mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-11 23:23:52 +08:00
4926d445eb
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
783 lines
20 KiB
C
783 lines
20 KiB
C
/*
|
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
|
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include <linux/mman.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/io.h>
|
|
#include <trace/events/kvm.h>
|
|
#include <asm/idmap.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/kvm_mmio.h>
|
|
#include <asm/kvm_asm.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/mach/map.h>
|
|
#include <trace/events/kvm.h>
|
|
|
|
#include "trace.h"
|
|
|
|
extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
|
|
|
|
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
|
|
|
|
static void kvm_tlb_flush_vmid(struct kvm *kvm)
|
|
{
|
|
kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
|
|
}
|
|
|
|
static void kvm_set_pte(pte_t *pte, pte_t new_pte)
|
|
{
|
|
pte_val(*pte) = new_pte;
|
|
/*
|
|
* flush_pmd_entry just takes a void pointer and cleans the necessary
|
|
* cache entries, so we can reuse the function for ptes.
|
|
*/
|
|
flush_pmd_entry(pte);
|
|
}
|
|
|
|
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
|
|
int min, int max)
|
|
{
|
|
void *page;
|
|
|
|
BUG_ON(max > KVM_NR_MEM_OBJS);
|
|
if (cache->nobjs >= min)
|
|
return 0;
|
|
while (cache->nobjs < max) {
|
|
page = (void *)__get_free_page(PGALLOC_GFP);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
cache->objects[cache->nobjs++] = page;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
|
|
{
|
|
while (mc->nobjs)
|
|
free_page((unsigned long)mc->objects[--mc->nobjs]);
|
|
}
|
|
|
|
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
|
|
{
|
|
void *p;
|
|
|
|
BUG_ON(!mc || !mc->nobjs);
|
|
p = mc->objects[--mc->nobjs];
|
|
return p;
|
|
}
|
|
|
|
static void free_ptes(pmd_t *pmd, unsigned long addr)
|
|
{
|
|
pte_t *pte;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < PTRS_PER_PMD; i++, addr += PMD_SIZE) {
|
|
if (!pmd_none(*pmd) && pmd_table(*pmd)) {
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
pte_free_kernel(NULL, pte);
|
|
}
|
|
pmd++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* free_hyp_pmds - free a Hyp-mode level-2 tables and child level-3 tables
|
|
*
|
|
* Assumes this is a page table used strictly in Hyp-mode and therefore contains
|
|
* only mappings in the kernel memory area, which is above PAGE_OFFSET.
|
|
*/
|
|
void free_hyp_pmds(void)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
unsigned long addr;
|
|
|
|
mutex_lock(&kvm_hyp_pgd_mutex);
|
|
for (addr = PAGE_OFFSET; addr != 0; addr += PGDIR_SIZE) {
|
|
pgd = hyp_pgd + pgd_index(addr);
|
|
pud = pud_offset(pgd, addr);
|
|
|
|
if (pud_none(*pud))
|
|
continue;
|
|
BUG_ON(pud_bad(*pud));
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
free_ptes(pmd, addr);
|
|
pmd_free(NULL, pmd);
|
|
pud_clear(pud);
|
|
}
|
|
mutex_unlock(&kvm_hyp_pgd_mutex);
|
|
}
|
|
|
|
static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
pte_t *pte;
|
|
unsigned long addr;
|
|
struct page *page;
|
|
|
|
for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
BUG_ON(!virt_addr_valid(addr));
|
|
page = virt_to_page(addr);
|
|
kvm_set_pte(pte, mk_pte(page, PAGE_HYP));
|
|
}
|
|
}
|
|
|
|
static void create_hyp_io_pte_mappings(pmd_t *pmd, unsigned long start,
|
|
unsigned long end,
|
|
unsigned long *pfn_base)
|
|
{
|
|
pte_t *pte;
|
|
unsigned long addr;
|
|
|
|
for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
BUG_ON(pfn_valid(*pfn_base));
|
|
kvm_set_pte(pte, pfn_pte(*pfn_base, PAGE_HYP_DEVICE));
|
|
(*pfn_base)++;
|
|
}
|
|
}
|
|
|
|
static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
|
|
unsigned long end, unsigned long *pfn_base)
|
|
{
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
unsigned long addr, next;
|
|
|
|
for (addr = start; addr < end; addr = next) {
|
|
pmd = pmd_offset(pud, addr);
|
|
|
|
BUG_ON(pmd_sect(*pmd));
|
|
|
|
if (pmd_none(*pmd)) {
|
|
pte = pte_alloc_one_kernel(NULL, addr);
|
|
if (!pte) {
|
|
kvm_err("Cannot allocate Hyp pte\n");
|
|
return -ENOMEM;
|
|
}
|
|
pmd_populate_kernel(NULL, pmd, pte);
|
|
}
|
|
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
/*
|
|
* If pfn_base is NULL, we map kernel pages into HYP with the
|
|
* virtual address. Otherwise, this is considered an I/O
|
|
* mapping and we map the physical region starting at
|
|
* *pfn_base to [start, end[.
