2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-05 04:04:01 +08:00
linux-next/drivers/net/wireless/rtlwifi/base.c
Linus Torvalds 496322bc91 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller:
 "This is a re-do of the net-next pull request for the current merge
  window.  The only difference from the one I made the other day is that
  this has Eliezer's interface renames and the timeout handling changes
  made based upon your feedback, as well as a few bug fixes that have
  trickeled in.

  Highlights:

   1) Low latency device polling, eliminating the cost of interrupt
      handling and context switches.  Allows direct polling of a network
      device from socket operations, such as recvmsg() and poll().

      Currently ixgbe, mlx4, and bnx2x support this feature.

      Full high level description, performance numbers, and design in
      commit 0a4db187a9 ("Merge branch 'll_poll'")

      From Eliezer Tamir.

   2) With the routing cache removed, ip_check_mc_rcu() gets exercised
      more than ever before in the case where we have lots of multicast
      addresses.  Use a hash table instead of a simple linked list, from
      Eric Dumazet.

   3) Add driver for Atheros CQA98xx 802.11ac wireless devices, from
      Bartosz Markowski, Janusz Dziedzic, Kalle Valo, Marek Kwaczynski,
      Marek Puzyniak, Michal Kazior, and Sujith Manoharan.

   4) Support reporting the TUN device persist flag to userspace, from
      Pavel Emelyanov.

   5) Allow controlling network device VF link state using netlink, from
      Rony Efraim.

   6) Support GRE tunneling in openvswitch, from Pravin B Shelar.

   7) Adjust SOCK_MIN_RCVBUF and SOCK_MIN_SNDBUF for modern times, from
      Daniel Borkmann and Eric Dumazet.

   8) Allow controlling of TCP quickack behavior on a per-route basis,
      from Cong Wang.

   9) Several bug fixes and improvements to vxlan from Stephen
      Hemminger, Pravin B Shelar, and Mike Rapoport.  In particular,
      support receiving on multiple UDP ports.

  10) Major cleanups, particular in the area of debugging and cookie
      lifetime handline, to the SCTP protocol code.  From Daniel
      Borkmann.

  11) Allow packets to cross network namespaces when traversing tunnel
      devices.  From Nicolas Dichtel.

  12) Allow monitoring netlink traffic via AF_PACKET sockets, in a
      manner akin to how we monitor real network traffic via ptype_all.
      From Daniel Borkmann.

  13) Several bug fixes and improvements for the new alx device driver,
      from Johannes Berg.

  14) Fix scalability issues in the netem packet scheduler's time queue,
      by using an rbtree.  From Eric Dumazet.

  15) Several bug fixes in TCP loss recovery handling, from Yuchung
      Cheng.

  16) Add support for GSO segmentation of MPLS packets, from Simon
      Horman.

  17) Make network notifiers have a real data type for the opaque
      pointer that's passed into them.  Use this to properly handle
      network device flag changes in arp_netdev_event().  From Jiri
      Pirko and Timo Teräs.

  18) Convert several drivers over to module_pci_driver(), from Peter
      Huewe.

  19) tcp_fixup_rcvbuf() can loop 500 times over loopback, just use a
      O(1) calculation instead.  From Eric Dumazet.

  20) Support setting of explicit tunnel peer addresses in ipv6, just
      like ipv4.  From Nicolas Dichtel.

  21) Protect x86 BPF JIT against spraying attacks, from Eric Dumazet.

  22) Prevent a single high rate flow from overruning an individual cpu
      during RX packet processing via selective flow shedding.  From
      Willem de Bruijn.

  23) Don't use spinlocks in TCP md5 signing fast paths, from Eric
      Dumazet.

  24) Don't just drop GSO packets which are above the TBF scheduler's
      burst limit, chop them up so they are in-bounds instead.  Also
      from Eric Dumazet.

  25) VLAN offloads are missed when configured on top of a bridge, fix
      from Vlad Yasevich.

  26) Support IPV6 in ping sockets.  From Lorenzo Colitti.

  27) Receive flow steering targets should be updated at poll() time
      too, from David Majnemer.

  28) Fix several corner case regressions in PMTU/redirect handling due
      to the routing cache removal, from Timo Teräs.

  29) We have to be mindful of ipv4 mapped ipv6 sockets in
      upd_v6_push_pending_frames().  From Hannes Frederic Sowa.

  30) Fix L2TP sequence number handling bugs, from James Chapman."

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1214 commits)
  drivers/net: caif: fix wrong rtnl_is_locked() usage
  drivers/net: enic: release rtnl_lock on error-path
  vhost-net: fix use-after-free in vhost_net_flush
  net: mv643xx_eth: do not use port number as platform device id
  net: sctp: confirm route during forward progress
  virtio_net: fix race in RX VQ processing
  virtio: support unlocked queue poll
  net/cadence/macb: fix bug/typo in extracting gem_irq_read_clear bit
  Documentation: Fix references to defunct linux-net@vger.kernel.org
  net/fs: change busy poll time accounting
  net: rename low latency sockets functions to busy poll
  bridge: fix some kernel warning in multicast timer
  sfc: Fix memory leak when discarding scattered packets
  sit: fix tunnel update via netlink
  dt:net:stmmac: Add dt specific phy reset callback support.
  dt:net:stmmac: Add support to dwmac version 3.610 and 3.710
  dt:net:stmmac: Allocate platform data only if its NULL.
  net:stmmac: fix memleak in the open method
  ipv6: rt6_check_neigh should successfully verify neigh if no NUD information are available
  net: ipv6: fix wrong ping_v6_sendmsg return value
  ...
2013-07-09 18:24:39 -07:00

