2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 11:43:54 +08:00
linux-next/sound/soc/omap/mcbsp.c
Markus Elfring bb66f2dc19 ASoC: omap-mcbsp: Deletion of an unnecessary check before the function call "kfree"
The kfree() function tests whether its argument is NULL and then
returns immediately. Thus the test around the call is not needed.

This issue was detected by using the Coccinelle software.

Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Acked-by: Jarkko Nikula <jarkko.nikula@bitmer.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
2014-11-17 23:52:34 +00:00

1101 lines
27 KiB
C

/*
* sound/soc/omap/mcbsp.c
*
* Copyright (C) 2004 Nokia Corporation
* Author: Samuel Ortiz <samuel.ortiz@nokia.com>
*
* Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
* Peter Ujfalusi <peter.ujfalusi@ti.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Multichannel mode not supported.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/pm_runtime.h>
#include <linux/platform_data/asoc-ti-mcbsp.h>
#include "mcbsp.h"
static void omap_mcbsp_write(struct omap_mcbsp *mcbsp, u16 reg, u32 val)
{
void __iomem *addr = mcbsp->io_base + reg * mcbsp->pdata->reg_step;
if (mcbsp->pdata->reg_size == 2) {
((u16 *)mcbsp->reg_cache)[reg] = (u16)val;
writew_relaxed((u16)val, addr);
} else {
((u32 *)mcbsp->reg_cache)[reg] = val;
writel_relaxed(val, addr);
}
}
static int omap_mcbsp_read(struct omap_mcbsp *mcbsp, u16 reg, bool from_cache)
{
void __iomem *addr = mcbsp->io_base + reg * mcbsp->pdata->reg_step;
if (mcbsp->pdata->reg_size == 2) {
return !from_cache ? readw_relaxed(addr) :
((u16 *)mcbsp->reg_cache)[reg];
} else {
return !from_cache ? readl_relaxed(addr) :
((u32 *)mcbsp->reg_cache)[reg];
}
}
static void omap_mcbsp_st_write(struct omap_mcbsp *mcbsp, u16 reg, u32 val)
{
writel_relaxed(val, mcbsp->st_data->io_base_st + reg);
}
static int omap_mcbsp_st_read(struct omap_mcbsp *mcbsp, u16 reg)
{
return readl_relaxed(mcbsp->st_data->io_base_st + reg);
}
#define MCBSP_READ(mcbsp, reg) \
omap_mcbsp_read(mcbsp, OMAP_MCBSP_REG_##reg, 0)
#define MCBSP_WRITE(mcbsp, reg, val) \
omap_mcbsp_write(mcbsp, OMAP_MCBSP_REG_##reg, val)
#define MCBSP_READ_CACHE(mcbsp, reg) \
omap_mcbsp_read(mcbsp, OMAP_MCBSP_REG_##reg, 1)
#define MCBSP_ST_READ(mcbsp, reg) \
omap_mcbsp_st_read(mcbsp, OMAP_ST_REG_##reg)
#define MCBSP_ST_WRITE(mcbsp, reg, val) \
omap_mcbsp_st_write(mcbsp, OMAP_ST_REG_##reg, val)
static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
{
dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
dev_dbg(mcbsp->dev, "DRR2: 0x%04x\n",
MCBSP_READ(mcbsp, DRR2));
dev_dbg(mcbsp->dev, "DRR1: 0x%04x\n",
MCBSP_READ(mcbsp, DRR1));
dev_dbg(mcbsp->dev, "DXR2: 0x%04x\n",
MCBSP_READ(mcbsp, DXR2));
dev_dbg(mcbsp->dev, "DXR1: 0x%04x\n",
MCBSP_READ(mcbsp, DXR1));
dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n",
MCBSP_READ(mcbsp, SPCR2));
dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n",
