2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 20:23:57 +08:00
linux-next/drivers/input/rmi4/rmi_f12.c
Nick Dyer 25670fb037 Input: synaptics-rmi4 - change F12 clip to inactive border debug
The data in F12_2D_Ctrl8 corresponds to the inactive border width used by
the RMI device. It is not in pixel units and should not be treated as a
clip value.

Signed-off-by: Nick Dyer <nick@shmanahar.org>
Tested-by: Chris Healy <cphealy@gmail.com>
Acked-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
2017-04-14 14:52:31 -07:00

532 lines
14 KiB
C

/*
* Copyright (c) 2012-2016 Synaptics Incorporated
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*/
#include <linux/input.h>
#include <linux/input/mt.h>
#include <linux/rmi.h>
#include "rmi_driver.h"
#include "rmi_2d_sensor.h"
enum rmi_f12_object_type {
RMI_F12_OBJECT_NONE = 0x00,
RMI_F12_OBJECT_FINGER = 0x01,
RMI_F12_OBJECT_STYLUS = 0x02,
RMI_F12_OBJECT_PALM = 0x03,
RMI_F12_OBJECT_UNCLASSIFIED = 0x04,
RMI_F12_OBJECT_GLOVED_FINGER = 0x06,
RMI_F12_OBJECT_NARROW_OBJECT = 0x07,
RMI_F12_OBJECT_HAND_EDGE = 0x08,
RMI_F12_OBJECT_COVER = 0x0A,
RMI_F12_OBJECT_STYLUS_2 = 0x0B,
RMI_F12_OBJECT_ERASER = 0x0C,
RMI_F12_OBJECT_SMALL_OBJECT = 0x0D,
};
#define F12_DATA1_BYTES_PER_OBJ 8
struct f12_data {
struct rmi_2d_sensor sensor;
struct rmi_2d_sensor_platform_data sensor_pdata;
bool has_dribble;
u16 data_addr;
struct rmi_register_descriptor query_reg_desc;
struct rmi_register_descriptor control_reg_desc;
struct rmi_register_descriptor data_reg_desc;
/* F12 Data1 describes sensed objects */
const struct rmi_register_desc_item *data1;
u16 data1_offset;
/* F12 Data5 describes finger ACM */
const struct rmi_register_desc_item *data5;
u16 data5_offset;
/* F12 Data5 describes Pen */
const struct rmi_register_desc_item *data6;
u16 data6_offset;
/* F12 Data9 reports relative data */
const struct rmi_register_desc_item *data9;
u16 data9_offset;
const struct rmi_register_desc_item *data15;
u16 data15_offset;
};
static int rmi_f12_read_sensor_tuning(struct f12_data *f12)
{
const struct rmi_register_desc_item *item;
struct rmi_2d_sensor *sensor = &f12->sensor;
struct rmi_function *fn = sensor->fn;
struct rmi_device *rmi_dev = fn->rmi_dev;
int ret;
int offset;
u8 buf[15];
int pitch_x = 0;
int pitch_y = 0;
int rx_receivers = 0;
int tx_receivers = 0;
int sensor_flags = 0;
item = rmi_get_register_desc_item(&f12->control_reg_desc, 8);
if (!item) {
dev_err(&fn->dev,
"F12 does not have the sensor tuning control register\n");
return -ENODEV;
}
offset = rmi_register_desc_calc_reg_offset(&f12->control_reg_desc, 8);
if (item->reg_size > sizeof(buf)) {
dev_err(&fn->dev,
"F12 control8 should be no bigger than %zd bytes, not: %ld\n",
sizeof(buf), item->reg_size);
return -ENODEV;
}
ret = rmi_read_block(rmi_dev, fn->fd.control_base_addr + offset, buf,
item->reg_size);
if (ret)
return ret;
offset = 0;
if (rmi_register_desc_has_subpacket(item, 0)) {
sensor->max_x = (buf[offset + 1] << 8) | buf[offset];
sensor->max_y = (buf[offset + 3] << 8) | buf[offset + 2];
offset += 4;
}
rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s: max_x: %d max_y: %d\n", __func__,
sensor->max_x, sensor->max_y);
if (rmi_register_desc_has_subpacket(item, 1)) {
pitch_x = (buf[offset + 1] << 8) | buf[offset];
pitch_y = (buf[offset + 3] << 8) | buf[offset + 2];
offset += 4;
}
if (rmi_register_desc_has_subpacket(item, 2)) {
/* Units 1/128 sensor pitch */
rmi_dbg(RMI_DEBUG_FN, &fn->dev,
"%s: Inactive Border xlo:%d xhi:%d ylo:%d yhi:%d\n",