1881 lines
51 KiB
C

/******************************************************************************
*
* Copyright(c) 2009-2012 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* wlanfae <wlanfae@realtek.com>
* Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
* Hsinchu 300, Taiwan.
*
* Larry Finger <Larry.Finger@lwfinger.net>
*
*****************************************************************************/
#include "wifi.h"
#include "rc.h"
#include "base.h"
#include "efuse.h"
#include "cam.h"
#include "ps.h"
#include "regd.h"
#include <linux/ip.h>
#include <linux/module.h>
/*
*NOTICE!!!: This file will be very big, we should
*keep it clear under following roles:
*
*This file include following parts, so, if you add new
*functions into this file, please check which part it
*should includes. or check if you should add new part
*for this file:
*
*1) mac80211 init functions
*2) tx information functions
*3) functions called by core.c
*4) wq & timer callback functions
*5) frame process functions
*6) IOT functions
*7) sysfs functions
*8) vif functions
*9) ...
*/
/*********************************************************
*
* mac80211 init functions
*
*********************************************************/
static struct ieee80211_channel rtl_channeltable_2g[] = {
{.center_freq = 2412, .hw_value = 1,},
{.center_freq = 2417, .hw_value = 2,},
{.center_freq = 2422, .hw_value = 3,},
{.center_freq = 2427, .hw_value = 4,},
{.center_freq = 2432, .hw_value = 5,},
{.center_freq = 2437, .hw_value = 6,},
{.center_freq = 2442, .hw_value = 7,},
{.center_freq = 2447, .hw_value = 8,},
{.center_freq = 2452, .hw_value = 9,},
{.center_freq = 2457, .hw_value = 10,},
{.center_freq = 2462, .hw_value = 11,},
{.center_freq = 2467, .hw_value = 12,},
{.center_freq = 2472, .hw_value = 13,},
{.center_freq = 2484, .hw_value = 14,},
};
static struct ieee80211_channel rtl_channeltable_5g[] = {
{.center_freq = 5180, .hw_value = 36,},
{.center_freq = 5200, .hw_value = 40,},
{.center_freq = 5220, .hw_value = 44,},
{.center_freq = 5240, .hw_value = 48,},
{.center_freq = 5260, .hw_value = 52,},
{.center_freq = 5280, .hw_value = 56,},
{.center_freq = 5300, .hw_value = 60,},
{.center_freq = 5320, .hw_value = 64,},
{.center_freq = 5500, .hw_value = 100,},
{.center_freq = 5520, .hw_value = 104,},
{.center_freq = 5540, .hw_value = 108,},
{.center_freq = 5560, .hw_value = 112,},
{.center_freq = 5580, .hw_value = 116,},
{.center_freq = 5600, .hw_value = 120,},
{.center_freq = 5620, .hw_value = 124,},
{.center_freq = 5640, .hw_value = 128,},
{.center_freq = 5660, .hw_value = 132,},
{.center_freq = 5680, .hw_value = 136,},
{.center_freq = 5700, .hw_value = 140,},
{.center_freq = 5745, .hw_value = 149,},
{.center_freq = 5765, .hw_value = 153,},
{.center_freq = 5785, .hw_value = 157,},
{.center_freq = 5805, .hw_value = 161,},
{.center_freq = 5825, .hw_value = 165,},
};
static struct ieee80211_rate rtl_ratetable_2g[] = {
{.bitrate = 10, .hw_value = 0x00,},
{.bitrate = 20, .hw_value = 0x01,},
{.bitrate = 55, .hw_value = 0x02,},
{.bitrate = 110, .hw_value = 0x03,},
{.bitrate = 60, .hw_value = 0x04,},
{.bitrate = 90, .hw_value = 0x05,},
{.bitrate = 120, .hw_value = 0x06,},
{.bitrate = 180, .hw_value = 0x07,},
{.bitrate = 240, .hw_value = 0x08,},
{.bitrate = 360, .hw_value = 0x09,},
{.bitrate = 480, .hw_value = 0x0a,},
{.bitrate = 540, .hw_value = 0x0b,},
};
static struct ieee80211_rate rtl_ratetable_5g[] = {
{.bitrate = 60, .hw_value = 0x04,},
{.bitrate = 90, .hw_value = 0x05,},
{.bitrate = 120, .hw_value = 0x06,},
{.bitrate = 180, .hw_value = 0x07,},
{.bitrate = 240, .hw_value = 0x08,},
{.bitrate = 360, .hw_value = 0x09,},
{.bitrate = 480, .hw_value = 0x0a,},
{.bitrate = 540, .hw_value = 0x0b,},
};
static const struct ieee80211_supported_band rtl_band_2ghz = {
.band = IEEE80211_BAND_2GHZ,
.channels = rtl_channeltable_2g,
.n_channels = ARRAY_SIZE(rtl_channeltable_2g),
.bitrates = rtl_ratetable_2g,
.n_bitrates = ARRAY_SIZE(rtl_ratetable_2g),
.ht_cap = {0},
};
static struct ieee80211_supported_band rtl_band_5ghz = {
.band = IEEE80211_BAND_5GHZ,
.channels = rtl_channeltable_5g,
.n_channels = ARRAY_SIZE(rtl_channeltable_5g),
.bitrates = rtl_ratetable_5g,
.n_bitrates = ARRAY_SIZE(rtl_ratetable_5g),
.ht_cap = {0},
};
static const u8 tid_to_ac[] = {
2, /* IEEE80211_AC_BE */
3, /* IEEE80211_AC_BK */
3, /* IEEE80211_AC_BK */
2, /* IEEE80211_AC_BE */
1, /* IEEE80211_AC_VI */
1, /* IEEE80211_AC_VI */
0, /* IEEE80211_AC_VO */
0, /* IEEE80211_AC_VO */
};
u8 rtl_tid_to_ac(u8 tid)
{
return tid_to_ac[tid];
}
static void _rtl_init_hw_ht_capab(struct ieee80211_hw *hw,
struct ieee80211_sta_ht_cap *ht_cap)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
ht_cap->ht_supported = true;
ht_cap->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
IEEE80211_HT_CAP_SGI_40 |
IEEE80211_HT_CAP_SGI_20 |
IEEE80211_HT_CAP_DSSSCCK40 | IEEE80211_HT_CAP_MAX_AMSDU;
if (rtlpriv->rtlhal.disable_amsdu_8k)
ht_cap->cap &= ~IEEE80211_HT_CAP_MAX_AMSDU;
/*
*Maximum length of AMPDU that the STA can receive.
*Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
*/
ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
/*Minimum MPDU start spacing , */
ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16;
ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
/*hw->wiphy->bands[IEEE80211_BAND_2GHZ]
*base on ant_num
*rx_mask: RX mask
*if rx_ant = 1 rx_mask[0]= 0xff;==>MCS0-MCS7
*if rx_ant = 2 rx_mask[1]= 0xff;==>MCS8-MCS15
*if rx_ant >= 3 rx_mask[2]= 0xff;
*if BW_40 rx_mask[4]= 0x01;
*highest supported RX rate
*/
if (rtlpriv->dm.supp_phymode_switch) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
"Support phy mode switch\n");
ht_cap->mcs.rx_mask[0] = 0xFF;
ht_cap->mcs.rx_mask[1] = 0xFF;
ht_cap->mcs.rx_mask[4] = 0x01;
ht_cap->mcs.rx_highest = cpu_to_le16(MAX_BIT_RATE_40MHZ_MCS15);
} else {
if (get_rf_type(rtlphy) == RF_1T2R ||
get_rf_type(rtlphy) == RF_2T2R) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
"1T2R or 2T2R\n");
ht_cap->mcs.rx_mask[0] = 0xFF;
ht_cap->mcs.rx_mask[1] = 0xFF;
ht_cap->mcs.rx_mask[4] = 0x01;
ht_cap->mcs.rx_highest =
cpu_to_le16(MAX_BIT_RATE_40MHZ_MCS15);
} else if (get_rf_type(rtlphy) == RF_1T1R) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "1T1R\n");
ht_cap->mcs.rx_mask[0] = 0xFF;
ht_cap->mcs.rx_mask[1] = 0x00;
ht_cap->mcs.rx_mask[4] = 0x01;
ht_cap->mcs.rx_highest =
cpu_to_le16(MAX_BIT_RATE_40MHZ_MCS7);
}
}
}
static void _rtl_init_mac80211(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct ieee80211_supported_band *sband;
if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY && rtlhal->bandset ==
BAND_ON_BOTH) {
/* 1: 2.4 G bands */
/* <1> use mac->bands as mem for hw->wiphy->bands */
sband = &(rtlmac->bands[IEEE80211_BAND_2GHZ]);
/* <2> set hw->wiphy->bands[IEEE80211_BAND_2GHZ]
* to default value(1T1R) */
