|
switch ((unsigned long)(reg >> VRN_SHIFT)) {
|
|
case VRN6:
|
|
vcpu->arch.vmm_rr = vrrtomrr(val);
|
|
local_irq_save(psr);
|
|
p->exit_reason = EXIT_REASON_SWITCH_RR6;
|
|
vmm_transition(vcpu);
|
|
local_irq_restore(psr);
|
|
break;
|
|
case VRN4:
|
|
rrval = vrrtomrr(val);
|
|
vcpu->arch.metaphysical_saved_rr4 = rrval;
|
|
if (!is_physical_mode(vcpu))
|
|
ia64_set_rr(reg, rrval);
|
|
break;
|
|
case VRN0:
|
|
rrval = vrrtomrr(val);
|
|
vcpu->arch.metaphysical_saved_rr0 = rrval;
|
|
if (!is_physical_mode(vcpu))
|
|
ia64_set_rr(reg, rrval);
|
|
break;
|
|
default:
|
|
ia64_set_rr(reg, vrrtomrr(val));
|
|
break;
|
|
}
|
|
|
|
return (IA64_NO_FAULT);
|
|
}
|
|
|
|
|
|
|
|
void kvm_mov_to_rr(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long r3, r2;
|
|
|
|
r3 = vcpu_get_gr(vcpu, inst.M42.r3);
|
|
r2 = vcpu_get_gr(vcpu, inst.M42.r2);
|
|
vcpu_set_rr(vcpu, r3, r2);
|
|
}
|
|
|
|
void kvm_mov_to_dbr(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
}
|
|
|
|
void kvm_mov_to_ibr(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
}
|
|
|
|
void kvm_mov_to_pmc(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long r3, r2;
|
|
|
|
r3 = vcpu_get_gr(vcpu, inst.M42.r3);
|
|
r2 = vcpu_get_gr(vcpu, inst.M42.r2);
|
|
vcpu_set_pmc(vcpu, r3, r2);
|
|
}
|
|
|
|
void kvm_mov_to_pmd(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long r3, r2;
|
|
|
|
r3 = vcpu_get_gr(vcpu, inst.M42.r3);
|
|
r2 = vcpu_get_gr(vcpu, inst.M42.r2);
|
|
vcpu_set_pmd(vcpu, r3, r2);
|
|
}
|
|
|
|
void kvm_mov_to_pkr(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
u64 r3, r2;
|
|
|
|
r3 = vcpu_get_gr(vcpu, inst.M42.r3);
|
|
r2 = vcpu_get_gr(vcpu, inst.M42.r2);
|
|
vcpu_set_pkr(vcpu, r3, r2);
|
|
}
|
|
|
|
|
|
|
|
void kvm_mov_from_rr(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long r3, r1;
|
|
|
|
r3 = vcpu_get_gr(vcpu, inst.M43.r3);
|
|
r1 = vcpu_get_rr(vcpu, r3);
|
|
vcpu_set_gr(vcpu, inst.M43.r1, r1, 0);
|
|
}
|
|
|
|
void kvm_mov_from_pkr(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long r3, r1;
|
|
|
|
r3 = vcpu_get_gr(vcpu, inst.M43.r3);
|
|
r1 = vcpu_get_pkr(vcpu, r3);
|
|
vcpu_set_gr(vcpu, inst.M43.r1, r1, 0);
|
|
}
|
|
|
|
void kvm_mov_from_dbr(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long r3, r1;
|
|
|
|
r3 = vcpu_get_gr(vcpu, inst.M43.r3);
|
|
r1 = vcpu_get_dbr(vcpu, r3);
|
|
vcpu_set_gr(vcpu, inst.M43.r1, r1, 0);
|
|
}
|
|
|
|
void kvm_mov_from_ibr(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long r3, r1;
|
|
|
|
r3 = vcpu_get_gr(vcpu, inst.M43.r3);
|
|
r1 = vcpu_get_ibr(vcpu, r3);
|
|
vcpu_set_gr(vcpu, inst.M43.r1, r1, 0);
|
|
}
|
|
|
|
void kvm_mov_from_pmc(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long r3, r1;
|
|
|
|
r3 = vcpu_get_gr(vcpu, inst.M43.r3);
|
|
r1 = vcpu_get_pmc(vcpu, r3);
|
|
vcpu_set_gr(vcpu, inst.M43.r1, r1, 0);
