mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-16 01:04:08 +08:00
c413fecc76
One of the very first things lguest_init() does is a memcpy. On Athlon/Duron/K7 or CyrixIII/VIA-C3 or Geode GX/LX, this tries to use MMX. memcpy -> _mmx_memcpy -> kernel_fpu_begin -> clts -> paravirt_ops.clts But we haven't set paravirt_ops.clts yet, so we do the native version and crash. The simplest solution is to use __memcpy. Thanks to Michael Rasenberger for the bug report. Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1103 lines
42 KiB
C
1103 lines
42 KiB
C
/*P:010
|
|
* A hypervisor allows multiple Operating Systems to run on a single machine.
|
|
* To quote David Wheeler: "Any problem in computer science can be solved with
|
|
* another layer of indirection."
|
|
*
|
|
* We keep things simple in two ways. First, we start with a normal Linux
|
|
* kernel and insert a module (lg.ko) which allows us to run other Linux
|
|
* kernels the same way we'd run processes. We call the first kernel the Host,
|
|
* and the others the Guests. The program which sets up and configures Guests
|
|
* (such as the example in Documentation/lguest/lguest.c) is called the
|
|
* Launcher.
|
|
*
|
|
* Secondly, we only run specially modified Guests, not normal kernels. When
|
|
* you set CONFIG_LGUEST to 'y' or 'm', this automatically sets
|
|
* CONFIG_LGUEST_GUEST=y, which compiles this file into the kernel so it knows
|
|
* how to be a Guest. This means that you can use the same kernel you boot
|
|
* normally (ie. as a Host) as a Guest.
|
|
*
|
|
* These Guests know that they cannot do privileged operations, such as disable
|
|
* interrupts, and that they have to ask the Host to do such things explicitly.
|
|
* This file consists of all the replacements for such low-level native
|
|
* hardware operations: these special Guest versions call the Host.
|
|
*
|
|
* So how does the kernel know it's a Guest? The Guest starts at a special
|
|
* entry point marked with a magic string, which sets up a few things then
|
|
* calls here. We replace the native functions in "struct paravirt_ops"
|
|
* with our Guest versions, then boot like normal. :*/
|
|
|
|
/*
|
|
* Copyright (C) 2006, Rusty Russell <rusty@rustcorp.com.au> IBM Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/start_kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/console.h>
|
|
#include <linux/screen_info.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/lguest.h>
|
|
#include <linux/lguest_launcher.h>
|
|
#include <linux/lguest_bus.h>
|
|
#include <asm/paravirt.h>
|
|
#include <asm/param.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/e820.h>
|
|
#include <asm/mce.h>
|
|
#include <asm/io.h>
|
|
|
|
/*G:010 Welcome to the Guest!
|
|
*
|
|
* The Guest in our tale is a simple creature: identical to the Host but
|
|
* behaving in simplified but equivalent ways. In particular, the Guest is the
|
|
* same kernel as the Host (or at least, built from the same source code). :*/
|
|
|
|
/* Declarations for definitions in lguest_guest.S */
|
|
extern char lguest_noirq_start[], lguest_noirq_end[];
|
|
extern const char lgstart_cli[], lgend_cli[];
|
|
extern const char lgstart_sti[], lgend_sti[];
|
|
extern const char lgstart_popf[], lgend_popf[];
|
|
extern const char lgstart_pushf[], lgend_pushf[];
|
|
extern const char lgstart_iret[], lgend_iret[];
|
|
extern void lguest_iret(void);
|
|
|
|
struct lguest_data lguest_data = {
|
|
.hcall_status = { [0 ... LHCALL_RING_SIZE-1] = 0xFF },
|
|
.noirq_start = (u32)lguest_noirq_start,
|
|
.noirq_end = (u32)lguest_noirq_end,
|
|
.blocked_interrupts = { 1 }, /* Block timer interrupts */
|
|
};
|
|
struct lguest_device_desc *lguest_devices;
|
|
static cycle_t clock_base;
|
|
|
|
/*G:035 Notice the lazy_hcall() above, rather than hcall(). This is our first
|
|
* real optimization trick!
|
|
*
|
|
* When lazy_mode is set, it means we're allowed to defer all hypercalls and do
|
|
* them as a batch when lazy_mode is eventually turned off. Because hypercalls
|
|
* are reasonably expensive, batching them up makes sense. For example, a
|
|
* large mmap might update dozens of page table entries: that code calls
|
|
* lguest_lazy_mode(PARAVIRT_LAZY_MMU), does the dozen updates, then calls
|
|
* lguest_lazy_mode(PARAVIRT_LAZY_NONE).
|
|
*
|
|
* So, when we're in lazy mode, we call async_hypercall() to store the call for
|
|
* future processing. When lazy mode is turned off we issue a hypercall to
|
|
* flush the stored calls.
|
|
*
|
|
* There's also a hack where "mode" is set to "PARAVIRT_LAZY_FLUSH" which
|
|
* indicates we're to flush any outstanding calls immediately. This is used
|
|
* when an interrupt handler does a kmap_atomic(): the page table changes must
|
|
* happen immediately even if we're in the middle of a batch. Usually we're
|
|
* not, though, so there's nothing to do. */
|
|
static enum paravirt_lazy_mode lazy_mode; /* Note: not SMP-safe! */
|
|
static void lguest_lazy_mode(enum paravirt_lazy_mode mode)
|
|
{
|
|
if (mode == PARAVIRT_LAZY_FLUSH) {
|
|
if (unlikely(lazy_mode != PARAVIRT_LAZY_NONE))
|
|
hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0);
|
|
} else {
|
|
lazy_mode = mode;
|
|
if (mode == PARAVIRT_LAZY_NONE)
|
|
hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0);
|
|
}
|
|
}
|
|
|
|
static void lazy_hcall(unsigned long call,
|
|
unsigned long arg1,
|
|
unsigned long arg2,
|
|
unsigned long arg3)
|
|
{
|
|
if (lazy_mode == PARAVIRT_LAZY_NONE)
|
|
hcall(call, arg1, arg2, arg3);
|
|
else
|
|
async_hcall(call, arg1, arg2, arg3);
|
|
}
|
|
|
|
/* async_hcall() is pretty simple: I'm quite proud of it really. We have a
|
|
* ring buffer of stored hypercalls which the Host will run though next time we
|
|
* do a normal hypercall. Each entry in the ring has 4 slots for the hypercall
|
|
* arguments, and a "hcall_status" word which is 0 if the call is ready to go,
|
|
* and 255 once the Host has finished with it.