memcpy(&(rtlmac->bands[IEEE80211_BAND_2GHZ]), &rtl_band_2ghz,
sizeof(struct ieee80211_supported_band));
/* <3> init ht cap base on ant_num */
_rtl_init_hw_ht_capab(hw, &sband->ht_cap);
/* <4> set mac->sband to wiphy->sband */
hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
/* 2: 5 G bands */
/* <1> use mac->bands as mem for hw->wiphy->bands */
sband = &(rtlmac->bands[IEEE80211_BAND_5GHZ]);
/* <2> set hw->wiphy->bands[IEEE80211_BAND_5GHZ]
* to default value(1T1R) */
memcpy(&(rtlmac->bands[IEEE80211_BAND_5GHZ]), &rtl_band_5ghz,
sizeof(struct ieee80211_supported_band));
/* <3> init ht cap base on ant_num */
_rtl_init_hw_ht_capab(hw, &sband->ht_cap);
/* <4> set mac->sband to wiphy->sband */
hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
} else {
if (rtlhal->current_bandtype == BAND_ON_2_4G) {
/* <1> use mac->bands as mem for hw->wiphy->bands */
sband = &(rtlmac->bands[IEEE80211_BAND_2GHZ]);
/* <2> set hw->wiphy->bands[IEEE80211_BAND_2GHZ]
* to default value(1T1R) */
memcpy(&(rtlmac->bands[IEEE80211_BAND_2GHZ]),
&rtl_band_2ghz,
sizeof(struct ieee80211_supported_band));
/* <3> init ht cap base on ant_num */
_rtl_init_hw_ht_capab(hw, &sband->ht_cap);
/* <4> set mac->sband to wiphy->sband */
hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
} else if (rtlhal->current_bandtype == BAND_ON_5G) {
/* <1> use mac->bands as mem for hw->wiphy->bands */
sband = &(rtlmac->bands[IEEE80211_BAND_5GHZ]);
/* <2> set hw->wiphy->bands[IEEE80211_BAND_5GHZ]
* to default value(1T1R) */
memcpy(&(rtlmac->bands[IEEE80211_BAND_5GHZ]),
&rtl_band_5ghz,
sizeof(struct ieee80211_supported_band));
/* <3> init ht cap base on ant_num */
_rtl_init_hw_ht_capab(hw, &sband->ht_cap);
/* <4> set mac->sband to wiphy->sband */
hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
} else {
RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "Err BAND %d\n",
rtlhal->current_bandtype);
}
}
/* <5> set hw caps */
hw->flags = IEEE80211_HW_SIGNAL_DBM |
IEEE80211_HW_RX_INCLUDES_FCS |
IEEE80211_HW_AMPDU_AGGREGATION |
IEEE80211_HW_CONNECTION_MONITOR |
/* IEEE80211_HW_SUPPORTS_CQM_RSSI | */
IEEE80211_HW_CONNECTION_MONITOR |
IEEE80211_HW_MFP_CAPABLE |
IEEE80211_HW_REPORTS_TX_ACK_STATUS | 0;
/* swlps or hwlps has been set in diff chip in init_sw_vars */
if (rtlpriv->psc.swctrl_lps)
hw->flags |= IEEE80211_HW_SUPPORTS_PS |
IEEE80211_HW_PS_NULLFUNC_STACK |
/* IEEE80211_HW_SUPPORTS_DYNAMIC_PS | */
0;
hw->wiphy->interface_modes =
BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC) |
BIT(NL80211_IFTYPE_MESH_POINT) |
BIT(NL80211_IFTYPE_P2P_CLIENT) |
BIT(NL80211_IFTYPE_P2P_GO);
hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
hw->wiphy->rts_threshold = 2347;
hw->queues = AC_MAX;
hw->extra_tx_headroom = RTL_TX_HEADER_SIZE;
/* TODO: Correct this value for our hw */
/* TODO: define these hard code value */
hw->channel_change_time = 100;
hw->max_listen_interval = 10;
hw->max_rate_tries = 4;
/* hw->max_rates = 1; */
hw->sta_data_size = sizeof(struct rtl_sta_info);
/* <6> mac address */
if (is_valid_ether_addr(rtlefuse->dev_addr)) {
SET_IEEE80211_PERM_ADDR(hw, rtlefuse->dev_addr);
} else {
u8 rtlmac1[] = { 0x00, 0xe0, 0x4c, 0x81, 0x92, 0x00 };
get_random_bytes((rtlmac1 + (ETH_ALEN - 1)), 1);
SET_IEEE80211_PERM_ADDR(hw, rtlmac1);
}
}
static void _rtl_init_deferred_work(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
/* <1> timer */
setup_timer(&rtlpriv->works.watchdog_timer,
rtl_watch_dog_timer_callback, (unsigned long)hw);
setup_timer(&rtlpriv->works.dualmac_easyconcurrent_retrytimer,
rtl_easy_concurrent_retrytimer_callback, (unsigned long)hw);
/* <2> work queue */
rtlpriv->works.hw = hw;
rtlpriv->works.rtl_wq = alloc_workqueue("%s", 0, 0, rtlpriv->cfg->name);
INIT_DELAYED_WORK(&rtlpriv->works.watchdog_wq,
(void *)rtl_watchdog_wq_callback);
INIT_DELAYED_WORK(&rtlpriv->works.ips_nic_off_wq,
(void *)rtl_ips_nic_off_wq_callback);
INIT_DELAYED_WORK(&rtlpriv->works.ps_work,
(void *)rtl_swlps_wq_callback);
INIT_DELAYED_WORK(&rtlpriv->works.ps_rfon_wq,
(void *)rtl_swlps_rfon_wq_callback);
INIT_DELAYED_WORK(&rtlpriv->works.fwevt_wq,
(void *)rtl_fwevt_wq_callback);
}
void rtl_deinit_deferred_work(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
del_timer_sync(&rtlpriv->works.watchdog_timer);
cancel_delayed_work(&rtlpriv->works.watchdog_wq);
cancel_delayed_work(&rtlpriv->works.ips_nic_off_wq);
cancel_delayed_work(&rtlpriv->works.ps_work);
cancel_delayed_work(&rtlpriv->works.ps_rfon_wq);
cancel_delayed_work(&rtlpriv->works.fwevt_wq);
}
void rtl_init_rfkill(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
bool radio_state;
bool blocked;
u8 valid = 0;
/*set init state to on */
rtlpriv->rfkill.rfkill_state = true;
wiphy_rfkill_set_hw_state(hw->wiphy, 0);
radio_state = rtlpriv->cfg->ops->radio_onoff_checking(hw, &valid);
if (valid) {
pr_info("wireless switch is %s\n",
rtlpriv->rfkill.rfkill_state ? "on" : "off");
rtlpriv->rfkill.rfkill_state = radio_state;
blocked = (rtlpriv->rfkill.rfkill_state == 1) ? 0 : 1;
wiphy_rfkill_set_hw_state(hw->wiphy, blocked);
}
wiphy_rfkill_start_polling(hw->wiphy);
}
EXPORT_SYMBOL(rtl_init_rfkill);
void rtl_deinit_rfkill(struct ieee80211_hw *hw)
{
wiphy_rfkill_stop_polling(hw->wiphy);
}
int rtl_init_core(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw));
/* <1> init mac80211 */
_rtl_init_mac80211(hw);
rtlmac->hw = hw;
/* <2> rate control register */
hw->rate_control_algorithm = "rtl_rc";
/*
* <3> init CRDA must come after init
* mac80211 hw in _rtl_init_mac80211.
*/
if (rtl_regd_init(hw, rtl_reg_notifier)) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "REGD init failed\n");
return 1;
}
/* <4> locks */
mutex_init(&rtlpriv->locks.conf_mutex);
mutex_init(&rtlpriv->locks.ps_mutex);
spin_lock_init(&rtlpriv->locks.ips_lock);
spin_lock_init(&rtlpriv->locks.irq_th_lock);
spin_lock_init(&rtlpriv->locks.irq_pci_lock);
spin_lock_init(&rtlpriv->locks.tx_lock);
spin_lock_init(&rtlpriv->locks.h2c_lock);
spin_lock_init(&rtlpriv->locks.rf_ps_lock);
spin_lock_init(&rtlpriv->locks.rf_lock);
spin_lock_init(&rtlpriv->locks.waitq_lock);
spin_lock_init(&rtlpriv->locks.entry_list_lock);
spin_lock_init(&rtlpriv->locks.fw_ps_lock);
spin_lock_init(&rtlpriv->locks.cck_and_rw_pagea_lock);
spin_lock_init(&rtlpriv->locks.check_sendpkt_lock);
spin_lock_init(&rtlpriv->locks.fw_ps_lock);
spin_lock_init(&rtlpriv->locks.lps_lock);
/* <5> init list */
INIT_LIST_HEAD(&rtlpriv->entry_list);
rtlmac->link_state = MAC80211_NOLINK;
/* <6> init deferred work */
_rtl_init_deferred_work(hw);
return 0;
}
void rtl_deinit_core(struct ieee80211_hw *hw)
{
}
void rtl_init_rx_config(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *) (&mac->rx_conf));
}
/*********************************************************
*
* tx information functions
*