|
|
}
|
|
|
|
|
|
unsigned long vcpu_get_cpuid(struct kvm_vcpu *vcpu, unsigned long reg)
|
|
{
|
|
/* FIXME: This could get called as a result of a rsvd-reg fault */
|
|
if (reg > (ia64_get_cpuid(3) & 0xff))
|
|
return 0;
|
|
else
|
|
return ia64_get_cpuid(reg);
|
|
}
|
|
|
|
void kvm_mov_from_cpuid(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long r3, r1;
|
|
|
|
r3 = vcpu_get_gr(vcpu, inst.M43.r3);
|
|
r1 = vcpu_get_cpuid(vcpu, r3);
|
|
vcpu_set_gr(vcpu, inst.M43.r1, r1, 0);
|
|
}
|
|
|
|
void vcpu_set_tpr(struct kvm_vcpu *vcpu, unsigned long val)
|
|
{
|
|
VCPU(vcpu, tpr) = val;
|
|
vcpu->arch.irq_check = 1;
|
|
}
|
|
|
|
unsigned long kvm_mov_to_cr(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long r2;
|
|
|
|
r2 = vcpu_get_gr(vcpu, inst.M32.r2);
|
|
VCPU(vcpu, vcr[inst.M32.cr3]) = r2;
|
|
|
|
switch (inst.M32.cr3) {
|
|
case 0:
|
|
vcpu_set_dcr(vcpu, r2);
|
|
break;
|
|
case 1:
|
|
vcpu_set_itm(vcpu, r2);
|
|
break;
|
|
case 66:
|
|
vcpu_set_tpr(vcpu, r2);
|
|
break;
|
|
case 67:
|
|
vcpu_set_eoi(vcpu, r2);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
unsigned long kvm_mov_from_cr(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long tgt = inst.M33.r1;
|
|
unsigned long val;
|
|
|
|
switch (inst.M33.cr3) {
|
|
case 65:
|
|
val = vcpu_get_ivr(vcpu);
|
|
vcpu_set_gr(vcpu, tgt, val, 0);
|
|
break;
|
|
|
|
case 67:
|
|
vcpu_set_gr(vcpu, tgt, 0L, 0);
|
|
break;
|
|
default:
|
|
val = VCPU(vcpu, vcr[inst.M33.cr3]);
|
|
vcpu_set_gr(vcpu, tgt, val, 0);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
void vcpu_set_psr(struct kvm_vcpu *vcpu, unsigned long val)
|
|
{
|
|
|
|
unsigned long mask;
|
|
struct kvm_pt_regs *regs;
|
|
struct ia64_psr old_psr, new_psr;
|
|
|
|
old_psr = *(struct ia64_psr *)&VCPU(vcpu, vpsr);
|
|
|
|
regs = vcpu_regs(vcpu);
|
|
/* We only support guest as:
|
|
* vpsr.pk = 0
|
|
* vpsr.is = 0
|
|
* Otherwise panic
|
|
*/
|
|
if (val & (IA64_PSR_PK | IA64_PSR_IS | IA64_PSR_VM))
|
|
panic_vm(vcpu);
|
|
|
|
/*
|
|
* For those IA64_PSR bits: id/da/dd/ss/ed/ia
|
|
* Since these bits will become 0, after success execution of each
|
|
* instruction, we will change set them to mIA64_PSR
|
|
*/
|
|
VCPU(vcpu, vpsr) = val
|
|
& (~(IA64_PSR_ID | IA64_PSR_DA | IA64_PSR_DD |
|
|
IA64_PSR_SS | IA64_PSR_ED | IA64_PSR_IA));
|
|
|
|
if (!old_psr.i && (val & IA64_PSR_I)) {
|
|
/* vpsr.i 0->1 */
|
|
vcpu->arch.irq_check = 1;
|
|
}
|
|
new_psr = *(struct ia64_psr *)&VCPU(vcpu, vpsr);
|
|
|
|
/*
|
|
* All vIA64_PSR bits shall go to mPSR (v->tf->tf_special.psr)
|
|
* , except for the following bits:
|
|
* ic/i/dt/si/rt/mc/it/bn/vm
|
|
*/
|
|
mask = IA64_PSR_IC + IA64_PSR_I + IA64_PSR_DT + IA64_PSR_SI +
|
|
IA64_PSR_RT + IA64_PSR_MC + IA64_PSR_IT + IA64_PSR_BN +
|
|
IA64_PSR_VM;
|
|
|
|
regs->cr_ipsr = (regs->cr_ipsr & mask) | (val & (~mask));