|
|
*
|
|
* If we come around to a slot which hasn't been finished, then the table is
|
|
* full and we just make the hypercall directly. This has the nice side
|
|
* effect of causing the Host to run all the stored calls in the ring buffer
|
|
* which empties it for next time! */
|
|
void async_hcall(unsigned long call,
|
|
unsigned long arg1, unsigned long arg2, unsigned long arg3)
|
|
{
|
|
/* Note: This code assumes we're uniprocessor. */
|
|
static unsigned int next_call;
|
|
unsigned long flags;
|
|
|
|
/* Disable interrupts if not already disabled: we don't want an
|
|
* interrupt handler making a hypercall while we're already doing
|
|
* one! */
|
|
local_irq_save(flags);
|
|
if (lguest_data.hcall_status[next_call] != 0xFF) {
|
|
/* Table full, so do normal hcall which will flush table. */
|
|
hcall(call, arg1, arg2, arg3);
|
|
} else {
|
|
lguest_data.hcalls[next_call].eax = call;
|
|
lguest_data.hcalls[next_call].edx = arg1;
|
|
lguest_data.hcalls[next_call].ebx = arg2;
|
|
lguest_data.hcalls[next_call].ecx = arg3;
|
|
/* Arguments must all be written before we mark it to go */
|
|
wmb();
|
|
lguest_data.hcall_status[next_call] = 0;
|
|
if (++next_call == LHCALL_RING_SIZE)
|
|
next_call = 0;
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
/*:*/
|
|
|
|
/* Wrappers for the SEND_DMA and BIND_DMA hypercalls. This is mainly because
|
|
* Jeff Garzik complained that __pa() should never appear in drivers, and this
|
|
* helps remove most of them. But also, it wraps some ugliness. */
|
|
void lguest_send_dma(unsigned long key, struct lguest_dma *dma)
|
|
{
|
|
/* The hcall might not write this if something goes wrong */
|
|
dma->used_len = 0;
|
|
hcall(LHCALL_SEND_DMA, key, __pa(dma), 0);
|
|
}
|
|
|
|
int lguest_bind_dma(unsigned long key, struct lguest_dma *dmas,
|
|
unsigned int num, u8 irq)
|
|
{
|
|
/* This is the only hypercall which actually wants 5 arguments, and we
|
|
* only support 4. Fortunately the interrupt number is always less
|
|
* than 256, so we can pack it with the number of dmas in the final
|
|
* argument. */
|
|
if (!hcall(LHCALL_BIND_DMA, key, __pa(dmas), (num << 8) | irq))
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
/* Unbinding is the same hypercall as binding, but with 0 num & irq. */
|
|
void lguest_unbind_dma(unsigned long key, struct lguest_dma *dmas)
|
|
{
|
|
hcall(LHCALL_BIND_DMA, key, __pa(dmas), 0);
|
|
}
|
|
|
|
/* For guests, device memory can be used as normal memory, so we cast away the
|
|
* __iomem to quieten sparse. */
|
|
void *lguest_map(unsigned long phys_addr, unsigned long pages)
|
|
{
|
|
return (__force void *)ioremap(phys_addr, PAGE_SIZE*pages);
|
|
}
|
|
|
|
void lguest_unmap(void *addr)
|
|
{
|
|
iounmap((__force void __iomem *)addr);
|
|
}
|
|
|
|
/*G:033
|
|
* Here are our first native-instruction replacements: four functions for
|
|
* interrupt control.
|
|
*
|
|
* The simplest way of implementing these would be to have "turn interrupts
|
|
* off" and "turn interrupts on" hypercalls. Unfortunately, this is too slow:
|
|
* these are by far the most commonly called functions of those we override.
|
|
*
|
|
* So instead we keep an "irq_enabled" field inside our "struct lguest_data",
|
|
* which the Guest can update with a single instruction. The Host knows to
|
|
* check there when it wants to deliver an interrupt.
|
|
*/
|
|
|
|
/* save_flags() is expected to return the processor state (ie. "eflags"). The
|
|
* eflags word contains all kind of stuff, but in practice Linux only cares
|
|
* about the interrupt flag. Our "save_flags()" just returns that. */
|
|
static unsigned long save_fl(void)
|
|
{
|
|
return lguest_data.irq_enabled;
|
|
}
|
|
|
|
/* "restore_flags" just sets the flags back to the value given. */
|
|
static void restore_fl(unsigned long flags)
|
|
{
|
|
lguest_data.irq_enabled = flags;
|
|
}
|
|
|
|
/* Interrupts go off... */
|
|
static void irq_disable(void)
|
|
{
|
|
lguest_data.irq_enabled = 0;
|
|
}
|
|
|
|
/* Interrupts go on... */
|
|
static void irq_enable(void)
|
|
{
|
|
lguest_data.irq_enabled = X86_EFLAGS_IF;
|
|
}
|
|
/*:*/
|
|
/*M:003 Note that we don't check for outstanding interrupts when we re-enable
|
|
* them (or when we unmask an interrupt). This seems to work for the moment,
|
|
* since interrupts are rare and we'll just get the interrupt on the next timer
|
|
* tick, but when we turn on CONFIG_NO_HZ, we should revisit this. One way
|
|
* would be to put the "irq_enabled" field in a page by itself, and have the
|
|
* Host write-protect it when an interrupt comes in when irqs are disabled.
|
|
* There will then be a page fault as soon as interrupts are re-enabled. :*/
|
|
|
|
/*G:034
|
|
* The Interrupt Descriptor Table (IDT).
|
|
*
|
|
* The IDT tells the processor what to do when an interrupt comes in. Each
|
|
* entry in the table is a 64-bit descriptor: this holds the privilege level,
|
|
* address of the handler, and... well, who cares? The Guest just asks the
|
|
* Host to make the change anyway, because the Host controls the real IDT.
|
|
*/
|
|
static void lguest_write_idt_entry(struct desc_struct *dt,
|
|
int entrynum, u32 low, u32 high)
|
|
{
|
|
/* Keep the local copy up to date. */
|
|
write_dt_entry(dt, entrynum, low, high);
|
|
/* Tell Host about this new entry. */
|
|
hcall(LHCALL_LOAD_IDT_ENTRY, entrynum, low, high);
|
|
}
|
|
|
|
/* Changing to a different IDT is very rare: we keep the IDT up-to-date every
|
|
* time it is written, so we can simply loop through all entries and tell the
|
|
* Host about them. */
|
|
static void lguest_load_idt(const struct Xgt_desc_struct *desc)
|
|
{
|
|
unsigned int i;
|
|
struct desc_struct *idt = (void *)desc->address;
|
|
|
|
for (i = 0; i < (desc->size+1)/8; i++)
|
|
hcall(LHCALL_LOAD_IDT_ENTRY, i, idt[i].a, idt[i].b);
|
|
}
|
|
|
|
/*
|
|
* The Global Descriptor Table.