*********************************************************/
static void _rtl_qurey_shortpreamble_mode(struct ieee80211_hw *hw,
struct rtl_tcb_desc *tcb_desc,
struct ieee80211_tx_info *info)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 rate_flag = info->control.rates[0].flags;
tcb_desc->use_shortpreamble = false;
/* 1M can only use Long Preamble. 11B spec */
if (tcb_desc->hw_rate == rtlpriv->cfg->maps[RTL_RC_CCK_RATE1M])
return;
else if (rate_flag & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
tcb_desc->use_shortpreamble = true;
return;
}
static void _rtl_query_shortgi(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
struct rtl_tcb_desc *tcb_desc,
struct ieee80211_tx_info *info)
{
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u8 rate_flag = info->control.rates[0].flags;
u8 sgi_40 = 0, sgi_20 = 0, bw_40 = 0;
tcb_desc->use_shortgi = false;
if (sta == NULL)
return;
sgi_40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40;
sgi_20 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20;
if (!(sta->ht_cap.ht_supported))
return;
if (!sgi_40 && !sgi_20)
return;
if (mac->opmode == NL80211_IFTYPE_STATION)
bw_40 = mac->bw_40;
else if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_ADHOC ||
mac->opmode == NL80211_IFTYPE_MESH_POINT)
bw_40 = sta->bandwidth >= IEEE80211_STA_RX_BW_40;
if (bw_40 && sgi_40)
tcb_desc->use_shortgi = true;
else if ((bw_40 == false) && sgi_20)
tcb_desc->use_shortgi = true;
if (!(rate_flag & IEEE80211_TX_RC_SHORT_GI))
tcb_desc->use_shortgi = false;
}
static void _rtl_query_protection_mode(struct ieee80211_hw *hw,
struct rtl_tcb_desc *tcb_desc,
struct ieee80211_tx_info *info)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 rate_flag = info->control.rates[0].flags;
/* Common Settings */
tcb_desc->rts_stbc = false;
tcb_desc->cts_enable = false;
tcb_desc->rts_sc = 0;
tcb_desc->rts_bw = false;
tcb_desc->rts_use_shortpreamble = false;
tcb_desc->rts_use_shortgi = false;
if (rate_flag & IEEE80211_TX_RC_USE_CTS_PROTECT) {
/* Use CTS-to-SELF in protection mode. */
tcb_desc->rts_enable = true;
tcb_desc->cts_enable = true;
tcb_desc->rts_rate = rtlpriv->cfg->maps[RTL_RC_OFDM_RATE24M];
} else if (rate_flag & IEEE80211_TX_RC_USE_RTS_CTS) {
/* Use RTS-CTS in protection mode. */
tcb_desc->rts_enable = true;
tcb_desc->rts_rate = rtlpriv->cfg->maps[RTL_RC_OFDM_RATE24M];
}
}
static void _rtl_txrate_selectmode(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
struct rtl_tcb_desc *tcb_desc)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_sta_info *sta_entry = NULL;
u8 ratr_index = 7;
if (sta) {
sta_entry = (struct rtl_sta_info *) sta->drv_priv;
ratr_index = sta_entry->ratr_index;
}
if (!tcb_desc->disable_ratefallback || !tcb_desc->use_driver_rate) {
if (mac->opmode == NL80211_IFTYPE_STATION) {
tcb_desc->ratr_index = 0;
} else if (mac->opmode == NL80211_IFTYPE_ADHOC ||
mac->opmode == NL80211_IFTYPE_MESH_POINT) {
if (tcb_desc->multicast || tcb_desc->broadcast) {
tcb_desc->hw_rate =
rtlpriv->cfg->maps[RTL_RC_CCK_RATE2M];
tcb_desc->use_driver_rate = 1;
tcb_desc->ratr_index = RATR_INX_WIRELESS_MC;
} else {
tcb_desc->ratr_index = ratr_index;
}
} else if (mac->opmode == NL80211_IFTYPE_AP) {
tcb_desc->ratr_index = ratr_index;
}
}
if (rtlpriv->dm.useramask) {
tcb_desc->ratr_index = ratr_index;
/* TODO we will differentiate adhoc and station future */
if (mac->opmode == NL80211_IFTYPE_STATION ||
mac->opmode == NL80211_IFTYPE_MESH_POINT) {
tcb_desc->mac_id = 0;
if (mac->mode == WIRELESS_MODE_N_24G)
tcb_desc->ratr_index = RATR_INX_WIRELESS_NGB;
else if (mac->mode == WIRELESS_MODE_N_5G)
tcb_desc->ratr_index = RATR_INX_WIRELESS_NG;
else if (mac->mode & WIRELESS_MODE_G)
tcb_desc->ratr_index = RATR_INX_WIRELESS_GB;
else if (mac->mode & WIRELESS_MODE_B)
tcb_desc->ratr_index = RATR_INX_WIRELESS_B;
else if (mac->mode & WIRELESS_MODE_A)
tcb_desc->ratr_index = RATR_INX_WIRELESS_G;
} else if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_ADHOC) {
if (NULL != sta) {
if (sta->aid > 0)
tcb_desc->mac_id = sta->aid + 1;
else
tcb_desc->mac_id = 1;
} else {
tcb_desc->mac_id = 0;
}
}
}
}
static void _rtl_query_bandwidth_mode(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
struct rtl_tcb_desc *tcb_desc)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
tcb_desc->packet_bw = false;
if (!sta)
return;
if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_ADHOC ||
mac->opmode == NL80211_IFTYPE_MESH_POINT) {
if (sta->bandwidth == IEEE80211_STA_RX_BW_20)
return;
} else if (mac->opmode == NL80211_IFTYPE_STATION) {
if (!mac->bw_40 || !(sta->ht_cap.ht_supported))
return;
}
if (tcb_desc->multicast || tcb_desc->broadcast)
return;
/*use legency rate, shall use 20MHz */
if (tcb_desc->hw_rate <= rtlpriv->cfg->maps[RTL_RC_OFDM_RATE54M])
return;
tcb_desc->packet_bw = true;
}
static u8 _rtl_get_highest_n_rate(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
u8 hw_rate;
if (get_rf_type(rtlphy) == RF_2T2R)
hw_rate = rtlpriv->cfg->maps[RTL_RC_HT_RATEMCS15];
else
hw_rate = rtlpriv->cfg->maps[RTL_RC_HT_RATEMCS7];
return hw_rate;
}
/* mac80211's rate_idx is like this:
*
* 2.4G band:rx_status->band == IEEE80211_BAND_2GHZ
*
* B/G rate:
* (rx_status->flag & RX_FLAG_HT) = 0,
* DESC92_RATE1M-->DESC92_RATE54M ==> idx is 0-->11,
*
* N rate:
* (rx_status->flag & RX_FLAG_HT) = 1,
* DESC92_RATEMCS0-->DESC92_RATEMCS15 ==> idx is 0-->15
*
* 5G band:rx_status->band == IEEE80211_BAND_5GHZ
* A rate:
* (rx_status->flag & RX_FLAG_HT) = 0,
* DESC92_RATE6M-->DESC92_RATE54M ==> idx is 0-->7,
*
* N rate:
* (rx_status->flag & RX_FLAG_HT) = 1,
* DESC92_RATEMCS0-->DESC92_RATEMCS15 ==> idx is 0-->15
*/
int rtlwifi_rate_mapping(struct ieee80211_hw *hw,
bool isht, u8 desc_rate, bool first_ampdu)
{
int rate_idx;
if (false == isht) {
if (IEEE80211_BAND_2GHZ == hw->conf.chandef.chan->band) {
switch (desc_rate) {
case DESC92_RATE1M:
rate_idx = 0;
break;
case DESC92_RATE2M:
rate_idx = 1;
break;
case DESC92_RATE5_5M:
rate_idx = 2;
break;
case DESC92_RATE11M:
rate_idx = 3;
break;
case DESC92_RATE6M:
rate_idx = 4;
break;
case DESC92_RATE9M:
rate_idx = 5;
break;
case DESC92_RATE12M:
rate_idx = 6;
break;
case DESC92_RATE18M:
rate_idx = 7;
break;
case DESC92_RATE24M:
rate_idx = 8;
break;
case DESC92_RATE36M:
rate_idx = 9;
break;
case DESC92_RATE48M:
rate_idx = 10;
break;
case DESC92_RATE54M:
rate_idx = 11;
break;
default:
rate_idx = 0;
break;
}
} else {
switch (desc_rate) {
case DESC92_RATE6M:
rate_idx = 0;
break;
case DESC92_RATE9M:
rate_idx = 1;
break;
case DESC92_RATE12M:
rate_idx = 2;
break;
case DESC92_RATE18M:
rate_idx = 3;
break;
case DESC92_RATE24M:
rate_idx = 4;
break;
case DESC92_RATE36M:
rate_idx = 5;
break;
case DESC92_RATE48M:
rate_idx = 6;
break;
case DESC92_RATE54M:
rate_idx = 7;
break;
default:
rate_idx = 0;
break;
}
}
} else {
switch (desc_rate) {
case DESC92_RATEMCS0:
rate_idx = 0;
break;
case DESC92_RATEMCS1:
rate_idx = 1;