|
|
|
|
check_mm_mode_switch(vcpu, old_psr, new_psr);
|
|
|
|
return ;
|
|
}
|
|
|
|
unsigned long vcpu_cover(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct ia64_psr vpsr;
|
|
|
|
struct kvm_pt_regs *regs = vcpu_regs(vcpu);
|
|
vpsr = *(struct ia64_psr *)&VCPU(vcpu, vpsr);
|
|
|
|
if (!vpsr.ic)
|
|
VCPU(vcpu, ifs) = regs->cr_ifs;
|
|
regs->cr_ifs = IA64_IFS_V;
|
|
return (IA64_NO_FAULT);
|
|
}
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
VCPU banked general register access routines
|
|
**************************************************************************/
|
|
#define vcpu_bsw0_unat(i, b0unat, b1unat, runat, VMM_PT_REGS_R16_SLOT) \
|
|
do { \
|
|
__asm__ __volatile__ ( \
|
|
";;extr.u %0 = %3,%6,16;;\n" \
|
|
"dep %1 = %0, %1, 0, 16;;\n" \
|
|
"st8 [%4] = %1\n" \
|
|
"extr.u %0 = %2, 16, 16;;\n" \
|
|
"dep %3 = %0, %3, %6, 16;;\n" \
|
|
"st8 [%5] = %3\n" \
|
|
::"r"(i), "r"(*b1unat), "r"(*b0unat), \
|
|
"r"(*runat), "r"(b1unat), "r"(runat), \
|
|
"i"(VMM_PT_REGS_R16_SLOT) : "memory"); \
|
|
} while (0)
|
|
|
|
void vcpu_bsw0(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long i;
|
|
|
|
struct kvm_pt_regs *regs = vcpu_regs(vcpu);
|
|
unsigned long *r = ®s->r16;
|
|
unsigned long *b0 = &VCPU(vcpu, vbgr[0]);
|
|
unsigned long *b1 = &VCPU(vcpu, vgr[0]);
|
|
unsigned long *runat = ®s->eml_unat;
|
|
unsigned long *b0unat = &VCPU(vcpu, vbnat);
|
|
unsigned long *b1unat = &VCPU(vcpu, vnat);
|
|
|
|
|
|
if (VCPU(vcpu, vpsr) & IA64_PSR_BN) {
|
|
for (i = 0; i < 16; i++) {
|
|
*b1++ = *r;
|
|
*r++ = *b0++;
|
|
}
|
|
vcpu_bsw0_unat(i, b0unat, b1unat, runat,
|
|
VMM_PT_REGS_R16_SLOT);
|
|
VCPU(vcpu, vpsr) &= ~IA64_PSR_BN;
|
|
}
|
|
}
|
|
|
|
#define vcpu_bsw1_unat(i, b0unat, b1unat, runat, VMM_PT_REGS_R16_SLOT) \
|
|
do { \
|
|
__asm__ __volatile__ (";;extr.u %0 = %3, %6, 16;;\n" \
|
|
"dep %1 = %0, %1, 16, 16;;\n" \
|
|
"st8 [%4] = %1\n" \
|
|
"extr.u %0 = %2, 0, 16;;\n" \
|
|
"dep %3 = %0, %3, %6, 16;;\n" \
|
|
"st8 [%5] = %3\n" \
|
|
::"r"(i), "r"(*b0unat), "r"(*b1unat), \
|
|
"r"(*runat), "r"(b0unat), "r"(runat), \
|
|
"i"(VMM_PT_REGS_R16_SLOT) : "memory"); \
|
|
} while (0)
|
|
|
|
void vcpu_bsw1(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long i;
|
|
struct kvm_pt_regs *regs = vcpu_regs(vcpu);
|
|
unsigned long *r = ®s->r16;
|
|
unsigned long *b0 = &VCPU(vcpu, vbgr[0]);
|
|
unsigned long *b1 = &VCPU(vcpu, vgr[0]);
|
|
unsigned long *runat = ®s->eml_unat;
|
|
unsigned long *b0unat = &VCPU(vcpu, vbnat);
|
|
unsigned long *b1unat = &VCPU(vcpu, vnat);
|
|
|
|
if (!(VCPU(vcpu, vpsr) & IA64_PSR_BN)) {
|
|
for (i = 0; i < 16; i++) {
|
|
*b0++ = *r;
|
|
*r++ = *b1++;
|
|
}
|
|
vcpu_bsw1_unat(i, b0unat, b1unat, runat,
|
|
VMM_PT_REGS_R16_SLOT);
|
|
VCPU(vcpu, vpsr) |= IA64_PSR_BN;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