|
|
*
|
|
* The Intel architecture defines another table, called the Global Descriptor
|
|
* Table (GDT). You tell the CPU where it is (and its size) using the "lgdt"
|
|
* instruction, and then several other instructions refer to entries in the
|
|
* table. There are three entries which the Switcher needs, so the Host simply
|
|
* controls the entire thing and the Guest asks it to make changes using the
|
|
* LOAD_GDT hypercall.
|
|
*
|
|
* This is the opposite of the IDT code where we have a LOAD_IDT_ENTRY
|
|
* hypercall and use that repeatedly to load a new IDT. I don't think it
|
|
* really matters, but wouldn't it be nice if they were the same?
|
|
*/
|
|
static void lguest_load_gdt(const struct Xgt_desc_struct *desc)
|
|
{
|
|
BUG_ON((desc->size+1)/8 != GDT_ENTRIES);
|
|
hcall(LHCALL_LOAD_GDT, __pa(desc->address), GDT_ENTRIES, 0);
|
|
}
|
|
|
|
/* For a single GDT entry which changes, we do the lazy thing: alter our GDT,
|
|
* then tell the Host to reload the entire thing. This operation is so rare
|
|
* that this naive implementation is reasonable. */
|
|
static void lguest_write_gdt_entry(struct desc_struct *dt,
|
|
int entrynum, u32 low, u32 high)
|
|
{
|
|
write_dt_entry(dt, entrynum, low, high);
|
|
hcall(LHCALL_LOAD_GDT, __pa(dt), GDT_ENTRIES, 0);
|
|
}
|
|
|
|
/* OK, I lied. There are three "thread local storage" GDT entries which change
|
|
* on every context switch (these three entries are how glibc implements
|
|
* __thread variables). So we have a hypercall specifically for this case. */
|
|
static void lguest_load_tls(struct thread_struct *t, unsigned int cpu)
|
|
{
|
|
/* There's one problem which normal hardware doesn't have: the Host
|
|
* can't handle us removing entries we're currently using. So we clear
|
|
* the GS register here: if it's needed it'll be reloaded anyway. */
|
|
loadsegment(gs, 0);
|
|
lazy_hcall(LHCALL_LOAD_TLS, __pa(&t->tls_array), cpu, 0);
|
|
}
|
|
|
|
/*G:038 That's enough excitement for now, back to ploughing through each of
|
|
* the paravirt_ops (we're about 1/3 of the way through).
|
|
*
|
|
* This is the Local Descriptor Table, another weird Intel thingy. Linux only
|
|
* uses this for some strange applications like Wine. We don't do anything
|
|
* here, so they'll get an informative and friendly Segmentation Fault. */
|
|
static void lguest_set_ldt(const void *addr, unsigned entries)
|
|
{
|
|
}
|
|
|
|
/* This loads a GDT entry into the "Task Register": that entry points to a
|
|
* structure called the Task State Segment. Some comments scattered though the
|
|
* kernel code indicate that this used for task switching in ages past, along
|
|
* with blood sacrifice and astrology.
|
|
*
|
|
* Now there's nothing interesting in here that we don't get told elsewhere.
|
|
* But the native version uses the "ltr" instruction, which makes the Host
|
|
* complain to the Guest about a Segmentation Fault and it'll oops. So we
|
|
* override the native version with a do-nothing version. */
|
|
static void lguest_load_tr_desc(void)
|
|
{
|
|
}
|
|
|
|
/* The "cpuid" instruction is a way of querying both the CPU identity
|
|
* (manufacturer, model, etc) and its features. It was introduced before the
|
|
* Pentium in 1993 and keeps getting extended by both Intel and AMD. As you
|
|
* might imagine, after a decade and a half this treatment, it is now a giant
|
|
* ball of hair. Its entry in the current Intel manual runs to 28 pages.
|
|
*
|
|
* This instruction even it has its own Wikipedia entry. The Wikipedia entry
|
|
* has been translated into 4 languages. I am not making this up!
|
|
*
|
|
* We could get funky here and identify ourselves as "GenuineLguest", but
|
|
* instead we just use the real "cpuid" instruction. Then I pretty much turned
|
|
* off feature bits until the Guest booted. (Don't say that: you'll damage
|
|
* lguest sales!) Shut up, inner voice! (Hey, just pointing out that this is
|
|
* hardly future proof.) Noone's listening! They don't like you anyway,
|
|
* parenthetic weirdo!
|
|
*
|
|
* Replacing the cpuid so we can turn features off is great for the kernel, but
|
|
* anyone (including userspace) can just use the raw "cpuid" instruction and
|
|
* the Host won't even notice since it isn't privileged. So we try not to get
|
|
* too worked up about it. */
|
|
static void lguest_cpuid(unsigned int *eax, unsigned int *ebx,
|
|
unsigned int *ecx, unsigned int *edx)
|
|
{
|
|
int function = *eax;
|
|
|
|
native_cpuid(eax, ebx, ecx, edx);
|
|
switch (function) {
|
|
case 1: /* Basic feature request. */
|
|
/* We only allow kernel to see SSE3, CMPXCHG16B and SSSE3 */
|
|
*ecx &= 0x00002201;
|
|
/* SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, FPU. */
|
|
*edx &= 0x07808101;
|
|
/* The Host can do a nice optimization if it knows that the
|
|
* kernel mappings (addresses above 0xC0000000 or whatever
|
|
* PAGE_OFFSET is set to) haven't changed. But Linux calls
|
|
* flush_tlb_user() for both user and kernel mappings unless
|
|
* the Page Global Enable (PGE) feature bit is set. */
|
|
*edx |= 0x00002000;
|
|
break;
|
|
case 0x80000000:
|
|
/* Futureproof this a little: if they ask how much extended
|
|
* processor information there is, limit it to known fields. */
|
|
if (*eax > 0x80000008)
|
|
*eax = 0x80000008;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Intel has four control registers, imaginatively named cr0, cr2, cr3 and cr4.
|
|
* I assume there's a cr1, but it hasn't bothered us yet, so we'll not bother
|
|
* it. The Host needs to know when the Guest wants to change them, so we have
|
|
* a whole series of functions like read_cr0() and write_cr0().