MCBSP_READ(mcbsp, SPCR1));
dev_dbg(mcbsp->dev, "RCR2: 0x%04x\n",
MCBSP_READ(mcbsp, RCR2));
dev_dbg(mcbsp->dev, "RCR1: 0x%04x\n",
MCBSP_READ(mcbsp, RCR1));
dev_dbg(mcbsp->dev, "XCR2: 0x%04x\n",
MCBSP_READ(mcbsp, XCR2));
dev_dbg(mcbsp->dev, "XCR1: 0x%04x\n",
MCBSP_READ(mcbsp, XCR1));
dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n",
MCBSP_READ(mcbsp, SRGR2));
dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n",
MCBSP_READ(mcbsp, SRGR1));
dev_dbg(mcbsp->dev, "PCR0: 0x%04x\n",
MCBSP_READ(mcbsp, PCR0));
dev_dbg(mcbsp->dev, "***********************\n");
}
static irqreturn_t omap_mcbsp_irq_handler(int irq, void *dev_id)
{
struct omap_mcbsp *mcbsp = dev_id;
u16 irqst;
irqst = MCBSP_READ(mcbsp, IRQST);
dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
if (irqst & RSYNCERREN)
dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
if (irqst & RFSREN)
dev_dbg(mcbsp->dev, "RX Frame Sync\n");
if (irqst & REOFEN)
dev_dbg(mcbsp->dev, "RX End Of Frame\n");
if (irqst & RRDYEN)
dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
if (irqst & RUNDFLEN)
dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
if (irqst & ROVFLEN)
dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
if (irqst & XSYNCERREN)
dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
if (irqst & XFSXEN)
dev_dbg(mcbsp->dev, "TX Frame Sync\n");
if (irqst & XEOFEN)
dev_dbg(mcbsp->dev, "TX End Of Frame\n");
if (irqst & XRDYEN)
dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
if (irqst & XUNDFLEN)
dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
if (irqst & XOVFLEN)
dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
if (irqst & XEMPTYEOFEN)
dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
MCBSP_WRITE(mcbsp, IRQST, irqst);
return IRQ_HANDLED;
}
static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *dev_id)
{
struct omap_mcbsp *mcbsp_tx = dev_id;
u16 irqst_spcr2;
irqst_spcr2 = MCBSP_READ(mcbsp_tx, SPCR2);
dev_dbg(mcbsp_tx->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
if (irqst_spcr2 & XSYNC_ERR) {
dev_err(mcbsp_tx->dev, "TX Frame Sync Error! : 0x%x\n",
irqst_spcr2);
/* Writing zero to XSYNC_ERR clears the IRQ */
MCBSP_WRITE(mcbsp_tx, SPCR2, MCBSP_READ_CACHE(mcbsp_tx, SPCR2));
}
return IRQ_HANDLED;
}
static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *dev_id)
{
struct omap_mcbsp *mcbsp_rx = dev_id;
u16 irqst_spcr1;
irqst_spcr1 = MCBSP_READ(mcbsp_rx, SPCR1);
dev_dbg(mcbsp_rx->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
if (irqst_spcr1 & RSYNC_ERR) {
dev_err(mcbsp_rx->dev, "RX Frame Sync Error! : 0x%x\n",
irqst_spcr1);
/* Writing zero to RSYNC_ERR clears the IRQ */
MCBSP_WRITE(mcbsp_rx, SPCR1, MCBSP_READ_CACHE(mcbsp_rx, SPCR1));
}
return IRQ_HANDLED;
}
/*
* omap_mcbsp_config simply write a config to the
* appropriate McBSP.
* You either call this function or set the McBSP registers
* by yourself before calling omap_mcbsp_start().