void vcpu_rfi(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long ifs, psr;
|
|
struct kvm_pt_regs *regs = vcpu_regs(vcpu);
|
|
|
|
psr = VCPU(vcpu, ipsr);
|
|
if (psr & IA64_PSR_BN)
|
|
vcpu_bsw1(vcpu);
|
|
else
|
|
vcpu_bsw0(vcpu);
|
|
vcpu_set_psr(vcpu, psr);
|
|
ifs = VCPU(vcpu, ifs);
|
|
if (ifs >> 63)
|
|
regs->cr_ifs = ifs;
|
|
regs->cr_iip = VCPU(vcpu, iip);
|
|
}
|
|
|
|
|
|
/*
|
|
VPSR can't keep track of below bits of guest PSR
|
|
This function gets guest PSR
|
|
*/
|
|
|
|
unsigned long vcpu_get_psr(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long mask;
|
|
struct kvm_pt_regs *regs = vcpu_regs(vcpu);
|
|
|
|
mask = IA64_PSR_BE | IA64_PSR_UP | IA64_PSR_AC | IA64_PSR_MFL |
|
|
IA64_PSR_MFH | IA64_PSR_CPL | IA64_PSR_RI;
|
|
return (VCPU(vcpu, vpsr) & ~mask) | (regs->cr_ipsr & mask);
|
|
}
|
|
|
|
void kvm_rsm(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long vpsr;
|
|
unsigned long imm24 = (inst.M44.i<<23) | (inst.M44.i2<<21)
|
|
| inst.M44.imm;
|
|
|
|
vpsr = vcpu_get_psr(vcpu);
|
|
vpsr &= (~imm24);
|
|
vcpu_set_psr(vcpu, vpsr);
|
|
}
|
|
|
|
void kvm_ssm(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long vpsr;
|
|
unsigned long imm24 = (inst.M44.i << 23) | (inst.M44.i2 << 21)
|
|
| inst.M44.imm;
|
|
|
|
vpsr = vcpu_get_psr(vcpu);
|
|
vpsr |= imm24;
|
|
vcpu_set_psr(vcpu, vpsr);
|
|
}
|
|
|
|
/* Generate Mask
|
|
* Parameter:
|
|
* bit -- starting bit
|
|
* len -- how many bits
|
|
*/
|
|
#define MASK(bit,len) \
|
|
({ \
|
|
__u64 ret; \
|
|
\
|
|
__asm __volatile("dep %0=-1, r0, %1, %2"\
|
|
: "=r" (ret): \
|
|
"M" (bit), \
|
|
"M" (len)); \
|
|
ret; \
|
|
})
|
|
|
|
void vcpu_set_psr_l(struct kvm_vcpu *vcpu, unsigned long val)
|
|
{
|
|
val = (val & MASK(0, 32)) | (vcpu_get_psr(vcpu) & MASK(32, 32));
|
|
vcpu_set_psr(vcpu, val);
|
|
}
|
|
|
|
void kvm_mov_to_psr(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long val;
|
|
|
|
val = vcpu_get_gr(vcpu, inst.M35.r2);
|
|
vcpu_set_psr_l(vcpu, val);
|
|
}
|
|
|
|
void kvm_mov_from_psr(struct kvm_vcpu *vcpu, INST64 inst)
|
|
{
|
|
unsigned long val;
|
|
|
|
val = vcpu_get_psr(vcpu);
|
|
val = (val & MASK(0, 32)) | (val & MASK(35, 2));
|
|
vcpu_set_gr(vcpu, inst.M33.r1, val, 0);
|
|
}
|
|
|
|
void vcpu_increment_iip(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pt_regs *regs = vcpu_regs(vcpu);
|
|
struct ia64_psr *ipsr = (struct ia64_psr *)®s->cr_ipsr;
|
|
if (ipsr->ri == 2) {
|
|
ipsr->ri = 0;
|
|
regs->cr_iip += 16;
|
|
} else
|
|
ipsr->ri++;
|
|
}
|
|
|
|
void vcpu_decrement_iip(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pt_regs *regs = vcpu_regs(vcpu);
|
|
struct ia64_psr *ipsr = (struct ia64_psr *)®s->cr_ipsr;
|
|
|
|
if (ipsr->ri == 0) {
|
|
ipsr->ri = 2;
|
|
regs->cr_iip -= 16;
|
|
} else
|
|
ipsr->ri--;
|
|
}
|
|
|
|
/** Emulate a privileged operation.