|
|
*
|
|
* We start with CR0. CR0 allows you to turn on and off all kinds of basic
|
|
* features, but Linux only really cares about one: the horrifically-named Task
|
|
* Switched (TS) bit at bit 3 (ie. 8)
|
|
*
|
|
* What does the TS bit do? Well, it causes the CPU to trap (interrupt 7) if
|
|
* the floating point unit is used. Which allows us to restore FPU state
|
|
* lazily after a task switch, and Linux uses that gratefully, but wouldn't a
|
|
* name like "FPUTRAP bit" be a little less cryptic?
|
|
*
|
|
* We store cr0 (and cr3) locally, because the Host never changes it. The
|
|
* Guest sometimes wants to read it and we'd prefer not to bother the Host
|
|
* unnecessarily. */
|
|
static unsigned long current_cr0, current_cr3;
|
|
static void lguest_write_cr0(unsigned long val)
|
|
{
|
|
/* 8 == TS bit. */
|
|
lazy_hcall(LHCALL_TS, val & 8, 0, 0);
|
|
current_cr0 = val;
|
|
}
|
|
|
|
static unsigned long lguest_read_cr0(void)
|
|
{
|
|
return current_cr0;
|
|
}
|
|
|
|
/* Intel provided a special instruction to clear the TS bit for people too cool
|
|
* to use write_cr0() to do it. This "clts" instruction is faster, because all
|
|
* the vowels have been optimized out. */
|
|
static void lguest_clts(void)
|
|
{
|
|
lazy_hcall(LHCALL_TS, 0, 0, 0);
|
|
current_cr0 &= ~8U;
|
|
}
|
|
|
|
/* CR2 is the virtual address of the last page fault, which the Guest only ever
|
|
* reads. The Host kindly writes this into our "struct lguest_data", so we
|
|
* just read it out of there. */
|
|
static unsigned long lguest_read_cr2(void)
|
|
{
|
|
return lguest_data.cr2;
|
|
}
|
|
|
|
/* CR3 is the current toplevel pagetable page: the principle is the same as
|
|
* cr0. Keep a local copy, and tell the Host when it changes. */
|
|
static void lguest_write_cr3(unsigned long cr3)
|
|
{
|
|
lazy_hcall(LHCALL_NEW_PGTABLE, cr3, 0, 0);
|
|
current_cr3 = cr3;
|
|
}
|
|
|
|
static unsigned long lguest_read_cr3(void)
|
|
{
|
|
return current_cr3;
|
|
}
|
|
|
|
/* CR4 is used to enable and disable PGE, but we don't care. */
|
|
static unsigned long lguest_read_cr4(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void lguest_write_cr4(unsigned long val)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Page Table Handling.
|
|
*
|
|
* Now would be a good time to take a rest and grab a coffee or similarly
|
|
* relaxing stimulant. The easy parts are behind us, and the trek gradually
|
|
* winds uphill from here.
|
|
*
|
|
* Quick refresher: memory is divided into "pages" of 4096 bytes each. The CPU
|
|
* maps virtual addresses to physical addresses using "page tables". We could
|
|
* use one huge index of 1 million entries: each address is 4 bytes, so that's
|
|
* 1024 pages just to hold the page tables. But since most virtual addresses
|
|
* are unused, we use a two level index which saves space. The CR3 register
|
|
* contains the physical address of the top level "page directory" page, which
|
|
* contains physical addresses of up to 1024 second-level pages. Each of these
|
|
* second level pages contains up to 1024 physical addresses of actual pages,
|
|
* or Page Table Entries (PTEs).
|
|
*
|
|
* Here's a diagram, where arrows indicate physical addresses:
|
|
*
|
|
* CR3 ---> +---------+
|
|
* | --------->+---------+
|
|
* | | | PADDR1 |
|
|
* Top-level | | PADDR2 |
|
|
* (PMD) page | | |
|
|
* | | Lower-level |
|
|
* | | (PTE) page |
|
|
* | | | |
|
|
* .... ....
|
|
*
|
|
* So to convert a virtual address to a physical address, we look up the top
|
|
* level, which points us to the second level, which gives us the physical
|
|
* address of that page. If the top level entry was not present, or the second
|
|
* level entry was not present, then the virtual address is invalid (we
|
|
* say "the page was not mapped").
|
|
*
|
|
* Put another way, a 32-bit virtual address is divided up like so:
|
|
*
|
|
* 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
|
* |<---- 10 bits ---->|<---- 10 bits ---->|<------ 12 bits ------>|
|
|
* Index into top Index into second Offset within page
|
|
* page directory page pagetable page
|
|
*
|
|
* The kernel spends a lot of time changing both the top-level page directory
|
|
* and lower-level pagetable pages. The Guest doesn't know physical addresses,
|
|
* so while it maintains these page tables exactly like normal, it also needs
|
|
* to keep the Host informed whenever it makes a change: the Host will create
|
|
* the real page tables based on the Guests'.
|
|
*/
|
|
|
|
/* The Guest calls this to set a second-level entry (pte), ie. to map a page
|
|
* into a process' address space. We set the entry then tell the Host the
|
|
* toplevel and address this corresponds to. The Guest uses one pagetable per
|
|
* process, so we need to tell the Host which one we're changing (mm->pgd). */
|
|
static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep, pte_t pteval)
|
|
{
|
|
*ptep = pteval;
|
|
lazy_hcall(LHCALL_SET_PTE, __pa(mm->pgd), addr, pteval.pte_low);
|
|
}
|
|
|
|
/* The Guest calls this to set a top-level entry. Again, we set the entry then
|
|
* tell the Host which top-level page we changed, and the index of the entry we
|
|
* changed. */
|
|
static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
|
|
{
|
|
*pmdp = pmdval;
|
|
lazy_hcall(LHCALL_SET_PMD, __pa(pmdp)&PAGE_MASK,
|
|
(__pa(pmdp)&(PAGE_SIZE-1))/4, 0);
|
|
}
|
|
|
|
/* There are a couple of legacy places where the kernel sets a PTE, but we
|
|
* don't know the top level any more. This is useless for us, since we don't
|
|
* know which pagetable is changing or what address, so we just tell the Host
|
|
* to forget all of them. Fortunately, this is very rare.
|
|
*
|
|
* ... except in early boot when the kernel sets up the initial pagetables,
|
|
* which makes booting astonishingly slow. So we don't even tell the Host
|
|
* anything changed until we've done the first page table switch.