__func__,
buf[offset], buf[offset + 1],
buf[offset + 2], buf[offset + 3]);
offset += 4;
}
if (rmi_register_desc_has_subpacket(item, 3)) {
rx_receivers = buf[offset];
tx_receivers = buf[offset + 1];
offset += 2;
}
if (rmi_register_desc_has_subpacket(item, 4)) {
sensor_flags = buf[offset];
offset += 1;
}
sensor->x_mm = (pitch_x * rx_receivers) >> 12;
sensor->y_mm = (pitch_y * tx_receivers) >> 12;
rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s: x_mm: %d y_mm: %d\n", __func__,
sensor->x_mm, sensor->y_mm);
return 0;
}
static void rmi_f12_process_objects(struct f12_data *f12, u8 *data1, int size)
{
int i;
struct rmi_2d_sensor *sensor = &f12->sensor;
int objects = f12->data1->num_subpackets;
if ((f12->data1->num_subpackets * F12_DATA1_BYTES_PER_OBJ) > size)
objects = size / F12_DATA1_BYTES_PER_OBJ;
for (i = 0; i < objects; i++) {
struct rmi_2d_sensor_abs_object *obj = &sensor->objs[i];
obj->type = RMI_2D_OBJECT_NONE;
obj->mt_tool = MT_TOOL_FINGER;
switch (data1[0]) {
case RMI_F12_OBJECT_FINGER:
obj->type = RMI_2D_OBJECT_FINGER;
break;
case RMI_F12_OBJECT_STYLUS:
obj->type = RMI_2D_OBJECT_STYLUS;
obj->mt_tool = MT_TOOL_PEN;
break;
case RMI_F12_OBJECT_PALM:
obj->type = RMI_2D_OBJECT_PALM;
obj->mt_tool = MT_TOOL_PALM;
break;
case RMI_F12_OBJECT_UNCLASSIFIED:
obj->type = RMI_2D_OBJECT_UNCLASSIFIED;
break;
}
obj->x = (data1[2] << 8) | data1[1];
obj->y = (data1[4] << 8) | data1[3];
obj->z = data1[5];
obj->wx = data1[6];
obj->wy = data1[7];
rmi_2d_sensor_abs_process(sensor, obj, i);
data1 += F12_DATA1_BYTES_PER_OBJ;
}
if (sensor->kernel_tracking)
input_mt_assign_slots(sensor->input,
sensor->tracking_slots,
sensor->tracking_pos,
sensor->nbr_fingers,
sensor->dmax);
for (i = 0; i < objects; i++)
rmi_2d_sensor_abs_report(sensor, &sensor->objs[i], i);
}
static int rmi_f12_attention(struct rmi_function *fn,
unsigned long *irq_nr_regs)
{
int retval;
struct rmi_device *rmi_dev = fn->rmi_dev;
struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
struct f12_data *f12 = dev_get_drvdata(&fn->dev);
struct rmi_2d_sensor *sensor = &f12->sensor;
int valid_bytes = sensor->pkt_size;
if (drvdata->attn_data.data) {
if (sensor->attn_size > drvdata->attn_data.size)
valid_bytes = drvdata->attn_data.size;
else
valid_bytes = sensor->attn_size;
memcpy(sensor->data_pkt, drvdata->attn_data.data,
valid_bytes);
drvdata->attn_data.data += sensor->attn_size;
drvdata->attn_data.size -= sensor->attn_size;
} else {
retval = rmi_read_block(rmi_dev, f12->data_addr,
sensor->data_pkt, sensor->pkt_size);
if (retval < 0) {
dev_err(&fn->dev, "Failed to read object data. Code: %d.\n",
retval);
return retval;
}
}
if (f12->data1)
rmi_f12_process_objects(f12,
&sensor->data_pkt[f12->data1_offset], valid_bytes);
input_mt_sync_frame(sensor->input);
return 0;
}
static int rmi_f12_write_control_regs(struct rmi_function *fn)
{
int ret;
const struct rmi_register_desc_item *item;
struct rmi_device *rmi_dev = fn->rmi_dev;
struct f12_data *f12 = dev_get_drvdata(&fn->dev);
int control_size;
char buf[3];
u16 control_offset = 0;
u8 subpacket_offset = 0;
if (f12->has_dribble
&& (f12->sensor.dribble != RMI_REG_STATE_DEFAULT)) {
item = rmi_get_register_desc_item(&f12->control_reg_desc, 20);
if (item) {
control_offset = rmi_register_desc_calc_reg_offset(
&f12->control_reg_desc, 20);
/*
* The byte containing the EnableDribble bit will be
* in either byte 0 or byte 2 of control 20. Depending
* on the existence of subpacket 0. If control 20 is
* larger then 3 bytes, just read the first 3.