|
|
*/
|
|
if (!pfn_base)
|
|
create_hyp_pte_mappings(pmd, addr, next);
|
|
else
|
|
create_hyp_io_pte_mappings(pmd, addr, next, pfn_base);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __create_hyp_mappings(void *from, void *to, unsigned long *pfn_base)
|
|
{
|
|
unsigned long start = (unsigned long)from;
|
|
unsigned long end = (unsigned long)to;
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
unsigned long addr, next;
|
|
int err = 0;
|
|
|
|
BUG_ON(start > end);
|
|
if (start < PAGE_OFFSET)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&kvm_hyp_pgd_mutex);
|
|
for (addr = start; addr < end; addr = next) {
|
|
pgd = hyp_pgd + pgd_index(addr);
|
|
pud = pud_offset(pgd, addr);
|
|
|
|
if (pud_none_or_clear_bad(pud)) {
|
|
pmd = pmd_alloc_one(NULL, addr);
|
|
if (!pmd) {
|
|
kvm_err("Cannot allocate Hyp pmd\n");
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
pud_populate(NULL, pud, pmd);
|
|
}
|
|
|
|
next = pgd_addr_end(addr, end);
|
|
err = create_hyp_pmd_mappings(pud, addr, next, pfn_base);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
out:
|
|
mutex_unlock(&kvm_hyp_pgd_mutex);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* create_hyp_mappings - map a kernel virtual address range in Hyp mode
|
|
* @from: The virtual kernel start address of the range
|
|
* @to: The virtual kernel end address of the range (exclusive)
|
|
*
|
|
* The same virtual address as the kernel virtual address is also used in
|
|
* Hyp-mode mapping to the same underlying physical pages.
|
|
*
|
|
* Note: Wrapping around zero in the "to" address is not supported.
|
|
*/
|
|
int create_hyp_mappings(void *from, void *to)
|
|
{
|
|
return __create_hyp_mappings(from, to, NULL);
|
|
}
|
|
|
|
/**
|
|
* create_hyp_io_mappings - map a physical IO range in Hyp mode
|
|
* @from: The virtual HYP start address of the range
|
|
* @to: The virtual HYP end address of the range (exclusive)
|
|
* @addr: The physical start address which gets mapped
|
|
*/
|
|
int create_hyp_io_mappings(void *from, void *to, phys_addr_t addr)
|
|
{
|
|
unsigned long pfn = __phys_to_pfn(addr);
|
|
return __create_hyp_mappings(from, to, &pfn);
|
|
}
|
|
|
|
/**
|
|
* kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
|
|
* @kvm: The KVM struct pointer for the VM.
|
|
*
|
|
* Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
|
|
* support either full 40-bit input addresses or limited to 32-bit input
|
|
* addresses). Clears the allocated pages.
|
|
*
|
|
* Note we don't need locking here as this is only called when the VM is
|
|
* created, which can only be done once.