|
|
*/
|
|
static void lguest_set_pte(pte_t *ptep, pte_t pteval)
|
|
{
|
|
*ptep = pteval;
|
|
/* Don't bother with hypercall before initial setup. */
|
|
if (current_cr3)
|
|
lazy_hcall(LHCALL_FLUSH_TLB, 1, 0, 0);
|
|
}
|
|
|
|
/* Unfortunately for Lguest, the paravirt_ops for page tables were based on
|
|
* native page table operations. On native hardware you can set a new page
|
|
* table entry whenever you want, but if you want to remove one you have to do
|
|
* a TLB flush (a TLB is a little cache of page table entries kept by the CPU).
|
|
*
|
|
* So the lguest_set_pte_at() and lguest_set_pmd() functions above are only
|
|
* called when a valid entry is written, not when it's removed (ie. marked not
|
|
* present). Instead, this is where we come when the Guest wants to remove a
|
|
* page table entry: we tell the Host to set that entry to 0 (ie. the present
|
|
* bit is zero). */
|
|
static void lguest_flush_tlb_single(unsigned long addr)
|
|
{
|
|
/* Simply set it to zero: if it was not, it will fault back in. */
|
|
lazy_hcall(LHCALL_SET_PTE, current_cr3, addr, 0);
|
|
}
|
|
|
|
/* This is what happens after the Guest has removed a large number of entries.
|
|
* This tells the Host that any of the page table entries for userspace might
|
|
* have changed, ie. virtual addresses below PAGE_OFFSET. */
|
|
static void lguest_flush_tlb_user(void)
|
|
{
|
|
lazy_hcall(LHCALL_FLUSH_TLB, 0, 0, 0);
|
|
}
|
|
|
|
/* This is called when the kernel page tables have changed. That's not very
|
|
* common (unless the Guest is using highmem, which makes the Guest extremely
|
|
* slow), so it's worth separating this from the user flushing above. */
|
|
static void lguest_flush_tlb_kernel(void)
|
|
{
|
|
lazy_hcall(LHCALL_FLUSH_TLB, 1, 0, 0);
|
|
}
|
|
|
|
/*
|
|
* The Unadvanced Programmable Interrupt Controller.
|
|
*
|
|
* This is an attempt to implement the simplest possible interrupt controller.
|
|
* I spent some time looking though routines like set_irq_chip_and_handler,
|
|
* set_irq_chip_and_handler_name, set_irq_chip_data and set_phasers_to_stun and
|
|
* I *think* this is as simple as it gets.
|
|
*
|
|
* We can tell the Host what interrupts we want blocked ready for using the
|
|
* lguest_data.interrupts bitmap, so disabling (aka "masking") them is as
|
|
* simple as setting a bit. We don't actually "ack" interrupts as such, we
|
|
* just mask and unmask them. I wonder if we should be cleverer?
|
|
*/
|
|
static void disable_lguest_irq(unsigned int irq)
|
|
{
|
|
set_bit(irq, lguest_data.blocked_interrupts);
|
|
}
|
|
|
|
static void enable_lguest_irq(unsigned int irq)
|
|
{
|
|
clear_bit(irq, lguest_data.blocked_interrupts);
|
|
}
|
|
|
|
/* This structure describes the lguest IRQ controller. */
|
|
static struct irq_chip lguest_irq_controller = {
|
|
.name = "lguest",
|
|
.mask = disable_lguest_irq,
|
|
.mask_ack = disable_lguest_irq,
|
|
.unmask = enable_lguest_irq,
|
|
};
|
|
|
|
/* This sets up the Interrupt Descriptor Table (IDT) entry for each hardware
|
|
* interrupt (except 128, which is used for system calls), and then tells the
|
|
* Linux infrastructure that each interrupt is controlled by our level-based
|
|
* lguest interrupt controller. */
|
|
static void __init lguest_init_IRQ(void)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < LGUEST_IRQS; i++) {
|
|
int vector = FIRST_EXTERNAL_VECTOR + i;
|
|
if (vector != SYSCALL_VECTOR) {
|
|
set_intr_gate(vector, interrupt[i]);
|
|
set_irq_chip_and_handler(i, &lguest_irq_controller,
|
|
handle_level_irq);
|
|
}
|
|
}
|
|
/* This call is required to set up for 4k stacks, where we have
|
|
* separate stacks for hard and soft interrupts. */
|
|
irq_ctx_init(smp_processor_id());
|
|
}
|
|
|
|
/*
|
|
* Time.
|
|
*
|
|
* It would be far better for everyone if the Guest had its own clock, but
|
|
* until then the Host gives us the time on every interrupt.
|
|
*/
|
|
static unsigned long lguest_get_wallclock(void)
|
|
{
|
|
return lguest_data.time.tv_sec;
|
|
}
|
|
|
|
static cycle_t lguest_clock_read(void)
|
|
{
|
|
unsigned long sec, nsec;
|
|
|
|
/* If the Host tells the TSC speed, we can trust that. */
|
|
if (lguest_data.tsc_khz)
|
|
return native_read_tsc();
|
|
|
|
/* If we can't use the TSC, we read the time value written by the Host.