*/
void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
const struct omap_mcbsp_reg_cfg *config)
{
dev_dbg(mcbsp->dev, "Configuring McBSP%d phys_base: 0x%08lx\n",
mcbsp->id, mcbsp->phys_base);
/* We write the given config */
MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
if (mcbsp->pdata->has_ccr) {
MCBSP_WRITE(mcbsp, XCCR, config->xccr);
MCBSP_WRITE(mcbsp, RCCR, config->rccr);
}
/* Enable wakeup behavior */
if (mcbsp->pdata->has_wakeup)
MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
/* Enable TX/RX sync error interrupts by default */
if (mcbsp->irq)
MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN);
}
/**
* omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
* @id - mcbsp id
* @stream - indicates the direction of data flow (rx or tx)
*
* Returns the address of mcbsp data transmit register or data receive register
* to be used by DMA for transferring/receiving data based on the value of
* @stream for the requested mcbsp given by @id
*/
static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
unsigned int stream)
{
int data_reg;
if (mcbsp->pdata->reg_size == 2) {
if (stream)
data_reg = OMAP_MCBSP_REG_DRR1;
else
data_reg = OMAP_MCBSP_REG_DXR1;
} else {
if (stream)
data_reg = OMAP_MCBSP_REG_DRR;
else
data_reg = OMAP_MCBSP_REG_DXR;
}
return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
}
static void omap_st_on(struct omap_mcbsp *mcbsp)
{
unsigned int w;
if (mcbsp->pdata->enable_st_clock)
mcbsp->pdata->enable_st_clock(mcbsp->id, 1);
/* Enable McBSP Sidetone */
w = MCBSP_READ(mcbsp, SSELCR);
MCBSP_WRITE(mcbsp, SSELCR, w | SIDETONEEN);
/* Enable Sidetone from Sidetone Core */
w = MCBSP_ST_READ(mcbsp, SSELCR);
MCBSP_ST_WRITE(mcbsp, SSELCR, w | ST_SIDETONEEN);
}
static void omap_st_off(struct omap_mcbsp *mcbsp)
{
unsigned int w;
w = MCBSP_ST_READ(mcbsp, SSELCR);
MCBSP_ST_WRITE(mcbsp, SSELCR, w & ~(ST_SIDETONEEN));
w = MCBSP_READ(mcbsp, SSELCR);
MCBSP_WRITE(mcbsp, SSELCR, w & ~(SIDETONEEN));
if (mcbsp->pdata->enable_st_clock)
mcbsp->pdata->enable_st_clock(mcbsp->id, 0);
}
static void omap_st_fir_write(struct omap_mcbsp *mcbsp, s16 *fir)
{
u16 val, i;
val = MCBSP_ST_READ(mcbsp, SSELCR);
if (val & ST_COEFFWREN)
MCBSP_ST_WRITE(mcbsp, SSELCR, val & ~(ST_COEFFWREN));
MCBSP_ST_WRITE(mcbsp, SSELCR, val | ST_COEFFWREN);
for (i = 0; i < 128; i++)
MCBSP_ST_WRITE(mcbsp, SFIRCR, fir[i]);
i = 0;
val = MCBSP_ST_READ(mcbsp, SSELCR);
while (!(val & ST_COEFFWRDONE) && (++i < 1000))
val = MCBSP_ST_READ(mcbsp, SSELCR);
MCBSP_ST_WRITE(mcbsp, SSELCR, val & ~(ST_COEFFWREN));
if (i == 1000)
dev_err(mcbsp->dev, "McBSP FIR load error!\n");
}
static void omap_st_chgain(struct omap_mcbsp *mcbsp)
{
u16 w;
struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
w = MCBSP_ST_READ(mcbsp, SSELCR);
MCBSP_ST_WRITE(mcbsp, SGAINCR, ST_CH0GAIN(st_data->ch0gain) | \
ST_CH1GAIN(st_data->ch1gain));
}
int omap_st_set_chgain(struct omap_mcbsp *mcbsp, int channel, s16 chgain)
{
struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
int ret = 0;
if (!st_data)
return -ENOENT;
spin_lock_irq(&mcbsp->lock);
if (channel == 0)
st_data->ch0gain = chgain;
else if (channel == 1)
st_data->ch1gain = chgain;
else
ret = -EINVAL;
if (st_data->enabled)
omap_st_chgain(mcbsp);
spin_unlock_irq(&mcbsp->lock);
return ret;
}
int omap_st_get_chgain(struct omap_mcbsp *mcbsp, int channel, s16 *chgain)
{
struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
int ret = 0;
if (!st_data)
return -ENOENT;
spin_lock_irq(&mcbsp->lock);
if (channel == 0)
*chgain = st_data->ch0gain;
else if (channel == 1)
*chgain = st_data->ch1gain;
else
ret = -EINVAL;
spin_unlock_irq(&mcbsp->lock);
return ret;
}
static int omap_st_start(struct omap_mcbsp *mcbsp)
{
struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
if (st_data->enabled && !st_data->running) {
omap_st_fir_write(mcbsp, st_data->taps);
omap_st_chgain(mcbsp);
if (!mcbsp->free) {
omap_st_on(mcbsp);
st_data->running = 1;
}
}
return 0;
}
int omap_st_enable(struct omap_mcbsp *mcbsp)
{
struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
if (!st_data)
return -ENODEV;
spin_lock_irq(&mcbsp->lock);
st_data->enabled = 1;
omap_st_start(mcbsp);
spin_unlock_irq(&mcbsp->lock);
return 0;
}
static int omap_st_stop(struct omap_mcbsp *mcbsp)
{
struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
if (st_data->running) {
if (!mcbsp->free) {
omap_st_off(mcbsp);
st_data->running = 0;
}
}
return 0;
}
int omap_st_disable(struct omap_mcbsp *mcbsp)
{
struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
int ret = 0;
if (!st_data)
return -ENODEV;
spin_lock_irq(&mcbsp->lock);
omap_st_stop(mcbsp);
st_data->enabled = 0;
spin_unlock_irq(&mcbsp->lock);
return ret;
}
int omap_st_is_enabled(struct omap_mcbsp *mcbsp)
{
struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
if (!st_data)
return -ENODEV;
return st_data->enabled;
}
/*
* omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
* The threshold parameter is 1 based, and it is converted (threshold - 1)
* for the THRSH2 register.