|
|
*
|
|
*
|
|
* @param vcpu virtual cpu
|
|
* @cause the reason cause virtualization fault
|
|
* @opcode the instruction code which cause virtualization fault
|
|
*/
|
|
|
|
void kvm_emulate(struct kvm_vcpu *vcpu, struct kvm_pt_regs *regs)
|
|
{
|
|
unsigned long status, cause, opcode ;
|
|
INST64 inst;
|
|
|
|
status = IA64_NO_FAULT;
|
|
cause = VMX(vcpu, cause);
|
|
opcode = VMX(vcpu, opcode);
|
|
inst.inst = opcode;
|
|
/*
|
|
* Switch to actual virtual rid in rr0 and rr4,
|
|
* which is required by some tlb related instructions.
|
|
*/
|
|
prepare_if_physical_mode(vcpu);
|
|
|
|
switch (cause) {
|
|
case EVENT_RSM:
|
|
kvm_rsm(vcpu, inst);
|
|
break;
|
|
case EVENT_SSM:
|
|
kvm_ssm(vcpu, inst);
|
|
break;
|
|
case EVENT_MOV_TO_PSR:
|
|
kvm_mov_to_psr(vcpu, inst);
|
|
break;
|
|
case EVENT_MOV_FROM_PSR:
|
|
kvm_mov_from_psr(vcpu, inst);
|
|
break;
|
|
case EVENT_MOV_FROM_CR:
|
|
kvm_mov_from_cr(vcpu, inst);
|
|
break;
|
|
case EVENT_MOV_TO_CR:
|
|
kvm_mov_to_cr(vcpu, inst);
|
|
break;
|
|
case EVENT_BSW_0:
|
|
vcpu_bsw0(vcpu);
|
|
break;
|
|
case EVENT_BSW_1:
|
|
vcpu_bsw1(vcpu);
|
|
break;
|
|
case EVENT_COVER:
|
|
vcpu_cover(vcpu);
|
|
break;
|
|
case EVENT_RFI:
|
|
vcpu_rfi(vcpu);
|
|
break;
|
|
case EVENT_ITR_D:
|
|
kvm_itr_d(vcpu, inst);
|
|
break;
|
|
case EVENT_ITR_I:
|
|
kvm_itr_i(vcpu, inst);
|
|
break;
|
|
case EVENT_PTR_D:
|
|
kvm_ptr_d(vcpu, inst);
|
|
break;
|
|
case EVENT_PTR_I:
|
|
kvm_ptr_i(vcpu, inst);
|
|
break;
|
|
case EVENT_ITC_D:
|
|
kvm_itc_d(vcpu, inst);
|
|
break;
|
|
case EVENT_ITC_I:
|
|
kvm_itc_i(vcpu, inst);
|
|
break;
|
|
case EVENT_PTC_L:
|
|
kvm_ptc_l(vcpu, inst);
|
|
break;
|
|
case EVENT_PTC_G:
|
|
kvm_ptc_g(vcpu, inst);
|
|
break;
|
|
case EVENT_PTC_GA:
|
|
kvm_ptc_ga(vcpu, inst);
|
|
break;
|
|
case EVENT_PTC_E:
|
|
kvm_ptc_e(vcpu, inst);
|
|
break;
|
|
case EVENT_MOV_TO_RR:
|
|
kvm_mov_to_rr(vcpu, inst);
|
|
break;
|
|
case EVENT_MOV_FROM_RR:
|
|
kvm_mov_from_rr(vcpu, inst);
|
|
break;
|
|
case EVENT_THASH:
|
|
kvm_thash(vcpu, inst);
|
|
break;
|
|
case EVENT_TTAG:
|
|
kvm_ttag(vcpu, inst);
|
|
break;
|
|
case EVENT_TPA:
|
|
status = kvm_tpa(vcpu, inst);
|
|
break;
|
|
case EVENT_TAK:
|
|
kvm_tak(vcpu, inst);
|