break;
case DESC92_RATEMCS2:
rate_idx = 2;
break;
case DESC92_RATEMCS3:
rate_idx = 3;
break;
case DESC92_RATEMCS4:
rate_idx = 4;
break;
case DESC92_RATEMCS5:
rate_idx = 5;
break;
case DESC92_RATEMCS6:
rate_idx = 6;
break;
case DESC92_RATEMCS7:
rate_idx = 7;
break;
case DESC92_RATEMCS8:
rate_idx = 8;
break;
case DESC92_RATEMCS9:
rate_idx = 9;
break;
case DESC92_RATEMCS10:
rate_idx = 10;
break;
case DESC92_RATEMCS11:
rate_idx = 11;
break;
case DESC92_RATEMCS12:
rate_idx = 12;
break;
case DESC92_RATEMCS13:
rate_idx = 13;
break;
case DESC92_RATEMCS14:
rate_idx = 14;
break;
case DESC92_RATEMCS15:
rate_idx = 15;
break;
default:
rate_idx = 0;
break;
}
}
return rate_idx;
}
EXPORT_SYMBOL(rtlwifi_rate_mapping);
bool rtl_tx_mgmt_proc(struct ieee80211_hw *hw, struct sk_buff *skb)
{
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_priv *rtlpriv = rtl_priv(hw);
__le16 fc = rtl_get_fc(skb);
if (rtlpriv->dm.supp_phymode_switch &&
mac->link_state < MAC80211_LINKED &&
(ieee80211_is_auth(fc) || ieee80211_is_probe_req(fc))) {
if (rtlpriv->cfg->ops->chk_switch_dmdp)
rtlpriv->cfg->ops->chk_switch_dmdp(hw);
}
if (ieee80211_is_auth(fc)) {
RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG, "MAC80211_LINKING\n");
rtl_ips_nic_on(hw);
mac->link_state = MAC80211_LINKING;
/* Dual mac */
rtlpriv->phy.need_iqk = true;
}
return true;
}
void rtl_get_tcb_desc(struct ieee80211_hw *hw,
struct ieee80211_tx_info *info,
struct ieee80211_sta *sta,
struct sk_buff *skb, struct rtl_tcb_desc *tcb_desc)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw));
struct ieee80211_hdr *hdr = rtl_get_hdr(skb);
struct ieee80211_rate *txrate;
__le16 fc = hdr->frame_control;
txrate = ieee80211_get_tx_rate(hw, info);
if (txrate)
tcb_desc->hw_rate = txrate->hw_value;
else
tcb_desc->hw_rate = 0;
if (ieee80211_is_data(fc)) {
/*
*we set data rate INX 0
*in rtl_rc.c if skb is special data or
*mgt which need low data rate.
*/
/*
*So tcb_desc->hw_rate is just used for
*special data and mgt frames
*/
if (info->control.rates[0].idx == 0 ||
ieee80211_is_nullfunc(fc)) {
tcb_desc->use_driver_rate = true;
tcb_desc->ratr_index = RATR_INX_WIRELESS_MC;
tcb_desc->disable_ratefallback = 1;
} else {
/*
*because hw will nerver use hw_rate
*when tcb_desc->use_driver_rate = false
*so we never set highest N rate here,
*and N rate will all be controlled by FW
*when tcb_desc->use_driver_rate = false
*/
if (sta && (sta->ht_cap.ht_supported)) {
tcb_desc->hw_rate = _rtl_get_highest_n_rate(hw);
} else {
if (rtlmac->mode == WIRELESS_MODE_B) {
tcb_desc->hw_rate =
rtlpriv->cfg->maps[RTL_RC_CCK_RATE11M];
} else {
tcb_desc->hw_rate =
rtlpriv->cfg->maps[RTL_RC_OFDM_RATE54M];
}
}
}
if (is_multicast_ether_addr(ieee80211_get_DA(hdr)))
tcb_desc->multicast = 1;
else if (is_broadcast_ether_addr(ieee80211_get_DA(hdr)))
tcb_desc->broadcast = 1;
_rtl_txrate_selectmode(hw, sta, tcb_desc);
_rtl_query_bandwidth_mode(hw, sta, tcb_desc);
_rtl_qurey_shortpreamble_mode(hw, tcb_desc, info);
_rtl_query_shortgi(hw, sta, tcb_desc, info);
_rtl_query_protection_mode(hw, tcb_desc, info);
} else {
tcb_desc->use_driver_rate = true;
tcb_desc->ratr_index = RATR_INX_WIRELESS_MC;
tcb_desc->disable_ratefallback = 1;
tcb_desc->mac_id = 0;
tcb_desc->packet_bw = false;
}
}
EXPORT_SYMBOL(rtl_get_tcb_desc);
static bool addbareq_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct ieee80211_sta *sta = NULL;
struct ieee80211_hdr *hdr = rtl_get_hdr(skb);
struct rtl_sta_info *sta_entry = NULL;
struct ieee80211_mgmt *mgmt = (void *)skb->data;
u16 capab = 0, tid = 0;
struct rtl_tid_data *tid_data;
struct sk_buff *skb_delba = NULL;
struct ieee80211_rx_status rx_status = { 0 };
rcu_read_lock();
sta = rtl_find_sta(hw, hdr->addr3);
if (sta == NULL) {
RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_EMERG,
"sta is NULL\n");
rcu_read_unlock();
return true;
}
sta_entry = (struct rtl_sta_info *)sta->drv_priv;
if (!sta_entry) {
rcu_read_unlock();
return true;
}
capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
tid_data = &sta_entry->tids[tid];
if (tid_data->agg.rx_agg_state == RTL_RX_AGG_START) {
skb_delba = rtl_make_del_ba(hw, hdr->addr2, hdr->addr3, tid);
if (skb_delba) {
rx_status.freq = hw->conf.chandef.chan->center_freq;
rx_status.band = hw->conf.chandef.chan->band;
rx_status.flag |= RX_FLAG_DECRYPTED;
rx_status.flag |= RX_FLAG_MACTIME_END;
rx_status.rate_idx = 0;
rx_status.signal = 50 + 10;
memcpy(IEEE80211_SKB_RXCB(skb_delba), &rx_status,
sizeof(rx_status));
RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG,
"fake del\n", skb_delba->data,
skb_delba->len);
ieee80211_rx_irqsafe(hw, skb_delba);
}
}
rcu_read_unlock();
return false;
}
bool rtl_action_proc(struct ieee80211_hw *hw, struct sk_buff *skb, u8 is_tx)
{
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct ieee80211_hdr *hdr = rtl_get_hdr(skb);
struct rtl_priv *rtlpriv = rtl_priv(hw);
__le16 fc = hdr->frame_control;
u8 *act = (u8 *)skb->data + MAC80211_3ADDR_LEN;
u8 category;
if (!ieee80211_is_action(fc))
return true;
category = *act;
act++;
switch (category) {
case ACT_CAT_BA:
switch (*act) {
case ACT_ADDBAREQ:
if (mac->act_scanning)
return false;
RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG,
"%s ACT_ADDBAREQ From :%pM\n",
is_tx ? "Tx" : "Rx", hdr->addr2);
RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "req\n",
skb->data, skb->len);
if (!is_tx)
if (addbareq_rx(hw, skb))
return true;
break;
case ACT_ADDBARSP:
RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG,
"%s ACT_ADDBARSP From :%pM\n",
is_tx ? "Tx" : "Rx", hdr->addr2);
break;
case ACT_DELBA:
RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG,
"ACT_ADDBADEL From :%pM\n", hdr->addr2);
break;
}
break;
default:
break;
}
return true;
}
/*should call before software enc*/
u8 rtl_is_special_data(struct ieee80211_hw *hw, struct sk_buff *skb, u8 is_tx)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
__le16 fc = rtl_get_fc(skb);
u16 ether_type;
u8 mac_hdr_len = ieee80211_get_hdrlen_from_skb(skb);
const struct iphdr *ip;
if (!ieee80211_is_data(fc))
return false;
ip = (struct iphdr *)((u8 *) skb->data + mac_hdr_len +
SNAP_SIZE + PROTOC_TYPE_SIZE);
ether_type = *(u16 *) ((u8 *) skb->data + mac_hdr_len + SNAP_SIZE);
/* ether_type = ntohs(ether_type); */
if (ETH_P_IP == ether_type) {
if (IPPROTO_UDP == ip->protocol) {
struct udphdr *udp = (struct udphdr *)((u8 *) ip +
(ip->ihl << 2));
if (((((u8 *) udp)[1] == 68) &&
(((u8 *) udp)[3] == 67)) ||
((((u8 *) udp)[1] == 67) &&
(((u8 *) udp)[3] == 68))) {
/*
* 68 : UDP BOOTP client
* 67 : UDP BOOTP server
*/
RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV),
DBG_DMESG, "dhcp %s !!\n",
is_tx ? "Tx" : "Rx");
if (is_tx) {
rtlpriv->enter_ps = false;
schedule_work(&rtlpriv->
works.lps_change_work);
ppsc->last_delaylps_stamp_jiffies =
jiffies;
}
return true;
}
}
} else if (ETH_P_ARP == ether_type) {