|
|
*/
|
|
int kvm_alloc_stage2_pgd(struct kvm *kvm)
|
|
{
|
|
pgd_t *pgd;
|
|
|
|
if (kvm->arch.pgd != NULL) {
|
|
kvm_err("kvm_arch already initialized?\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, S2_PGD_ORDER);
|
|
if (!pgd)
|
|
return -ENOMEM;
|
|
|
|
/* stage-2 pgd must be aligned to its size */
|
|
VM_BUG_ON((unsigned long)pgd & (S2_PGD_SIZE - 1));
|
|
|
|
memset(pgd, 0, PTRS_PER_S2_PGD * sizeof(pgd_t));
|
|
clean_dcache_area(pgd, PTRS_PER_S2_PGD * sizeof(pgd_t));
|
|
kvm->arch.pgd = pgd;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void clear_pud_entry(pud_t *pud)
|
|
{
|
|
pmd_t *pmd_table = pmd_offset(pud, 0);
|
|
pud_clear(pud);
|
|
pmd_free(NULL, pmd_table);
|
|
put_page(virt_to_page(pud));
|
|
}
|
|
|
|
static void clear_pmd_entry(pmd_t *pmd)
|
|
{
|
|
pte_t *pte_table = pte_offset_kernel(pmd, 0);
|
|
pmd_clear(pmd);
|
|
pte_free_kernel(NULL, pte_table);
|
|
put_page(virt_to_page(pmd));
|
|
}
|
|
|
|
static bool pmd_empty(pmd_t *pmd)
|
|
{
|
|
struct page *pmd_page = virt_to_page(pmd);
|
|
return page_count(pmd_page) == 1;
|
|
}
|
|
|
|
static void clear_pte_entry(pte_t *pte)
|
|
{
|
|
if (pte_present(*pte)) {
|
|
kvm_set_pte(pte, __pte(0));
|
|
put_page(virt_to_page(pte));
|
|
}
|
|
}
|
|
|
|
static bool pte_empty(pte_t *pte)
|
|
{
|
|
struct page *pte_page = virt_to_page(pte);
|
|
return page_count(pte_page) == 1;
|
|
}
|
|
|
|
/**
|
|
* unmap_stage2_range -- Clear stage2 page table entries to unmap a range
|
|
* @kvm: The VM pointer
|
|
* @start: The intermediate physical base address of the range to unmap
|
|
* @size: The size of the area to unmap
|
|
*
|
|
* Clear a range of stage-2 mappings, lowering the various ref-counts. Must
|
|
* be called while holding mmu_lock (unless for freeing the stage2 pgd before
|
|
* destroying the VM), otherwise another faulting VCPU may come in and mess
|
|
* with things behind our backs.
|
|
*/
|
|
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
phys_addr_t addr = start, end = start + size;
|
|
u64 range;
|
|
|
|
while (addr < end) {
|
|
pgd = kvm->arch.pgd + pgd_index(addr);
|
|
pud = pud_offset(pgd, addr);
|
|
if (pud_none(*pud)) {
|
|
addr += PUD_SIZE;
|
|
continue;
|
|
}
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd)) {
|
|
addr += PMD_SIZE;
|
|
continue;
|
|
}
|
|
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
clear_pte_entry(pte);
|
|
range = PAGE_SIZE;
|
|
|
|
/* If we emptied the pte, walk back up the ladder */
|
|
if (pte_empty(pte)) {
|
|
clear_pmd_entry(pmd);
|
|
range = PMD_SIZE;
|
|
if (pmd_empty(pmd)) {
|
|
clear_pud_entry(pud);
|
|
range = PUD_SIZE;
|
|
}
|
|
}
|
|
|
|
addr += range;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kvm_free_stage2_pgd - free all stage-2 tables
|
|
* @kvm: The KVM struct pointer for the VM.
|
|
*
|
|
* Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
|
|
* underlying level-2 and level-3 tables before freeing the actual level-1 table
|
|
* and setting the struct pointer to NULL.
|
|
*
|
|
* Note we don't need locking here as this is only called when the VM is
|
|
* destroyed, which can only be done once.