|
|
* Since it's in two parts (seconds and nanoseconds), we risk reading
|
|
* it just as it's changing from 99 & 0.999999999 to 100 and 0, and
|
|
* getting 99 and 0. As Linux tends to come apart under the stress of
|
|
* time travel, we must be careful: */
|
|
do {
|
|
/* First we read the seconds part. */
|
|
sec = lguest_data.time.tv_sec;
|
|
/* This read memory barrier tells the compiler and the CPU that
|
|
* this can't be reordered: we have to complete the above
|
|
* before going on. */
|
|
rmb();
|
|
/* Now we read the nanoseconds part. */
|
|
nsec = lguest_data.time.tv_nsec;
|
|
/* Make sure we've done that. */
|
|
rmb();
|
|
/* Now if the seconds part has changed, try again. */
|
|
} while (unlikely(lguest_data.time.tv_sec != sec));
|
|
|
|
/* Our non-TSC clock is in real nanoseconds. */
|
|
return sec*1000000000ULL + nsec;
|
|
}
|
|
|
|
/* This is what we tell the kernel is our clocksource. */
|
|
static struct clocksource lguest_clock = {
|
|
.name = "lguest",
|
|
.rating = 400,
|
|
.read = lguest_clock_read,
|
|
.mask = CLOCKSOURCE_MASK(64),
|
|
.mult = 1 << 22,
|
|
.shift = 22,
|
|
};
|
|
|
|
/* The "scheduler clock" is just our real clock, adjusted to start at zero */
|
|
static unsigned long long lguest_sched_clock(void)
|
|
{
|
|
return cyc2ns(&lguest_clock, lguest_clock_read() - clock_base);
|
|
}
|
|
|
|
/* We also need a "struct clock_event_device": Linux asks us to set it to go
|
|
* off some time in the future. Actually, James Morris figured all this out, I
|
|
* just applied the patch. */
|
|
static int lguest_clockevent_set_next_event(unsigned long delta,
|
|
struct clock_event_device *evt)
|
|
{
|
|
if (delta < LG_CLOCK_MIN_DELTA) {
|
|
if (printk_ratelimit())
|
|
printk(KERN_DEBUG "%s: small delta %lu ns\n",
|
|
__FUNCTION__, delta);
|
|
return -ETIME;
|
|
}
|
|
hcall(LHCALL_SET_CLOCKEVENT, delta, 0, 0);
|
|
return 0;
|
|
}
|
|
|
|
static void lguest_clockevent_set_mode(enum clock_event_mode mode,
|
|
struct clock_event_device *evt)
|
|
{
|
|
switch (mode) {
|
|
case CLOCK_EVT_MODE_UNUSED:
|
|
case CLOCK_EVT_MODE_SHUTDOWN:
|
|
/* A 0 argument shuts the clock down. */
|
|
hcall(LHCALL_SET_CLOCKEVENT, 0, 0, 0);
|
|
break;
|
|
case CLOCK_EVT_MODE_ONESHOT:
|
|
/* This is what we expect. */
|
|
break;
|
|
case CLOCK_EVT_MODE_PERIODIC:
|
|
BUG();
|
|
case CLOCK_EVT_MODE_RESUME:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* This describes our primitive timer chip. */
|
|
static struct clock_event_device lguest_clockevent = {
|
|
.name = "lguest",
|
|
.features = CLOCK_EVT_FEAT_ONESHOT,
|
|
.set_next_event = lguest_clockevent_set_next_event,
|
|
.set_mode = lguest_clockevent_set_mode,
|
|
.rating = INT_MAX,
|
|
.mult = 1,
|
|
.shift = 0,
|
|
.min_delta_ns = LG_CLOCK_MIN_DELTA,
|
|
.max_delta_ns = LG_CLOCK_MAX_DELTA,
|
|
};
|
|
|
|
/* This is the Guest timer interrupt handler (hardware interrupt 0). We just
|
|
* call the clockevent infrastructure and it does whatever needs doing. */
|
|
static void lguest_time_irq(unsigned int irq, struct irq_desc *desc)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/* Don't interrupt us while this is running. */
|
|
local_irq_save(flags);
|
|
lguest_clockevent.event_handler(&lguest_clockevent);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/* At some point in the boot process, we get asked to set up our timing
|
|
* infrastructure. The kernel doesn't expect timer interrupts before this, but
|
|
* we cleverly initialized the "blocked_interrupts" field of "struct
|
|
* lguest_data" so that timer interrupts were blocked until now. */
|
|
static void lguest_time_init(void)
|
|
{
|
|
/* Set up the timer interrupt (0) to go to our simple timer routine */
|
|
set_irq_handler(0, lguest_time_irq);
|
|
|
|
/* Our clock structure look like arch/i386/kernel/tsc.c if we can use
|
|
* the TSC, otherwise it's a dumb nanosecond-resolution clock. Either
|
|
* way, the "rating" is initialized so high that it's always chosen
|
|
* over any other clocksource. */
|
|
if (lguest_data.tsc_khz) {
|
|
lguest_clock.mult = clocksource_khz2mult(lguest_data.tsc_khz,
|
|
lguest_clock.shift);
|
|
lguest_clock.flags = CLOCK_SOURCE_IS_CONTINUOUS;
|
|
}
|
|
clock_base = lguest_clock_read();
|
|
clocksource_register(&lguest_clock);
|
|
|
|
/* Now we've set up our clock, we can use it as the scheduler clock */
|
|
paravirt_ops.sched_clock = lguest_sched_clock;
|
|
|
|
/* We can't set cpumask in the initializer: damn C limitations! Set it
|
|
* here and register our timer device. */
|
|
lguest_clockevent.cpumask = cpumask_of_cpu(0);
|
|
clockevents_register_device(&lguest_clockevent);
|
|
|
|
/* Finally, we unblock the timer interrupt. */
|
|
enable_lguest_irq(0);
|
|
}
|
|
|
|
/*
|
|
* Miscellaneous bits and pieces.
|
|
*
|
|
* Here is an oddball collection of functions which the Guest needs for things
|
|
* to work. They're pretty simple.
|
|
*/
|
|
|
|
/* The Guest needs to tell the host what stack it expects traps to use. For
|
|
* native hardware, this is part of the Task State Segment mentioned above in
|
|
* lguest_load_tr_desc(), but to help hypervisors there's this special call.
|
|
*
|
|
* We tell the Host the segment we want to use (__KERNEL_DS is the kernel data
|
|
* segment), the privilege level (we're privilege level 1, the Host is 0 and
|
|
* will not tolerate us trying to use that), the stack pointer, and the number
|
|
* of pages in the stack. */
|
|
static void lguest_load_esp0(struct tss_struct *tss,
|
|
struct thread_struct *thread)
|
|
{
|
|
lazy_hcall(LHCALL_SET_STACK, __KERNEL_DS|0x1, thread->esp0,
|
|
THREAD_SIZE/PAGE_SIZE);
|
|
}
|
|
|
|
/* Let's just say, I wouldn't do debugging under a Guest. */
|
|
static void lguest_set_debugreg(int regno, unsigned long value)
|
|
{
|
|
/* FIXME: Implement */
|
|
}
|
|
|
|
/* There are times when the kernel wants to make sure that no memory writes are
|
|
* caught in the cache (that they've all reached real hardware devices). This
|
|
* doesn't matter for the Guest which has virtual hardware.
|
|
*
|
|
* On the Pentium 4 and above, cpuid() indicates that the Cache Line Flush
|
|
* (clflush) instruction is available and the kernel uses that. Otherwise, it
|
|
* uses the older "Write Back and Invalidate Cache" (wbinvd) instruction.
|
|
* Unlike clflush, wbinvd can only be run at privilege level 0. So we can
|
|
* ignore clflush, but replace wbinvd.