if (is_tx) {
rtlpriv->enter_ps = false;
schedule_work(&rtlpriv->works.lps_change_work);
ppsc->last_delaylps_stamp_jiffies = jiffies;
}
return true;
} else if (ETH_P_PAE == ether_type) {
RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG,
"802.1X %s EAPOL pkt!!\n", is_tx ? "Tx" : "Rx");
if (is_tx) {
rtlpriv->enter_ps = false;
schedule_work(&rtlpriv->works.lps_change_work);
ppsc->last_delaylps_stamp_jiffies = jiffies;
}
return true;
} else if (ETH_P_IPV6 == ether_type) {
/* IPv6 */
return true;
}
return false;
}
/*********************************************************
*
* functions called by core.c
*
*********************************************************/
int rtl_tx_agg_start(struct ieee80211_hw *hw,
struct ieee80211_sta *sta, u16 tid, u16 *ssn)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_tid_data *tid_data;
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_sta_info *sta_entry = NULL;
if (sta == NULL)
return -EINVAL;
if (unlikely(tid >= MAX_TID_COUNT))
return -EINVAL;
sta_entry = (struct rtl_sta_info *)sta->drv_priv;
if (!sta_entry)
return -ENXIO;
tid_data = &sta_entry->tids[tid];
RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG, "on ra = %pM tid = %d seq:%d\n",
sta->addr, tid, tid_data->seq_number);
*ssn = tid_data->seq_number;
tid_data->agg.agg_state = RTL_AGG_START;
ieee80211_start_tx_ba_cb_irqsafe(mac->vif, sta->addr, tid);
return 0;
}
int rtl_tx_agg_stop(struct ieee80211_hw *hw,
struct ieee80211_sta *sta, u16 tid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_sta_info *sta_entry = NULL;
if (sta == NULL)
return -EINVAL;
if (!sta->addr) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "ra = NULL\n");
return -EINVAL;
}
RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG, "on ra = %pM tid = %d\n",
sta->addr, tid);
if (unlikely(tid >= MAX_TID_COUNT))
return -EINVAL;
sta_entry = (struct rtl_sta_info *)sta->drv_priv;
sta_entry->tids[tid].agg.agg_state = RTL_AGG_STOP;
ieee80211_stop_tx_ba_cb_irqsafe(mac->vif, sta->addr, tid);
return 0;
}
int rtl_rx_agg_start(struct ieee80211_hw *hw,
struct ieee80211_sta *sta, u16 tid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_tid_data *tid_data;
struct rtl_sta_info *sta_entry = NULL;
if (sta == NULL)
return -EINVAL;
if (unlikely(tid >= MAX_TID_COUNT))
return -EINVAL;
sta_entry = (struct rtl_sta_info *)sta->drv_priv;
if (!sta_entry)
return -ENXIO;
tid_data = &sta_entry->tids[tid];
RT_TRACE(rtlpriv, COMP_RECV, DBG_DMESG,
"on ra = %pM tid = %d seq:%d\n", sta->addr, tid,
tid_data->seq_number);
tid_data->agg.rx_agg_state = RTL_RX_AGG_START;
return 0;
}
int rtl_rx_agg_stop(struct ieee80211_hw *hw,
struct ieee80211_sta *sta, u16 tid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_sta_info *sta_entry = NULL;
if (sta == NULL)
return -EINVAL;
if (!sta->addr) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "ra = NULL\n");
return -EINVAL;
}
RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG,
"on ra = %pM tid = %d\n", sta->addr, tid);
if (unlikely(tid >= MAX_TID_COUNT))
return -EINVAL;
sta_entry = (struct rtl_sta_info *)sta->drv_priv;
sta_entry->tids[tid].agg.rx_agg_state = RTL_RX_AGG_STOP;
return 0;
}
int rtl_tx_agg_oper(struct ieee80211_hw *hw,
struct ieee80211_sta *sta, u16 tid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_sta_info *sta_entry = NULL;
if (sta == NULL)
return -EINVAL;
if (!sta->addr) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "ra = NULL\n");
return -EINVAL;
}
RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG, "on ra = %pM tid = %d\n",
sta->addr, tid);
if (unlikely(tid >= MAX_TID_COUNT))
return -EINVAL;
sta_entry = (struct rtl_sta_info *)sta->drv_priv;
sta_entry->tids[tid].agg.agg_state = RTL_AGG_OPERATIONAL;
return 0;
}
/*********************************************************
*
* wq & timer callback functions
*
*********************************************************/
/* this function is used for roaming */
void rtl_beacon_statistic(struct ieee80211_hw *hw, struct sk_buff *skb)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
if (rtlpriv->mac80211.opmode != NL80211_IFTYPE_STATION)
return;
if (rtlpriv->mac80211.link_state < MAC80211_LINKED)
return;
/* check if this really is a beacon */
if (!ieee80211_is_beacon(hdr->frame_control) &&
!ieee80211_is_probe_resp(hdr->frame_control))
return;
/* min. beacon length + FCS_LEN */
if (skb->len <= 40 + FCS_LEN)
return;
/* and only beacons from the associated BSSID, please */
if (compare_ether_addr(hdr->addr3, rtlpriv->mac80211.bssid))
return;
rtlpriv->link_info.bcn_rx_inperiod++;
}
void rtl_watchdog_wq_callback(void *data)
{
struct rtl_works *rtlworks = container_of_dwork_rtl(data,
struct rtl_works,
watchdog_wq);
struct ieee80211_hw *hw = rtlworks->hw;
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
bool busytraffic = false;
bool tx_busy_traffic = false;
bool rx_busy_traffic = false;
bool higher_busytraffic = false;
bool higher_busyrxtraffic = false;
u8 idx, tid;
u32 rx_cnt_inp4eriod = 0;
u32 tx_cnt_inp4eriod = 0;
u32 aver_rx_cnt_inperiod = 0;
u32 aver_tx_cnt_inperiod = 0;
u32 aver_tidtx_inperiod[MAX_TID_COUNT] = {0};
u32 tidtx_inp4eriod[MAX_TID_COUNT] = {0};
if (is_hal_stop(rtlhal))
return;
/* <1> Determine if action frame is allowed */
if (mac->link_state > MAC80211_NOLINK) {
if (mac->cnt_after_linked < 20)
mac->cnt_after_linked++;
} else {
mac->cnt_after_linked = 0;
}
/*
*<2> to check if traffic busy, if
* busytraffic we don't change channel
*/
if (mac->link_state >= MAC80211_LINKED) {
/* (1) get aver_rx_cnt_inperiod & aver_tx_cnt_inperiod */
for (idx = 0; idx <= 2; idx++) {
rtlpriv->link_info.num_rx_in4period[idx] =
rtlpriv->link_info.num_rx_in4period[idx + 1];
rtlpriv->link_info.num_tx_in4period[idx] =
rtlpriv->link_info.num_tx_in4period[idx + 1];
}
rtlpriv->link_info.num_rx_in4period[3] =
rtlpriv->link_info.num_rx_inperiod;
rtlpriv->link_info.num_tx_in4period[3] =
rtlpriv->link_info.num_tx_inperiod;
for (idx = 0; idx <= 3; idx++) {
rx_cnt_inp4eriod +=
rtlpriv->link_info.num_rx_in4period[idx];
tx_cnt_inp4eriod +=
rtlpriv->link_info.num_tx_in4period[idx];
}
aver_rx_cnt_inperiod = rx_cnt_inp4eriod / 4;
aver_tx_cnt_inperiod = tx_cnt_inp4eriod / 4;
/* (2) check traffic busy */
if (aver_rx_cnt_inperiod > 100 || aver_tx_cnt_inperiod > 100) {
busytraffic = true;
if (aver_rx_cnt_inperiod > aver_tx_cnt_inperiod)
rx_busy_traffic = true;
else
tx_busy_traffic = false;
}
/* Higher Tx/Rx data. */
if (aver_rx_cnt_inperiod > 4000 ||
aver_tx_cnt_inperiod > 4000) {
higher_busytraffic = true;
/* Extremely high Rx data. */
if (aver_rx_cnt_inperiod > 5000)
higher_busyrxtraffic = true;
}
/* check every tid's tx traffic */
for (tid = 0; tid <= 7; tid++) {
for (idx = 0; idx <= 2; idx++)
rtlpriv->link_info.tidtx_in4period[tid][idx] =
rtlpriv->link_info.tidtx_in4period[tid]
[idx + 1];