|
|
*/
|
|
void kvm_free_stage2_pgd(struct kvm *kvm)
|
|
{
|
|
if (kvm->arch.pgd == NULL)
|
|
return;
|
|
|
|
unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
|
|
free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
|
|
kvm->arch.pgd = NULL;
|
|
}
|
|
|
|
|
|
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
|
|
phys_addr_t addr, const pte_t *new_pte, bool iomap)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte, old_pte;
|
|
|
|
/* Create 2nd stage page table mapping - Level 1 */
|
|
pgd = kvm->arch.pgd + pgd_index(addr);
|
|
pud = pud_offset(pgd, addr);
|
|
if (pud_none(*pud)) {
|
|
if (!cache)
|
|
return 0; /* ignore calls from kvm_set_spte_hva */
|
|
pmd = mmu_memory_cache_alloc(cache);
|
|
pud_populate(NULL, pud, pmd);
|
|
pmd += pmd_index(addr);
|
|
get_page(virt_to_page(pud));
|
|
} else
|
|
pmd = pmd_offset(pud, addr);
|
|
|
|
/* Create 2nd stage page table mapping - Level 2 */
|
|
if (pmd_none(*pmd)) {
|
|
if (!cache)
|
|
return 0; /* ignore calls from kvm_set_spte_hva */
|
|
pte = mmu_memory_cache_alloc(cache);
|
|
clean_pte_table(pte);
|
|
pmd_populate_kernel(NULL, pmd, pte);
|
|
pte += pte_index(addr);
|
|
get_page(virt_to_page(pmd));
|
|
} else
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
|
|
if (iomap && pte_present(*pte))
|
|
return -EFAULT;
|
|
|
|
/* Create 2nd stage page table mapping - Level 3 */
|
|
old_pte = *pte;
|
|
kvm_set_pte(pte, *new_pte);
|
|
if (pte_present(old_pte))
|
|
kvm_tlb_flush_vmid(kvm);
|
|
else
|
|
get_page(virt_to_page(pte));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_phys_addr_ioremap - map a device range to guest IPA
|
|
*
|
|
* @kvm: The KVM pointer
|
|
* @guest_ipa: The IPA at which to insert the mapping
|
|
* @pa: The physical address of the device
|
|
* @size: The size of the mapping
|
|
*/
|
|
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
|
|
phys_addr_t pa, unsigned long size)
|
|
{
|
|
phys_addr_t addr, end;
|
|
int ret = 0;
|
|
unsigned long pfn;
|
|
struct kvm_mmu_memory_cache cache = { 0, };
|
|
|
|
end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
|
|
pfn = __phys_to_pfn(pa);
|
|
|
|
for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
|
|
pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE | L_PTE_S2_RDWR);
|
|
|
|
ret = mmu_topup_memory_cache(&cache, 2, 2);
|
|
if (ret)
|
|
goto out;
|
|
spin_lock(&kvm->mmu_lock);
|
|
ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
if (ret)
|
|
goto out;
|
|
|
|
pfn++;
|
|
}
|
|
|
|
out:
|
|
mmu_free_memory_cache(&cache);
|
|
return ret;
|
|
}
|
|
|
|
static void coherent_icache_guest_page(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
/*
|
|
* If we are going to insert an instruction page and the icache is
|
|
* either VIPT or PIPT, there is a potential problem where the host
|
|
* (or another VM) may have used the same page as this guest, and we
|
|
* read incorrect data from the icache. If we're using a PIPT cache,
|
|
* we can invalidate just that page, but if we are using a VIPT cache
|
|
* we need to invalidate the entire icache - damn shame - as written
|
|
* in the ARM ARM (DDI 0406C.b - Page B3-1393).
|
|
*
|
|
* VIVT caches are tagged using both the ASID and the VMID and doesn't
|
|
* need any kind of flushing (DDI 0406C.b - Page B3-1392).