|
|
*/
|
|
static void lguest_wbinvd(void)
|
|
{
|
|
}
|
|
|
|
/* If the Guest expects to have an Advanced Programmable Interrupt Controller,
|
|
* we play dumb by ignoring writes and returning 0 for reads. So it's no
|
|
* longer Programmable nor Controlling anything, and I don't think 8 lines of
|
|
* code qualifies for Advanced. It will also never interrupt anything. It
|
|
* does, however, allow us to get through the Linux boot code. */
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
static void lguest_apic_write(unsigned long reg, unsigned long v)
|
|
{
|
|
}
|
|
|
|
static unsigned long lguest_apic_read(unsigned long reg)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* STOP! Until an interrupt comes in. */
|
|
static void lguest_safe_halt(void)
|
|
{
|
|
hcall(LHCALL_HALT, 0, 0, 0);
|
|
}
|
|
|
|
/* Perhaps CRASH isn't the best name for this hypercall, but we use it to get a
|
|
* message out when we're crashing as well as elegant termination like powering
|
|
* off.
|
|
*
|
|
* Note that the Host always prefers that the Guest speak in physical addresses
|
|
* rather than virtual addresses, so we use __pa() here. */
|
|
static void lguest_power_off(void)
|
|
{
|
|
hcall(LHCALL_CRASH, __pa("Power down"), 0, 0);
|
|
}
|
|
|
|
/*
|
|
* Panicing.
|
|
*
|
|
* Don't. But if you did, this is what happens.
|
|
*/
|
|
static int lguest_panic(struct notifier_block *nb, unsigned long l, void *p)
|
|
{
|
|
hcall(LHCALL_CRASH, __pa(p), 0, 0);
|
|
/* The hcall won't return, but to keep gcc happy, we're "done". */
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block paniced = {
|
|
.notifier_call = lguest_panic
|
|
};
|
|
|
|
/* Setting up memory is fairly easy. */
|
|
static __init char *lguest_memory_setup(void)
|
|
{
|
|
/* We do this here and not earlier because lockcheck barfs if we do it
|
|
* before start_kernel() */
|
|
atomic_notifier_chain_register(&panic_notifier_list, &paniced);
|
|
|
|
/* The Linux bootloader header contains an "e820" memory map: the
|
|
* Launcher populated the first entry with our memory limit. */
|
|
add_memory_region(E820_MAP->addr, E820_MAP->size, E820_MAP->type);
|
|
|
|
/* This string is for the boot messages. */
|
|
return "LGUEST";
|
|
}
|
|
|
|
/*G:050
|
|
* Patching (Powerfully Placating Performance Pedants)
|
|
*
|
|
* We have already seen that "struct paravirt_ops" lets us replace simple
|
|
* native instructions with calls to the appropriate back end all throughout
|
|
* the kernel. This allows the same kernel to run as a Guest and as a native
|
|
* kernel, but it's slow because of all the indirect branches.
|
|
*
|
|
* Remember that David Wheeler quote about "Any problem in computer science can
|
|
* be solved with another layer of indirection"? The rest of that quote is
|
|
* "... But that usually will create another problem." This is the first of
|
|
* those problems.
|
|
*
|
|
* Our current solution is to allow the paravirt back end to optionally patch
|
|
* over the indirect calls to replace them with something more efficient. We
|
|
* patch the four most commonly called functions: disable interrupts, enable
|
|
* interrupts, restore interrupts and save interrupts. We usually have 10
|
|
* bytes to patch into: the Guest versions of these operations are small enough
|
|
* that we can fit comfortably.
|
|
*
|
|
* First we need assembly templates of each of the patchable Guest operations,
|
|
* and these are in lguest_asm.S. */
|
|
|
|
/*G:060 We construct a table from the assembler templates: */
|
|
static const struct lguest_insns
|
|
{
|
|
const char *start, *end;
|
|
} lguest_insns[] = {
|
|
[PARAVIRT_PATCH(irq_disable)] = { lgstart_cli, lgend_cli },
|
|
[PARAVIRT_PATCH(irq_enable)] = { lgstart_sti, lgend_sti },
|
|
[PARAVIRT_PATCH(restore_fl)] = { lgstart_popf, lgend_popf },
|
|
[PARAVIRT_PATCH(save_fl)] = { lgstart_pushf, lgend_pushf },
|
|
};
|
|
|
|
/* Now our patch routine is fairly simple (based on the native one in
|
|
* paravirt.c). If we have a replacement, we copy it in and return how much of
|
|
* the available space we used. */
|
|
static unsigned lguest_patch(u8 type, u16 clobber, void *ibuf,
|
|
unsigned long addr, unsigned len)
|
|
{
|
|
unsigned int insn_len;
|
|
|
|
/* Don't do anything special if we don't have a replacement */
|
|
if (type >= ARRAY_SIZE(lguest_insns) || !lguest_insns[type].start)
|
|
return paravirt_patch_default(type, clobber, ibuf, addr, len);
|
|
|
|
insn_len = lguest_insns[type].end - lguest_insns[type].start;
|
|
|
|
/* Similarly if we can't fit replacement (shouldn't happen, but let's
|
|
* be thorough). */
|
|
if (len < insn_len)
|
|
return paravirt_patch_default(type, clobber, ibuf, addr, len);
|
|
|
|
/* Copy in our instructions. */
|
|
memcpy(ibuf, lguest_insns[type].start, insn_len);
|
|
return insn_len;
|
|
}
|
|
|
|
/*G:030 Once we get to lguest_init(), we know we're a Guest. The paravirt_ops
|
|
* structure in the kernel provides a single point for (almost) every routine
|
|
* we have to override to avoid privileged instructions. */
|
|
__init void lguest_init(void *boot)
|
|
{
|
|
/* Copy boot parameters first: the Launcher put the physical location
|
|
* in %esi, and head.S converted that to a virtual address and handed
|
|
* it to us. We use "__memcpy" because "memcpy" sometimes tries to do
|
|
* tricky things to go faster, and we're not ready for that. */
|
|
__memcpy(&boot_params, boot, PARAM_SIZE);
|
|
/* The boot parameters also tell us where the command-line is: save
|
|
* that, too. */
|
|
__memcpy(boot_command_line, __va(boot_params.hdr.cmd_line_ptr),
|
|
COMMAND_LINE_SIZE);
|
|
|
|