rtlpriv->link_info.tidtx_in4period[tid][3] =
rtlpriv->link_info.tidtx_inperiod[tid];
for (idx = 0; idx <= 3; idx++)
tidtx_inp4eriod[tid] +=
rtlpriv->link_info.tidtx_in4period[tid][idx];
aver_tidtx_inperiod[tid] = tidtx_inp4eriod[tid] / 4;
if (aver_tidtx_inperiod[tid] > 5000)
rtlpriv->link_info.higher_busytxtraffic[tid] =
true;
else
rtlpriv->link_info.higher_busytxtraffic[tid] =
false;
}
if (((rtlpriv->link_info.num_rx_inperiod +
rtlpriv->link_info.num_tx_inperiod) > 8) ||
(rtlpriv->link_info.num_rx_inperiod > 2))
rtlpriv->enter_ps = true;
else
rtlpriv->enter_ps = false;
/* LeisurePS only work in infra mode. */
schedule_work(&rtlpriv->works.lps_change_work);
}
rtlpriv->link_info.num_rx_inperiod = 0;
rtlpriv->link_info.num_tx_inperiod = 0;
for (tid = 0; tid <= 7; tid++)
rtlpriv->link_info.tidtx_inperiod[tid] = 0;
rtlpriv->link_info.busytraffic = busytraffic;
rtlpriv->link_info.higher_busytraffic = higher_busytraffic;
rtlpriv->link_info.rx_busy_traffic = rx_busy_traffic;
rtlpriv->link_info.tx_busy_traffic = tx_busy_traffic;
rtlpriv->link_info.higher_busyrxtraffic = higher_busyrxtraffic;
/* <3> DM */
rtlpriv->cfg->ops->dm_watchdog(hw);
/* <4> roaming */
if (mac->link_state == MAC80211_LINKED &&
mac->opmode == NL80211_IFTYPE_STATION) {
if ((rtlpriv->link_info.bcn_rx_inperiod +
rtlpriv->link_info.num_rx_inperiod) == 0) {
rtlpriv->link_info.roam_times++;
RT_TRACE(rtlpriv, COMP_ERR, DBG_DMESG,
"AP off for %d s\n",
(rtlpriv->link_info.roam_times * 2));
/* if we can't recv beacon for 6s, we should
* reconnect this AP
*/
if (rtlpriv->link_info.roam_times >= 3) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"AP off, try to reconnect now\n");
rtlpriv->link_info.roam_times = 0;
ieee80211_connection_loss(rtlpriv->mac80211.vif);
}
} else {
rtlpriv->link_info.roam_times = 0;
}
}
rtlpriv->link_info.bcn_rx_inperiod = 0;
}
void rtl_watch_dog_timer_callback(unsigned long data)
{
struct ieee80211_hw *hw = (struct ieee80211_hw *)data;
struct rtl_priv *rtlpriv = rtl_priv(hw);
queue_delayed_work(rtlpriv->works.rtl_wq,
&rtlpriv->works.watchdog_wq, 0);
mod_timer(&rtlpriv->works.watchdog_timer,
jiffies + MSECS(RTL_WATCH_DOG_TIME));
}
void rtl_fwevt_wq_callback(void *data)
{
struct rtl_works *rtlworks =
container_of_dwork_rtl(data, struct rtl_works, fwevt_wq);
struct ieee80211_hw *hw = rtlworks->hw;
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtlpriv->cfg->ops->c2h_command_handle(hw);
}
void rtl_easy_concurrent_retrytimer_callback(unsigned long data)
{
struct ieee80211_hw *hw = (struct ieee80211_hw *)data;
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_priv *buddy_priv = rtlpriv->buddy_priv;
if (buddy_priv == NULL)
return;
rtlpriv->cfg->ops->dualmac_easy_concurrent(hw);
}
/*********************************************************
*
* frame process functions
*
*********************************************************/
u8 *rtl_find_ie(u8 *data, unsigned int len, u8 ie)
{
struct ieee80211_mgmt *mgmt = (void *)data;
u8 *pos, *end;
pos = (u8 *)mgmt->u.beacon.variable;
end = data + len;
while (pos < end) {
if (pos + 2 + pos[1] > end)
return NULL;
if (pos[0] == ie)
return pos;
pos += 2 + pos[1];
}
return NULL;
}
/* when we use 2 rx ants we send IEEE80211_SMPS_OFF */
/* when we use 1 rx ant we send IEEE80211_SMPS_STATIC */
static struct sk_buff *rtl_make_smps_action(struct ieee80211_hw *hw,
enum ieee80211_smps_mode smps, u8 *da, u8 *bssid)
{
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct sk_buff *skb;
struct ieee80211_mgmt *action_frame;
/* 27 = header + category + action + smps mode */
skb = dev_alloc_skb(27 + hw->extra_tx_headroom);
if (!skb)
return NULL;
skb_reserve(skb, hw->extra_tx_headroom);
action_frame = (void *)skb_put(skb, 27);
memset(action_frame, 0, 27);
memcpy(action_frame->da, da, ETH_ALEN);
memcpy(action_frame->sa, rtlefuse->dev_addr, ETH_ALEN);
memcpy(action_frame->bssid, bssid, ETH_ALEN);
action_frame->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
IEEE80211_STYPE_ACTION);
action_frame->u.action.category = WLAN_CATEGORY_HT;
action_frame->u.action.u.ht_smps.action = WLAN_HT_ACTION_SMPS;
switch (smps) {
case IEEE80211_SMPS_AUTOMATIC:/* 0 */
case IEEE80211_SMPS_NUM_MODES:/* 4 */
WARN_ON(1);
case IEEE80211_SMPS_OFF:/* 1 */ /*MIMO_PS_NOLIMIT*/
action_frame->u.action.u.ht_smps.smps_control =
WLAN_HT_SMPS_CONTROL_DISABLED;/* 0 */
break;
case IEEE80211_SMPS_STATIC:/* 2 */ /*MIMO_PS_STATIC*/
action_frame->u.action.u.ht_smps.smps_control =
WLAN_HT_SMPS_CONTROL_STATIC;/* 1 */
break;
case IEEE80211_SMPS_DYNAMIC:/* 3 */ /*MIMO_PS_DYNAMIC*/
action_frame->u.action.u.ht_smps.smps_control =
WLAN_HT_SMPS_CONTROL_DYNAMIC;/* 3 */
break;
}
return skb;
}
int rtl_send_smps_action(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
enum ieee80211_smps_mode smps)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct sk_buff *skb = NULL;
struct rtl_tcb_desc tcb_desc;
u8 bssid[ETH_ALEN] = {0};
memset(&tcb_desc, 0, sizeof(struct rtl_tcb_desc));
if (rtlpriv->mac80211.act_scanning)
goto err_free;
if (!sta)
goto err_free;
if (unlikely(is_hal_stop(rtlhal) || ppsc->rfpwr_state != ERFON))
goto err_free;
if (!test_bit(RTL_STATUS_INTERFACE_START, &rtlpriv->status))
goto err_free;
if (rtlpriv->mac80211.opmode == NL80211_IFTYPE_AP)
memcpy(bssid, rtlpriv->efuse.dev_addr, ETH_ALEN);
else
memcpy(bssid, rtlpriv->mac80211.bssid, ETH_ALEN);
skb = rtl_make_smps_action(hw, smps, sta->addr, bssid);
/* this is a type = mgmt * stype = action frame */
if (skb) {
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct rtl_sta_info *sta_entry =
(struct rtl_sta_info *) sta->drv_priv;
sta_entry->mimo_ps = smps;
info->control.rates[0].idx = 0;
info->band = hw->conf.chandef.chan->band;
rtlpriv->intf_ops->adapter_tx(hw, sta, skb, &tcb_desc);
}
return 1;
err_free:
return 0;
}
EXPORT_SYMBOL(rtl_send_smps_action);
/* There seem to be issues in mac80211 regarding when del ba frames can be
* received. As a work around, we make a fake del_ba if we receive a ba_req;
* however, rx_agg was opened to let mac80211 release some ba related
* resources. This del_ba is for tx only.
*/
struct sk_buff *rtl_make_del_ba(struct ieee80211_hw *hw,
u8 *sa, u8 *bssid, u16 tid)
{
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct sk_buff *skb;
struct ieee80211_mgmt *action_frame;
u16 params;
/* 27 = header + category + action + smps mode */
skb = dev_alloc_skb(34 + hw->extra_tx_headroom);
if (!skb)
return NULL;
skb_reserve(skb, hw->extra_tx_headroom);
action_frame = (void *)skb_put(skb, 34);
memset(action_frame, 0, 34);
memcpy(action_frame->sa, sa, ETH_ALEN);
memcpy(action_frame->da, rtlefuse->dev_addr, ETH_ALEN);
memcpy(action_frame->bssid, bssid, ETH_ALEN);
action_frame->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
IEEE80211_STYPE_ACTION);
action_frame->u.action.category = WLAN_CATEGORY_BACK;