*/
void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
{
if (mcbsp->pdata->buffer_size == 0)
return;
if (threshold && threshold <= mcbsp->max_tx_thres)
MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
}
/*
* omap_mcbsp_set_rx_threshold configures the receive threshold in words.
* The threshold parameter is 1 based, and it is converted (threshold - 1)
* for the THRSH1 register.
*/
void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
{
if (mcbsp->pdata->buffer_size == 0)
return;
if (threshold && threshold <= mcbsp->max_rx_thres)
MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
}
/*
* omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
*/
u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
{
u16 buffstat;
if (mcbsp->pdata->buffer_size == 0)
return 0;
/* Returns the number of free locations in the buffer */
buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
/* Number of slots are different in McBSP ports */
return mcbsp->pdata->buffer_size - buffstat;
}
/*
* omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
* to reach the threshold value (when the DMA will be triggered to read it)
*/
u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
{
u16 buffstat, threshold;
if (mcbsp->pdata->buffer_size == 0)
return 0;
/* Returns the number of used locations in the buffer */
buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
/* RX threshold */
threshold = MCBSP_READ(mcbsp, THRSH1);
/* Return the number of location till we reach the threshold limit */
if (threshold <= buffstat)
return 0;
else
return threshold - buffstat;
}
int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
{
void *reg_cache;
int err;
reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
if (!reg_cache) {
return -ENOMEM;
}
spin_lock(&mcbsp->lock);
if (!mcbsp->free) {
dev_err(mcbsp->dev, "McBSP%d is currently in use\n",
mcbsp->id);
err = -EBUSY;
goto err_kfree;
}
mcbsp->free = false;
mcbsp->reg_cache = reg_cache;
spin_unlock(&mcbsp->lock);
if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->request)
mcbsp->pdata->ops->request(mcbsp->id - 1);
/*
* Make sure that transmitter, receiver and sample-rate generator are
* not running before activating IRQs.
*/
MCBSP_WRITE(mcbsp, SPCR1, 0);
MCBSP_WRITE(mcbsp, SPCR2, 0);
if (mcbsp->irq) {
err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
"McBSP", (void *)mcbsp);
if (err != 0) {
dev_err(mcbsp->dev, "Unable to request IRQ\n");
goto err_clk_disable;
}
} else {
err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
"McBSP TX", (void *)mcbsp);
if (err != 0) {
dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
goto err_clk_disable;
}
err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
"McBSP RX", (void *)mcbsp);
if (err != 0) {
dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
goto err_free_irq;
}
}
return 0;
err_free_irq:
free_irq(mcbsp->tx_irq, (void *)mcbsp);
err_clk_disable:
if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->free)
mcbsp->pdata->ops->free(mcbsp->id - 1);
/* Disable wakeup behavior */
if (mcbsp->pdata->has_wakeup)
MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
spin_lock(&mcbsp->lock);
mcbsp->free = true;
mcbsp->reg_cache = NULL;
err_kfree:
spin_unlock(&mcbsp->lock);
kfree(reg_cache);
return err;
}
void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
{
void *reg_cache;
if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->free)
mcbsp->pdata->ops->free(mcbsp->id - 1);
/* Disable wakeup behavior */
if (mcbsp->pdata->has_wakeup)
MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
/* Disable interrupt requests */
if (mcbsp->irq)
MCBSP_WRITE(mcbsp, IRQEN, 0);
if (mcbsp->irq) {
free_irq(mcbsp->irq, (void *)mcbsp);
} else {
free_irq(mcbsp->rx_irq, (void *)mcbsp);
free_irq(mcbsp->tx_irq, (void *)mcbsp);
}
reg_cache = mcbsp->reg_cache;
/*
* Select CLKS source from internal source unconditionally before
* marking the McBSP port as free.