|
break;
|
|
case EVENT_MOV_TO_AR_IMM:
|
|
kvm_mov_to_ar_imm(vcpu, inst);
|
|
break;
|
|
case EVENT_MOV_TO_AR:
|
|
kvm_mov_to_ar_reg(vcpu, inst);
|
|
break;
|
|
case EVENT_MOV_FROM_AR:
|
|
kvm_mov_from_ar_reg(vcpu, inst);
|
|
break;
|
|
case EVENT_MOV_TO_DBR:
|
|
kvm_mov_to_dbr(vcpu, inst);
|
|
break;
|
|
case EVENT_MOV_TO_IBR:
|
|
kvm_mov_to_ibr(vcpu, inst);
|
|
break;
|
|
case EVENT_MOV_TO_PMC:
|
|
kvm_mov_to_pmc(vcpu, inst);
|
|
break;
|
|
case EVENT_MOV_TO_PMD:
|
|
kvm_mov_to_pmd(vcpu, inst);
|
|
break;
|
|
case EVENT_MOV_TO_PKR:
|
|
kvm_mov_to_pkr(vcpu, inst);
|
|
break;
|
|
case EVENT_MOV_FROM_DBR:
|
|
kvm_mov_from_dbr(vcpu, inst);
|
|
break;
|
|
case EVENT_MOV_FROM_IBR:
|
|
kvm_mov_from_ibr(vcpu, inst);
|
|
break;
|
|
case EVENT_MOV_FROM_PMC:
|
|
kvm_mov_from_pmc(vcpu, inst);
|
|
break;
|
|
case EVENT_MOV_FROM_PKR:
|
|
kvm_mov_from_pkr(vcpu, inst);
|
|
break;
|
|
case EVENT_MOV_FROM_CPUID:
|
|
kvm_mov_from_cpuid(vcpu, inst);
|
|
break;
|
|
case EVENT_VMSW:
|
|
status = IA64_FAULT;
|
|
break;
|
|
default:
|
|
break;
|
|
};
|
|
/*Assume all status is NO_FAULT ?*/
|
|
if (status == IA64_NO_FAULT && cause != EVENT_RFI)
|
|
vcpu_increment_iip(vcpu);
|
|
|
|
recover_if_physical_mode(vcpu);
|
|
}
|
|
|
|
void init_vcpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
int i;
|
|
|
|
vcpu->arch.mode_flags = GUEST_IN_PHY;
|
|
VMX(vcpu, vrr[0]) = 0x38;
|
|
VMX(vcpu, vrr[1]) = 0x38;
|
|
VMX(vcpu, vrr[2]) = 0x38;
|
|
VMX(vcpu, vrr[3]) = 0x38;
|
|
VMX(vcpu, vrr[4]) = 0x38;
|
|
VMX(vcpu, vrr[5]) = 0x38;
|
|
VMX(vcpu, vrr[6]) = 0x38;
|
|
VMX(vcpu, vrr[7]) = 0x38;
|
|
VCPU(vcpu, vpsr) = IA64_PSR_BN;
|
|
VCPU(vcpu, dcr) = 0;
|
|
/* pta.size must not be 0. The minimum is 15 (32k) */
|
|
VCPU(vcpu, pta) = 15 << 2;
|
|
VCPU(vcpu, itv) = 0x10000;
|
|
VCPU(vcpu, itm) = 0;
|
|
VMX(vcpu, last_itc) = 0;
|
|
|
|
VCPU(vcpu, lid) = VCPU_LID(vcpu);
|
|
VCPU(vcpu, ivr) = 0;
|
|
VCPU(vcpu, tpr) = 0x10000;
|
|
VCPU(vcpu, eoi) = 0;
|
|
VCPU(vcpu, irr[0]) = 0;
|
|
VCPU(vcpu, irr[1]) = 0;
|
|
VCPU(vcpu, irr[2]) = 0;
|
|
VCPU(vcpu, irr[3]) = 0;
|
|
VCPU(vcpu, pmv) = 0x10000;
|
|
VCPU(vcpu, cmcv) = 0x10000;
|
|
VCPU(vcpu, lrr0) = 0x10000; /* default reset value? */
|
|