/* We're under lguest, paravirt is enabled, and we're running at
|
|
* privilege level 1, not 0 as normal. */
|
|
paravirt_ops.name = "lguest";
|
|
paravirt_ops.paravirt_enabled = 1;
|
|
paravirt_ops.kernel_rpl = 1;
|
|
|
|
/* We set up all the lguest overrides for sensitive operations. These
|
|
* are detailed with the operations themselves. */
|
|
paravirt_ops.save_fl = save_fl;
|
|
paravirt_ops.restore_fl = restore_fl;
|
|
paravirt_ops.irq_disable = irq_disable;
|
|
paravirt_ops.irq_enable = irq_enable;
|
|
paravirt_ops.load_gdt = lguest_load_gdt;
|
|
paravirt_ops.memory_setup = lguest_memory_setup;
|
|
paravirt_ops.cpuid = lguest_cpuid;
|
|
paravirt_ops.write_cr3 = lguest_write_cr3;
|
|
paravirt_ops.flush_tlb_user = lguest_flush_tlb_user;
|
|
paravirt_ops.flush_tlb_single = lguest_flush_tlb_single;
|
|
paravirt_ops.flush_tlb_kernel = lguest_flush_tlb_kernel;
|
|
paravirt_ops.set_pte = lguest_set_pte;
|
|
paravirt_ops.set_pte_at = lguest_set_pte_at;
|
|
paravirt_ops.set_pmd = lguest_set_pmd;
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
paravirt_ops.apic_write = lguest_apic_write;
|
|
paravirt_ops.apic_write_atomic = lguest_apic_write;
|
|
paravirt_ops.apic_read = lguest_apic_read;
|
|
#endif
|
|
paravirt_ops.load_idt = lguest_load_idt;
|
|
paravirt_ops.iret = lguest_iret;
|
|
paravirt_ops.load_esp0 = lguest_load_esp0;
|
|
paravirt_ops.load_tr_desc = lguest_load_tr_desc;
|
|
paravirt_ops.set_ldt = lguest_set_ldt;
|
|
paravirt_ops.load_tls = lguest_load_tls;
|
|
paravirt_ops.set_debugreg = lguest_set_debugreg;
|
|
paravirt_ops.clts = lguest_clts;
|
|
paravirt_ops.read_cr0 = lguest_read_cr0;
|
|
paravirt_ops.write_cr0 = lguest_write_cr0;
|
|
paravirt_ops.init_IRQ = lguest_init_IRQ;
|
|
paravirt_ops.read_cr2 = lguest_read_cr2;
|
|
paravirt_ops.read_cr3 = lguest_read_cr3;
|
|
paravirt_ops.read_cr4 = lguest_read_cr4;
|
|
paravirt_ops.write_cr4 = lguest_write_cr4;
|
|
paravirt_ops.write_gdt_entry = lguest_write_gdt_entry;
|
|
paravirt_ops.write_idt_entry = lguest_write_idt_entry;
|
|
paravirt_ops.patch = lguest_patch;
|
|
paravirt_ops.safe_halt = lguest_safe_halt;
|
|
paravirt_ops.get_wallclock = lguest_get_wallclock;
|
|
paravirt_ops.time_init = lguest_time_init;
|
|
paravirt_ops.set_lazy_mode = lguest_lazy_mode;
|
|
paravirt_ops.wbinvd = lguest_wbinvd;
|
|
/* Now is a good time to look at the implementations of these functions
|
|
* before returning to the rest of lguest_init(). */
|
|
|
|
/*G:070 Now we've seen all the paravirt_ops, we return to
|
|
* lguest_init() where the rest of the fairly chaotic boot setup
|
|
* occurs.
|
|
*
|
|
* The Host expects our first hypercall to tell it where our "struct
|
|
* lguest_data" is, so we do that first. */
|
|
hcall(LHCALL_LGUEST_INIT, __pa(&lguest_data), 0, 0);
|
|
|
|
/* The native boot code sets up initial page tables immediately after
|
|
* the kernel itself, and sets init_pg_tables_end so they're not
|
|
* clobbered. The Launcher places our initial pagetables somewhere at
|
|
* the top of our physical memory, so we don't need extra space: set
|
|
* init_pg_tables_end to the end of the kernel. */
|
|
init_pg_tables_end = __pa(pg0);
|
|
|
|
/* Load the %fs segment register (the per-cpu segment register) with
|
|
* the normal data segment to get through booting. */
|
|
asm volatile ("mov %0, %%fs" : : "r" (__KERNEL_DS) : "memory");
|
|
|
|
/* Clear the part of the kernel data which is expected to be zero.
|
|
* Normally it will be anyway, but if we're loading from a bzImage with
|
|
* CONFIG_RELOCATALE=y, the relocations will be sitting here. */
|
|
memset(__bss_start, 0, __bss_stop - __bss_start);
|
|
|
|
/* The Host uses the top of the Guest's virtual address space for the
|
|
* Host<->Guest Switcher, and it tells us how much it needs in
|
|
* lguest_data.reserve_mem, set up on the LGUEST_INIT hypercall. */
|
|
reserve_top_address(lguest_data.reserve_mem);
|
|
|
|
/* If we don't initialize the lock dependency checker now, it crashes
|
|
* paravirt_disable_iospace. */
|
|
lockdep_init();
|
|
|
|
/* The IDE code spends about 3 seconds probing for disks: if we reserve
|
|
* all the I/O ports up front it can't get them and so doesn't probe.
|
|
* Other device drivers are similar (but less severe). This cuts the
|
|
* kernel boot time on my machine from 4.1 seconds to 0.45 seconds. */
|
|
paravirt_disable_iospace();
|
|
|
|
/* This is messy CPU setup stuff which the native boot code does before
|
|
* start_kernel, so we have to do, too: */
|
|
cpu_detect(&new_cpu_data);
|
|
/* head.S usually sets up the first capability word, so do it here. */
|
|
new_cpu_data.x86_capability[0] = cpuid_edx(1);
|
|
|
|
/* Math is always hard! */
|
|
new_cpu_data.hard_math = 1;
|
|
|
|
#ifdef CONFIG_X86_MCE
|
|
mce_disabled = 1;
|
|
#endif
|
|
#ifdef CONFIG_ACPI
|
|
acpi_disabled = 1;
|
|
acpi_ht = 0;
|
|
#endif
|
|
|
|
/* We set the perferred console to "hvc". This is the "hypervisor
|
|
* virtual console" driver written by the PowerPC people, which we also
|
|
* adapted for lguest's use. */
|
|
add_preferred_console("hvc", 0, NULL);
|
|
|
|
/* Last of all, we set the power management poweroff hook to point to
|
|
* the Guest routine to power off. */
|
|
pm_power_off = lguest_power_off;
|
|
|
|
/* Now we're set up, call start_kernel() in init/main.c and we proceed
|
|
* to boot as normal. It never returns. */
|
|
start_kernel();
|
|
}
|
|
/*
|
|
* This marks the end of stage II of our journey, The Guest.
|
|
*
|
|
* It is now time for us to explore the nooks and crannies of the three Guest
|
|
* devices and complete our understanding of the Guest in "make Drivers".
|
|
*/
|