* If the external clock source via MCBSP_CLKS pin has been selected the
* system will refuse to enter idle if the CLKS pin source is not reset
* back to internal source.
*/
if (!mcbsp_omap1())
omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
spin_lock(&mcbsp->lock);
if (mcbsp->free)
dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
else
mcbsp->free = true;
mcbsp->reg_cache = NULL;
spin_unlock(&mcbsp->lock);
kfree(reg_cache);
}
/*
* Here we start the McBSP, by enabling transmitter, receiver or both.
* If no transmitter or receiver is active prior calling, then sample-rate
* generator and frame sync are started.
*/
void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int tx, int rx)
{
int enable_srg = 0;
u16 w;
if (mcbsp->st_data)
omap_st_start(mcbsp);
/* Only enable SRG, if McBSP is master */
w = MCBSP_READ_CACHE(mcbsp, PCR0);
if (w & (FSXM | FSRM | CLKXM | CLKRM))
enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
if (enable_srg) {
/* Start the sample generator */
w = MCBSP_READ_CACHE(mcbsp, SPCR2);
MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
}
/* Enable transmitter and receiver */
tx &= 1;
w = MCBSP_READ_CACHE(mcbsp, SPCR2);
MCBSP_WRITE(mcbsp, SPCR2, w | tx);
rx &= 1;
w = MCBSP_READ_CACHE(mcbsp, SPCR1);
MCBSP_WRITE(mcbsp, SPCR1, w | rx);
/*
* Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
* REVISIT: 100us may give enough time for two CLKSRG, however
* due to some unknown PM related, clock gating etc. reason it
* is now at 500us.
*/
udelay(500);
if (enable_srg) {
/* Start frame sync */
w = MCBSP_READ_CACHE(mcbsp, SPCR2);
MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
}
if (mcbsp->pdata->has_ccr) {
/* Release the transmitter and receiver */
w = MCBSP_READ_CACHE(mcbsp, XCCR);
w &= ~(tx ? XDISABLE : 0);
MCBSP_WRITE(mcbsp, XCCR, w);
w = MCBSP_READ_CACHE(mcbsp, RCCR);
w &= ~(rx ? RDISABLE : 0);
MCBSP_WRITE(mcbsp, RCCR, w);
}
/* Dump McBSP Regs */
omap_mcbsp_dump_reg(mcbsp);
}
void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int tx, int rx)
{
int idle;
u16 w;
/* Reset transmitter */
tx &= 1;
if (mcbsp->pdata->has_ccr) {
w = MCBSP_READ_CACHE(mcbsp, XCCR);
w |= (tx ? XDISABLE : 0);
MCBSP_WRITE(mcbsp, XCCR, w);
}
w = MCBSP_READ_CACHE(mcbsp, SPCR2);
MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
/* Reset receiver */
rx &= 1;
if (mcbsp->pdata->has_ccr) {
w = MCBSP_READ_CACHE(mcbsp, RCCR);
w |= (rx ? RDISABLE : 0);
MCBSP_WRITE(mcbsp, RCCR, w);
}
w = MCBSP_READ_CACHE(mcbsp, SPCR1);
MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
if (idle) {
/* Reset the sample rate generator */
w = MCBSP_READ_CACHE(mcbsp, SPCR2);
MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
}
if (mcbsp->st_data)
omap_st_stop(mcbsp);
}
int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
{
struct clk *fck_src;
const char *src;
int r;
if (fck_src_id == MCBSP_CLKS_PAD_SRC)
src = "pad_fck";
else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
src = "prcm_fck";
else
return -EINVAL;
fck_src = clk_get(mcbsp->dev, src);
if (IS_ERR(fck_src)) {
dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
return -EINVAL;
}
pm_runtime_put_sync(mcbsp->dev);
r = clk_set_parent(mcbsp->fclk, fck_src);
if (r) {
dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
src);
clk_put(fck_src);
return r;
}
pm_runtime_get_sync(mcbsp->dev);
clk_put(fck_src);
return 0;
}
#define max_thres(m) (mcbsp->pdata->buffer_size)
#define valid_threshold(m, val) ((val) <= max_thres(m))
#define THRESHOLD_PROP_BUILDER(prop) \