action_frame->u.action.u.delba.action_code = WLAN_ACTION_DELBA;
params = (u16)(1 << 11); /* bit 11 initiator */
params |= (u16)(tid << 12); /* bit 15:12 TID number */
action_frame->u.action.u.delba.params = cpu_to_le16(params);
action_frame->u.action.u.delba.reason_code =
cpu_to_le16(WLAN_REASON_QSTA_TIMEOUT);
return skb;
}
/*********************************************************
*
* IOT functions
*
*********************************************************/
static bool rtl_chk_vendor_ouisub(struct ieee80211_hw *hw,
struct octet_string vendor_ie)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
bool matched = false;
static u8 athcap_1[] = { 0x00, 0x03, 0x7F };
static u8 athcap_2[] = { 0x00, 0x13, 0x74 };
static u8 broadcap_1[] = { 0x00, 0x10, 0x18 };
static u8 broadcap_2[] = { 0x00, 0x0a, 0xf7 };
static u8 broadcap_3[] = { 0x00, 0x05, 0xb5 };
static u8 racap[] = { 0x00, 0x0c, 0x43 };
static u8 ciscocap[] = { 0x00, 0x40, 0x96 };
static u8 marvcap[] = { 0x00, 0x50, 0x43 };
if (memcmp(vendor_ie.octet, athcap_1, 3) == 0 ||
memcmp(vendor_ie.octet, athcap_2, 3) == 0) {
rtlpriv->mac80211.vendor = PEER_ATH;
matched = true;
} else if (memcmp(vendor_ie.octet, broadcap_1, 3) == 0 ||
memcmp(vendor_ie.octet, broadcap_2, 3) == 0 ||
memcmp(vendor_ie.octet, broadcap_3, 3) == 0) {
rtlpriv->mac80211.vendor = PEER_BROAD;
matched = true;
} else if (memcmp(vendor_ie.octet, racap, 3) == 0) {
rtlpriv->mac80211.vendor = PEER_RAL;
matched = true;
} else if (memcmp(vendor_ie.octet, ciscocap, 3) == 0) {
rtlpriv->mac80211.vendor = PEER_CISCO;
matched = true;
} else if (memcmp(vendor_ie.octet, marvcap, 3) == 0) {
rtlpriv->mac80211.vendor = PEER_MARV;
matched = true;
}
return matched;
}
static bool rtl_find_221_ie(struct ieee80211_hw *hw, u8 *data,
unsigned int len)
{
struct ieee80211_mgmt *mgmt = (void *)data;
struct octet_string vendor_ie;
u8 *pos, *end;
pos = (u8 *)mgmt->u.beacon.variable;
end = data + len;
while (pos < end) {
if (pos[0] == 221) {
vendor_ie.length = pos[1];
vendor_ie.octet = &pos[2];
if (rtl_chk_vendor_ouisub(hw, vendor_ie))
return true;
}
if (pos + 2 + pos[1] > end)
return false;
pos += 2 + pos[1];
}
return false;
}
void rtl_recognize_peer(struct ieee80211_hw *hw, u8 *data, unsigned int len)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct ieee80211_hdr *hdr = (void *)data;
u32 vendor = PEER_UNKNOWN;
static u8 ap3_1[3] = { 0x00, 0x14, 0xbf };
static u8 ap3_2[3] = { 0x00, 0x1a, 0x70 };
static u8 ap3_3[3] = { 0x00, 0x1d, 0x7e };
static u8 ap4_1[3] = { 0x00, 0x90, 0xcc };
static u8 ap4_2[3] = { 0x00, 0x0e, 0x2e };
static u8 ap4_3[3] = { 0x00, 0x18, 0x02 };
static u8 ap4_4[3] = { 0x00, 0x17, 0x3f };
static u8 ap4_5[3] = { 0x00, 0x1c, 0xdf };
static u8 ap5_1[3] = { 0x00, 0x1c, 0xf0 };
static u8 ap5_2[3] = { 0x00, 0x21, 0x91 };
static u8 ap5_3[3] = { 0x00, 0x24, 0x01 };
static u8 ap5_4[3] = { 0x00, 0x15, 0xe9 };
static u8 ap5_5[3] = { 0x00, 0x17, 0x9A };
static u8 ap5_6[3] = { 0x00, 0x18, 0xE7 };
static u8 ap6_1[3] = { 0x00, 0x17, 0x94 };
static u8 ap7_1[3] = { 0x00, 0x14, 0xa4 };
if (mac->opmode != NL80211_IFTYPE_STATION)
return;
if (mac->link_state == MAC80211_NOLINK) {
mac->vendor = PEER_UNKNOWN;
return;
}
if (mac->cnt_after_linked > 2)
return;
/* check if this really is a beacon */
if (!ieee80211_is_beacon(hdr->frame_control))
return;
/* min. beacon length + FCS_LEN */
if (len <= 40 + FCS_LEN)
return;
/* and only beacons from the associated BSSID, please */
if (!ether_addr_equal(hdr->addr3, rtlpriv->mac80211.bssid))
return;
if (rtl_find_221_ie(hw, data, len))
vendor = mac->vendor;
if ((memcmp(mac->bssid, ap5_1, 3) == 0) ||
(memcmp(mac->bssid, ap5_2, 3) == 0) ||
(memcmp(mac->bssid, ap5_3, 3) == 0) ||
(memcmp(mac->bssid, ap5_4, 3) == 0) ||
(memcmp(mac->bssid, ap5_5, 3) == 0) ||
(memcmp(mac->bssid, ap5_6, 3) == 0) ||
vendor == PEER_ATH) {
vendor = PEER_ATH;
RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>ath find\n");
} else if ((memcmp(mac->bssid, ap4_4, 3) == 0) ||
(memcmp(mac->bssid, ap4_5, 3) == 0) ||
(memcmp(mac->bssid, ap4_1, 3) == 0) ||
(memcmp(mac->bssid, ap4_2, 3) == 0) ||
(memcmp(mac->bssid, ap4_3, 3) == 0) ||
vendor == PEER_RAL) {
RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>ral find\n");
vendor = PEER_RAL;
} else if (memcmp(mac->bssid, ap6_1, 3) == 0 ||
vendor == PEER_CISCO) {
vendor = PEER_CISCO;
RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>cisco find\n");
} else if ((memcmp(mac->bssid, ap3_1, 3) == 0) ||
(memcmp(mac->bssid, ap3_2, 3) == 0) ||
(memcmp(mac->bssid, ap3_3, 3) == 0) ||
vendor == PEER_BROAD) {
RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>broad find\n");
vendor = PEER_BROAD;
} else if (memcmp(mac->bssid, ap7_1, 3) == 0 ||
vendor == PEER_MARV) {
vendor = PEER_MARV;
RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>marv find\n");
}
mac->vendor = vendor;
}
/*********************************************************
*
* sysfs functions
*
*********************************************************/
static ssize_t rtl_show_debug_level(struct device *d,
struct device_attribute *attr, char *buf)
{
struct ieee80211_hw *hw = dev_get_drvdata(d);
struct rtl_priv *rtlpriv = rtl_priv(hw);
return sprintf(buf, "0x%08X\n", rtlpriv->dbg.global_debuglevel);
}
static ssize_t rtl_store_debug_level(struct device *d,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ieee80211_hw *hw = dev_get_drvdata(d);
struct rtl_priv *rtlpriv = rtl_priv(hw);
unsigned long val;
int ret;
ret = kstrtoul(buf, 0, &val);
if (ret) {
printk(KERN_DEBUG "%s is not in hex or decimal form.\n", buf);
} else {
rtlpriv->dbg.global_debuglevel = val;
printk(KERN_DEBUG "debuglevel:%x\n",
rtlpriv->dbg.global_debuglevel);
}
return strnlen(buf, count);
}
static DEVICE_ATTR(debug_level, S_IWUSR | S_IRUGO,
rtl_show_debug_level, rtl_store_debug_level);
static struct attribute *rtl_sysfs_entries[] = {
&dev_attr_debug_level.attr,
NULL
};
/*
* "name" is folder name witch will be
* put in device directory like :
* sys/devices/pci0000:00/0000:00:1c.4/
* 0000:06:00.0/rtl_sysfs
*/
struct attribute_group rtl_attribute_group = {
.name = "rtlsysfs",
.attrs = rtl_sysfs_entries,
};
MODULE_AUTHOR("lizhaoming <chaoming_li@realsil.com.cn>");
MODULE_AUTHOR("Realtek WlanFAE <wlanfae@realtek.com>");
MODULE_AUTHOR("Larry Finger <Larry.FInger@lwfinger.net>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Realtek 802.11n PCI wireless core");
struct rtl_global_var global_var = {};
static int __init rtl_core_module_init(void)
{
if (rtl_rate_control_register())
pr_err("Unable to register rtl_rc, use default RC !!\n");
/* init some global vars */
INIT_LIST_HEAD(&global_var.glb_priv_list);
spin_lock_init(&global_var.glb_list_lock);
return 0;
}
static void __exit rtl_core_module_exit(void)
{
/*RC*/
rtl_rate_control_unregister();
}
module_init(rtl_core_module_init);
module_exit(rtl_core_module_exit);