|
|
*/
|
|
if (icache_is_pipt()) {
|
|
unsigned long hva = gfn_to_hva(kvm, gfn);
|
|
__cpuc_coherent_user_range(hva, hva + PAGE_SIZE);
|
|
} else if (!icache_is_vivt_asid_tagged()) {
|
|
/* any kind of VIPT cache */
|
|
__flush_icache_all();
|
|
}
|
|
}
|
|
|
|
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
|
|
gfn_t gfn, struct kvm_memory_slot *memslot,
|
|
unsigned long fault_status)
|
|
{
|
|
pte_t new_pte;
|
|
pfn_t pfn;
|
|
int ret;
|
|
bool write_fault, writable;
|
|
unsigned long mmu_seq;
|
|
struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
|
|
|
|
write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu));
|
|
if (fault_status == FSC_PERM && !write_fault) {
|
|
kvm_err("Unexpected L2 read permission error\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* We need minimum second+third level pages */
|
|
ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mmu_seq = vcpu->kvm->mmu_notifier_seq;
|
|
/*
|
|
* Ensure the read of mmu_notifier_seq happens before we call
|
|
* gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
|
|
* the page we just got a reference to gets unmapped before we have a
|
|
* chance to grab the mmu_lock, which ensure that if the page gets
|
|
* unmapped afterwards, the call to kvm_unmap_hva will take it away
|
|
* from us again properly. This smp_rmb() interacts with the smp_wmb()
|
|
* in kvm_mmu_notifier_invalidate_<page|range_end>.
|
|
*/
|
|
smp_rmb();
|
|
|
|
pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write_fault, &writable);
|
|
if (is_error_pfn(pfn))
|
|
return -EFAULT;
|
|
|
|
new_pte = pfn_pte(pfn, PAGE_S2);
|
|
coherent_icache_guest_page(vcpu->kvm, gfn);
|
|
|
|
spin_lock(&vcpu->kvm->mmu_lock);
|
|
if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
|
|
goto out_unlock;
|
|
if (writable) {
|
|
pte_val(new_pte) |= L_PTE_S2_RDWR;
|
|
kvm_set_pfn_dirty(pfn);
|
|
}
|
|
stage2_set_pte(vcpu->kvm, memcache, fault_ipa, &new_pte, false);
|
|
|
|
out_unlock:
|
|
spin_unlock(&vcpu->kvm->mmu_lock);
|
|
kvm_release_pfn_clean(pfn);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_guest_abort - handles all 2nd stage aborts
|
|
* @vcpu: the VCPU pointer
|
|
* @run: the kvm_run structure
|
|
*
|
|
* Any abort that gets to the host is almost guaranteed to be caused by a
|
|
* missing second stage translation table entry, which can mean that either the
|
|
* guest simply needs more memory and we must allocate an appropriate page or it
|
|
* can mean that the guest tried to access I/O memory, which is emulated by user
|
|
* space. The distinction is based on the IPA causing the fault and whether this
|
|
* memory region has been registered as standard RAM by user space.
|
|
*/
|
|
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
unsigned long hsr_ec;
|
|
unsigned long fault_status;
|
|
phys_addr_t fault_ipa;
|
|
struct kvm_memory_slot *memslot;
|
|
bool is_iabt;
|
|
gfn_t gfn;
|
|
int ret, idx;
|
|
|
|
hsr_ec = kvm_vcpu_trap_get_class(vcpu);
|
|
is_iabt = (hsr_ec == HSR_EC_IABT);
|
|
fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
|
|
|
|
trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
|
|
kvm_vcpu_get_hfar(vcpu), fault_ipa);
|
|
|
|
/* Check the stage-2 fault is trans. fault or write fault */
|
|
fault_status = (kvm_vcpu_get_hsr(vcpu) & HSR_FSC_TYPE);
|
|
if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
|
|
kvm_err("Unsupported fault status: EC=%#lx DFCS=%#lx\n",
|
|
hsr_ec, fault_status);
|
|
return -EFAULT;
|
|
}
|
|
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
|
|
gfn = fault_ipa >> PAGE_SHIFT;
|
|
if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) {
|
|
if (is_iabt) {
|
|
/* Prefetch Abort on I/O address */
|
|
kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
|
|
ret = 1;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (fault_status != FSC_FAULT) {
|
|
kvm_err("Unsupported fault status on io memory: %#lx\n",
|
|
fault_status);
|
|
ret = -EFAULT;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Adjust page offset */
|
|
fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ~PAGE_MASK;
|
|
ret = io_mem_abort(vcpu, run, fault_ipa);
|
|
goto out_unlock;
|
|
}
|
|
|
|
memslot = gfn_to_memslot(vcpu->kvm, gfn);
|
|
|
|
ret = user_mem_abort(vcpu, fault_ipa, gfn, memslot, fault_status);
|
|
if (ret == 0)
|
|
ret = 1;
|
|
out_unlock:
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
return ret;
|
|
}
|
|
|
|
static void handle_hva_to_gpa(struct kvm *kvm,
|
|
unsigned long start,
|
|
unsigned long end,
|
|
void (*handler)(struct kvm *kvm,
|
|
gpa_t gpa, void *data),
|
|
void *data)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
|
|
slots = kvm_memslots(kvm);
|
|
|
|
/* we only care about the pages that the guest sees */
|
|
kvm_for_each_memslot(memslot, slots) {
|
|
unsigned long hva_start, hva_end;
|
|
gfn_t gfn, gfn_end;
|
|
|
|
hva_start = max(start, memslot->userspace_addr);
|
|
hva_end = min(end, memslot->userspace_addr +
|
|
(memslot->npages << PAGE_SHIFT));
|
|
if (hva_start >= hva_end)
|
|
continue;
|
|
|
|
/*
|
|
* {gfn(page) | page intersects with [hva_start, hva_end)} =
|
|
* {gfn_start, gfn_start+1, ..., gfn_end-1}.