VCPU(vcpu, lrr1) = 0x10000; /* default reset value? */
|
|
update_vhpi(vcpu, NULL_VECTOR);
|
|
VLSAPIC_XTP(vcpu) = 0x80; /* disabled */
|
|
|
|
for (i = 0; i < 4; i++)
|
|
VLSAPIC_INSVC(vcpu, i) = 0;
|
|
}
|
|
|
|
void kvm_init_all_rr(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long psr;
|
|
|
|
local_irq_save(psr);
|
|
|
|
/* WARNING: not allow co-exist of both virtual mode and physical
|
|
* mode in same region
|
|
*/
|
|
|
|
vcpu->arch.metaphysical_saved_rr0 = vrrtomrr(VMX(vcpu, vrr[VRN0]));
|
|
vcpu->arch.metaphysical_saved_rr4 = vrrtomrr(VMX(vcpu, vrr[VRN4]));
|
|
|
|
if (is_physical_mode(vcpu)) {
|
|
if (vcpu->arch.mode_flags & GUEST_PHY_EMUL)
|
|
panic_vm(vcpu);
|
|
|
|
ia64_set_rr((VRN0 << VRN_SHIFT), vcpu->arch.metaphysical_rr0);
|
|
ia64_dv_serialize_data();
|
|
ia64_set_rr((VRN4 << VRN_SHIFT), vcpu->arch.metaphysical_rr4);
|
|
ia64_dv_serialize_data();
|
|
} else {
|
|
ia64_set_rr((VRN0 << VRN_SHIFT),
|
|
vcpu->arch.metaphysical_saved_rr0);
|
|
ia64_dv_serialize_data();
|
|
ia64_set_rr((VRN4 << VRN_SHIFT),
|
|
vcpu->arch.metaphysical_saved_rr4);
|
|
ia64_dv_serialize_data();
|
|
}
|
|
ia64_set_rr((VRN1 << VRN_SHIFT),
|
|
vrrtomrr(VMX(vcpu, vrr[VRN1])));
|
|
ia64_dv_serialize_data();
|
|
ia64_set_rr((VRN2 << VRN_SHIFT),
|
|
vrrtomrr(VMX(vcpu, vrr[VRN2])));
|
|
ia64_dv_serialize_data();
|
|
ia64_set_rr((VRN3 << VRN_SHIFT),
|
|
vrrtomrr(VMX(vcpu, vrr[VRN3])));
|
|
ia64_dv_serialize_data();
|
|
ia64_set_rr((VRN5 << VRN_SHIFT),
|
|
vrrtomrr(VMX(vcpu, vrr[VRN5])));
|
|
ia64_dv_serialize_data();
|
|
ia64_set_rr((VRN7 << VRN_SHIFT),
|
|
vrrtomrr(VMX(vcpu, vrr[VRN7])));
|
|
ia64_dv_serialize_data();
|
|
ia64_srlz_d();
|
|
ia64_set_psr(psr);
|
|
}
|
|
|
|
int vmm_entry(void)
|
|
{
|
|
struct kvm_vcpu *v;
|
|
v = current_vcpu;
|
|
|
|
ia64_call_vsa(PAL_VPS_RESTORE, (unsigned long)v->arch.vpd,
|
|
0, 0, 0, 0, 0, 0);
|
|
kvm_init_vtlb(v);
|
|
kvm_init_vhpt(v);
|
|
init_vcpu(v);
|
|
kvm_init_all_rr(v);
|
|
vmm_reset_entry();
|
|
|
|
return 0;
|
|
}
|
|
|
|
void panic_vm(struct kvm_vcpu *v)
|
|
{
|
|
struct exit_ctl_data *p = &v->arch.exit_data;
|
|
|
|
p->exit_reason = EXIT_REASON_VM_PANIC;
|
|
vmm_transition(v);
|
|
/*Never to return*/
|
|
while (1);
|
|
}
|