static ssize_t prop##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
\
return sprintf(buf, "%u\n", mcbsp->prop); \
} \
\
static ssize_t prop##_store(struct device *dev, \
struct device_attribute *attr, \
const char *buf, size_t size) \
{ \
struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
unsigned long val; \
int status; \
\
status = kstrtoul(buf, 0, &val); \
if (status) \
return status; \
\
if (!valid_threshold(mcbsp, val)) \
return -EDOM; \
\
mcbsp->prop = val; \
return size; \
} \
\
static DEVICE_ATTR(prop, 0644, prop##_show, prop##_store);
THRESHOLD_PROP_BUILDER(max_tx_thres);
THRESHOLD_PROP_BUILDER(max_rx_thres);
static const char *dma_op_modes[] = {
"element", "threshold",
};
static ssize_t dma_op_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
int dma_op_mode, i = 0;
ssize_t len = 0;
const char * const *s;
dma_op_mode = mcbsp->dma_op_mode;
for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
if (dma_op_mode == i)
len += sprintf(buf + len, "[%s] ", *s);
else
len += sprintf(buf + len, "%s ", *s);
}
len += sprintf(buf + len, "\n");
return len;
}
static ssize_t dma_op_mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
const char * const *s;
int i = 0;
for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++)
if (sysfs_streq(buf, *s))
break;
if (i == ARRAY_SIZE(dma_op_modes))
return -EINVAL;
spin_lock_irq(&mcbsp->lock);
if (!mcbsp->free) {
size = -EBUSY;
goto unlock;
}
mcbsp->dma_op_mode = i;
unlock:
spin_unlock_irq(&mcbsp->lock);
return size;
}
static DEVICE_ATTR(dma_op_mode, 0644, dma_op_mode_show, dma_op_mode_store);
static const struct attribute *additional_attrs[] = {
&dev_attr_max_tx_thres.attr,
&dev_attr_max_rx_thres.attr,
&dev_attr_dma_op_mode.attr,
NULL,
};
static const struct attribute_group additional_attr_group = {
.attrs = (struct attribute **)additional_attrs,
};
static ssize_t st_taps_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
ssize_t status = 0;
int i;
spin_lock_irq(&mcbsp->lock);
for (i = 0; i < st_data->nr_taps; i++)
status += sprintf(&buf[status], (i ? ", %d" : "%d"),
st_data->taps[i]);
if (i)
status += sprintf(&buf[status], "\n");
spin_unlock_irq(&mcbsp->lock);
return status;
}
static ssize_t st_taps_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
int val, tmp, status, i = 0;
spin_lock_irq(&mcbsp->lock);
memset(st_data->taps, 0, sizeof(st_data->taps));
st_data->nr_taps = 0;
do {
status = sscanf(buf, "%d%n", &val, &tmp);
if (status < 0 || status == 0) {
size = -EINVAL;
goto out;
}
if (val < -32768 || val > 32767) {
size = -EINVAL;
goto out;
}
st_data->taps[i++] = val;
buf += tmp;
if (*buf != ',')
break;
buf++;
} while (1);
st_data->nr_taps = i;
out:
spin_unlock_irq(&mcbsp->lock);
return size;
}
static DEVICE_ATTR(st_taps, 0644, st_taps_show, st_taps_store);
static const struct attribute *sidetone_attrs[] = {
&dev_attr_st_taps.attr,
NULL,
};
static const struct attribute_group sidetone_attr_group = {
.attrs = (struct attribute **)sidetone_attrs,
};
static int omap_st_add(struct omap_mcbsp *mcbsp, struct resource *res)
{
struct omap_mcbsp_st_data *st_data;
int err;
st_data = devm_kzalloc(mcbsp->dev, sizeof(*mcbsp->st_data), GFP_KERNEL);
if (!st_data)
return -ENOMEM;
st_data->io_base_st = devm_ioremap(mcbsp->dev, res->start,
resource_size(res));
if (!st_data->io_base_st)
return -ENOMEM;
err = sysfs_create_group(&mcbsp->dev->kobj, &sidetone_attr_group);
if (err)
return err;
mcbsp->st_data = st_data;
return 0;
}
/*
* McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
* 730 has only 2 McBSP, and both of them are MPU peripherals.