*/
control_size = min(item->reg_size, 3UL);
ret = rmi_read_block(rmi_dev, fn->fd.control_base_addr
+ control_offset, buf, control_size);
if (ret)
return ret;
if (rmi_register_desc_has_subpacket(item, 0))
subpacket_offset += 1;
switch (f12->sensor.dribble) {
case RMI_REG_STATE_OFF:
buf[subpacket_offset] &= ~BIT(2);
break;
case RMI_REG_STATE_ON:
buf[subpacket_offset] |= BIT(2);
break;
case RMI_REG_STATE_DEFAULT:
default:
break;
}
ret = rmi_write_block(rmi_dev,
fn->fd.control_base_addr + control_offset,
buf, control_size);
if (ret)
return ret;
}
}
return 0;
}
static int rmi_f12_config(struct rmi_function *fn)
{
struct rmi_driver *drv = fn->rmi_dev->driver;
int ret;
drv->set_irq_bits(fn->rmi_dev, fn->irq_mask);
ret = rmi_f12_write_control_regs(fn);
if (ret)
dev_warn(&fn->dev,
"Failed to write F12 control registers: %d\n", ret);
return 0;
}
static int rmi_f12_probe(struct rmi_function *fn)
{
struct f12_data *f12;
int ret;
struct rmi_device *rmi_dev = fn->rmi_dev;
char buf;
u16 query_addr = fn->fd.query_base_addr;
const struct rmi_register_desc_item *item;
struct rmi_2d_sensor *sensor;
struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
u16 data_offset = 0;
rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s\n", __func__);
ret = rmi_read(fn->rmi_dev, query_addr, &buf);
if (ret < 0) {
dev_err(&fn->dev, "Failed to read general info register: %d\n",
ret);
return -ENODEV;
}
++query_addr;
if (!(buf & BIT(0))) {
dev_err(&fn->dev,
"Behavior of F12 without register descriptors is undefined.\n");
return -ENODEV;
}
f12 = devm_kzalloc(&fn->dev, sizeof(struct f12_data), GFP_KERNEL);
if (!f12)
return -ENOMEM;
f12->has_dribble = !!(buf & BIT(3));
if (fn->dev.of_node) {
ret = rmi_2d_sensor_of_probe(&fn->dev, &f12->sensor_pdata);
if (ret)
return ret;
} else {
f12->sensor_pdata = pdata->sensor_pdata;
}
ret = rmi_read_register_desc(rmi_dev, query_addr,
&f12->query_reg_desc);
if (ret) {
dev_err(&fn->dev,
"Failed to read the Query Register Descriptor: %d\n",
ret);
return ret;
}
query_addr += 3;
ret = rmi_read_register_desc(rmi_dev, query_addr,
&f12->control_reg_desc);
if (ret) {
dev_err(&fn->dev,
"Failed to read the Control Register Descriptor: %d\n",
ret);
return ret;
}
query_addr += 3;
ret = rmi_read_register_desc(rmi_dev, query_addr,
&f12->data_reg_desc);
if (ret) {
dev_err(&fn->dev,
"Failed to read the Data Register Descriptor: %d\n",
ret);
return ret;
}
query_addr += 3;
sensor = &f12->sensor;
sensor->fn = fn;
f12->data_addr = fn->fd.data_base_addr;
sensor->pkt_size = rmi_register_desc_calc_size(&f12->data_reg_desc);
sensor->axis_align =
f12->sensor_pdata.axis_align;
sensor->x_mm = f12->sensor_pdata.x_mm;
sensor->y_mm = f12->sensor_pdata.y_mm;
sensor->dribble = f12->sensor_pdata.dribble;
if (sensor->sensor_type == rmi_sensor_default)
sensor->sensor_type =
f12->sensor_pdata.sensor_type;
rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s: data packet size: %d\n", __func__,
sensor->pkt_size);
sensor->data_pkt = devm_kzalloc(&fn->dev, sensor->pkt_size, GFP_KERNEL);
if (!sensor->data_pkt)
return -ENOMEM;
dev_set_drvdata(&fn->dev, f12);
ret = rmi_f12_read_sensor_tuning(f12);
if (ret)
return ret;
/*
* Figure out what data is contained in the data registers. HID devices
* may have registers defined, but their data is not reported in the
* HID attention report. Registers which are not reported in the HID
* attention report check to see if the device is receiving data from
* HID attention reports.