|
|
*/
|
|
gfn = hva_to_gfn_memslot(hva_start, memslot);
|
|
gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
|
|
|
|
for (; gfn < gfn_end; ++gfn) {
|
|
gpa_t gpa = gfn << PAGE_SHIFT;
|
|
handler(kvm, gpa, data);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
|
|
{
|
|
unmap_stage2_range(kvm, gpa, PAGE_SIZE);
|
|
kvm_tlb_flush_vmid(kvm);
|
|
}
|
|
|
|
int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
|
|
{
|
|
unsigned long end = hva + PAGE_SIZE;
|
|
|
|
if (!kvm->arch.pgd)
|
|
return 0;
|
|
|
|
trace_kvm_unmap_hva(hva);
|
|
handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_unmap_hva_range(struct kvm *kvm,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
if (!kvm->arch.pgd)
|
|
return 0;
|
|
|
|
trace_kvm_unmap_hva_range(start, end);
|
|
handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
|
|
{
|
|
pte_t *pte = (pte_t *)data;
|
|
|
|
stage2_set_pte(kvm, NULL, gpa, pte, false);
|
|
}
|
|
|
|
|
|
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
|
|
{
|
|
unsigned long end = hva + PAGE_SIZE;
|
|
pte_t stage2_pte;
|
|
|
|
if (!kvm->arch.pgd)
|
|
return;
|
|
|
|
trace_kvm_set_spte_hva(hva);
|
|
stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
|
|
handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
|
|
}
|
|
|
|
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
|
|
{
|
|
mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
|
|
}
|
|
|
|
phys_addr_t kvm_mmu_get_httbr(void)
|
|
{
|
|
VM_BUG_ON(!virt_addr_valid(hyp_pgd));
|
|
return virt_to_phys(hyp_pgd);
|
|
}
|
|
|
|
int kvm_mmu_init(void)
|
|
{
|
|
if (!hyp_pgd) {
|
|
kvm_err("Hyp mode PGD not allocated\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_clear_idmap - remove all idmaps from the hyp pgd
|
|
*
|
|
* Free the underlying pmds for all pgds in range and clear the pgds (but
|
|
* don't free them) afterwards.
|
|
*/
|
|
void kvm_clear_hyp_idmap(void)
|
|
{
|
|
unsigned long addr, end;
|
|
unsigned long next;
|
|
pgd_t *pgd = hyp_pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
addr = virt_to_phys(__hyp_idmap_text_start);
|
|
end = virt_to_phys(__hyp_idmap_text_end);
|
|
|
|
pgd += pgd_index(addr);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
if (pgd_none_or_clear_bad(pgd))
|
|
continue;
|
|
pud = pud_offset(pgd, addr);
|
|
pmd = pmd_offset(pud, addr);
|
|
|
|
pud_clear(pud);
|
|
clean_pmd_entry(pmd);
|
|
pmd_free(NULL, (pmd_t *)((unsigned long)pmd & PAGE_MASK));
|
|
} while (pgd++, addr = next, addr < end);
|
|
}
|