*/
int omap_mcbsp_init(struct platform_device *pdev)
{
struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
struct resource *res;
int ret = 0;
spin_lock_init(&mcbsp->lock);
mcbsp->free = true;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
if (!res) {
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(mcbsp->dev, "invalid memory resource\n");
return -ENOMEM;
}
}
if (!devm_request_mem_region(&pdev->dev, res->start, resource_size(res),
dev_name(&pdev->dev))) {
dev_err(mcbsp->dev, "memory region already claimed\n");
return -ENODEV;
}
mcbsp->phys_base = res->start;
mcbsp->reg_cache_size = resource_size(res);
mcbsp->io_base = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (!mcbsp->io_base)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
if (!res)
mcbsp->phys_dma_base = mcbsp->phys_base;
else
mcbsp->phys_dma_base = res->start;
/*
* OMAP1, 2 uses two interrupt lines: TX, RX
* OMAP2430, OMAP3 SoC have combined IRQ line as well.
* OMAP4 and newer SoC only have the combined IRQ line.
* Use the combined IRQ if available since it gives better debugging
* possibilities.
*/
mcbsp->irq = platform_get_irq_byname(pdev, "common");
if (mcbsp->irq == -ENXIO) {
mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
if (mcbsp->tx_irq == -ENXIO) {
mcbsp->irq = platform_get_irq(pdev, 0);
mcbsp->tx_irq = 0;
} else {
mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
mcbsp->irq = 0;
}
}
if (!pdev->dev.of_node) {
res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
if (!res) {
dev_err(&pdev->dev, "invalid tx DMA channel\n");
return -ENODEV;
}
mcbsp->dma_req[0] = res->start;
mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
if (!res) {
dev_err(&pdev->dev, "invalid rx DMA channel\n");
return -ENODEV;
}
mcbsp->dma_req[1] = res->start;
mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
} else {
mcbsp->dma_data[0].filter_data = "tx";
mcbsp->dma_data[1].filter_data = "rx";
}
mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp, 0);
mcbsp->dma_data[0].maxburst = 4;
mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp, 1);
mcbsp->dma_data[1].maxburst = 4;
mcbsp->fclk = clk_get(&pdev->dev, "fck");
if (IS_ERR(mcbsp->fclk)) {
ret = PTR_ERR(mcbsp->fclk);
dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
return ret;
}
mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
if (mcbsp->pdata->buffer_size) {
/*
* Initially configure the maximum thresholds to a safe value.
* The McBSP FIFO usage with these values should not go under
* 16 locations.
* If the whole FIFO without safety buffer is used, than there
* is a possibility that the DMA will be not able to push the
* new data on time, causing channel shifts in runtime.
*/
mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
ret = sysfs_create_group(&mcbsp->dev->kobj,
&additional_attr_group);
if (ret) {
dev_err(mcbsp->dev,
"Unable to create additional controls\n");
goto err_thres;
}
} else {
mcbsp->max_tx_thres = -EINVAL;
mcbsp->max_rx_thres = -EINVAL;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sidetone");
if (res) {
ret = omap_st_add(mcbsp, res);
if (ret) {
dev_err(mcbsp->dev,
"Unable to create sidetone controls\n");
goto err_st;
}
}
return 0;
err_st:
if (mcbsp->pdata->buffer_size)
sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
err_thres:
clk_put(mcbsp->fclk);
return ret;
}
void omap_mcbsp_sysfs_remove(struct omap_mcbsp *mcbsp)
{
if (mcbsp->pdata->buffer_size)
sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
if (mcbsp->st_data)
sysfs_remove_group(&mcbsp->dev->kobj, &sidetone_attr_group);
}