*/
item = rmi_get_register_desc_item(&f12->data_reg_desc, 0);
if (item && !drvdata->attn_data.data)
data_offset += item->reg_size;
item = rmi_get_register_desc_item(&f12->data_reg_desc, 1);
if (item) {
f12->data1 = item;
f12->data1_offset = data_offset;
data_offset += item->reg_size;
sensor->nbr_fingers = item->num_subpackets;
sensor->report_abs = 1;
sensor->attn_size += item->reg_size;
}
item = rmi_get_register_desc_item(&f12->data_reg_desc, 2);
if (item && !drvdata->attn_data.data)
data_offset += item->reg_size;
item = rmi_get_register_desc_item(&f12->data_reg_desc, 3);
if (item && !drvdata->attn_data.data)
data_offset += item->reg_size;
item = rmi_get_register_desc_item(&f12->data_reg_desc, 4);
if (item && !drvdata->attn_data.data)
data_offset += item->reg_size;
item = rmi_get_register_desc_item(&f12->data_reg_desc, 5);
if (item) {
f12->data5 = item;
f12->data5_offset = data_offset;
data_offset += item->reg_size;
sensor->attn_size += item->reg_size;
}
item = rmi_get_register_desc_item(&f12->data_reg_desc, 6);
if (item && !drvdata->attn_data.data) {
f12->data6 = item;
f12->data6_offset = data_offset;
data_offset += item->reg_size;
}
item = rmi_get_register_desc_item(&f12->data_reg_desc, 7);
if (item && !drvdata->attn_data.data)
data_offset += item->reg_size;
item = rmi_get_register_desc_item(&f12->data_reg_desc, 8);
if (item && !drvdata->attn_data.data)
data_offset += item->reg_size;
item = rmi_get_register_desc_item(&f12->data_reg_desc, 9);
if (item && !drvdata->attn_data.data) {
f12->data9 = item;
f12->data9_offset = data_offset;
data_offset += item->reg_size;
if (!sensor->report_abs)
sensor->report_rel = 1;
}
item = rmi_get_register_desc_item(&f12->data_reg_desc, 10);
if (item && !drvdata->attn_data.data)
data_offset += item->reg_size;
item = rmi_get_register_desc_item(&f12->data_reg_desc, 11);
if (item && !drvdata->attn_data.data)
data_offset += item->reg_size;
item = rmi_get_register_desc_item(&f12->data_reg_desc, 12);
if (item && !drvdata->attn_data.data)
data_offset += item->reg_size;
item = rmi_get_register_desc_item(&f12->data_reg_desc, 13);
if (item && !drvdata->attn_data.data)
data_offset += item->reg_size;
item = rmi_get_register_desc_item(&f12->data_reg_desc, 14);
if (item && !drvdata->attn_data.data)
data_offset += item->reg_size;
item = rmi_get_register_desc_item(&f12->data_reg_desc, 15);
if (item && !drvdata->attn_data.data) {
f12->data15 = item;
f12->data15_offset = data_offset;
data_offset += item->reg_size;
}
/* allocate the in-kernel tracking buffers */
sensor->tracking_pos = devm_kzalloc(&fn->dev,
sizeof(struct input_mt_pos) * sensor->nbr_fingers,
GFP_KERNEL);
sensor->tracking_slots = devm_kzalloc(&fn->dev,
sizeof(int) * sensor->nbr_fingers, GFP_KERNEL);
sensor->objs = devm_kzalloc(&fn->dev,
sizeof(struct rmi_2d_sensor_abs_object)
* sensor->nbr_fingers, GFP_KERNEL);
if (!sensor->tracking_pos || !sensor->tracking_slots || !sensor->objs)
return -ENOMEM;
ret = rmi_2d_sensor_configure_input(fn, sensor);
if (ret)
return ret;
return 0;
}
struct rmi_function_handler rmi_f12_handler = {
.driver = {
.name = "rmi4_f12",
},
.func = 0x12,
.probe = rmi_f12_probe,
.config = rmi_f12_config,
.attention = rmi_f12_attention,
};