2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-15 08:44:14 +08:00
linux-next/sound/pci/hda/patch_cirrus.c
Takashi Iwai 68cb2b5592 ALSA: Convert to new pm_ops for PCI drivers
Straightforward conversion to the new pm_ops from the legacy
suspend/resume ops.

Since we change vx222, vx_core and vxpocket have to be converted,
too.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2012-07-03 08:23:03 +02:00

2044 lines
51 KiB
C

/*
* HD audio interface patch for Cirrus Logic CS420x chip
*
* Copyright (c) 2009 Takashi Iwai <tiwai@suse.de>
*
* This driver is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This driver is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <sound/core.h>
#include "hda_codec.h"
#include "hda_local.h"
#include "hda_auto_parser.h"
#include "hda_jack.h"
#include <sound/tlv.h>
/*
*/
struct cs_spec {
int board_config;
struct auto_pin_cfg autocfg;
struct hda_multi_out multiout;
struct snd_kcontrol *vmaster_sw;
struct snd_kcontrol *vmaster_vol;
hda_nid_t dac_nid[AUTO_CFG_MAX_OUTS];
hda_nid_t slave_dig_outs[2];
unsigned int input_idx[AUTO_PIN_LAST];
unsigned int capsrc_idx[AUTO_PIN_LAST];
hda_nid_t adc_nid[AUTO_PIN_LAST];
unsigned int adc_idx[AUTO_PIN_LAST];
unsigned int num_inputs;
unsigned int cur_input;
unsigned int automic_idx;
hda_nid_t cur_adc;
unsigned int cur_adc_stream_tag;
unsigned int cur_adc_format;
hda_nid_t dig_in;
const struct hda_bind_ctls *capture_bind[2];
unsigned int gpio_mask;
unsigned int gpio_dir;
unsigned int gpio_data;
unsigned int gpio_eapd_hp; /* EAPD GPIO bit for headphones */
unsigned int gpio_eapd_speaker; /* EAPD GPIO bit for speakers */
struct hda_pcm pcm_rec[2]; /* PCM information */
unsigned int hp_detect:1;
unsigned int mic_detect:1;
/* CS421x */
unsigned int spdif_detect:1;
unsigned int sense_b:1;
hda_nid_t vendor_nid;
struct hda_input_mux input_mux;
unsigned int last_input;
};
/* available models with CS420x */
enum {
CS420X_MBP53,
CS420X_MBP55,
CS420X_IMAC27,
CS420X_IMAC27_122,
CS420X_APPLE,
CS420X_AUTO,
CS420X_MODELS
};
/* CS421x boards */
enum {
CS421X_CDB4210,
CS421X_MODELS
};
/* Vendor-specific processing widget */
#define CS420X_VENDOR_NID 0x11
#define CS_DIG_OUT1_PIN_NID 0x10
#define CS_DIG_OUT2_PIN_NID 0x15
#define CS_DMIC1_PIN_NID 0x12
#define CS_DMIC2_PIN_NID 0x0e
/* coef indices */
#define IDX_SPDIF_STAT 0x0000
#define IDX_SPDIF_CTL 0x0001
#define IDX_ADC_CFG 0x0002
/* SZC bitmask, 4 modes below:
* 0 = immediate,
* 1 = digital immediate, analog zero-cross
* 2 = digtail & analog soft-ramp
* 3 = digital soft-ramp, analog zero-cross
*/
#define CS_COEF_ADC_SZC_MASK (3 << 0)
#define CS_COEF_ADC_MIC_SZC_MODE (3 << 0) /* SZC setup for mic */
#define CS_COEF_ADC_LI_SZC_MODE (3 << 0) /* SZC setup for line-in */
/* PGA mode: 0 = differential, 1 = signle-ended */
#define CS_COEF_ADC_MIC_PGA_MODE (1 << 5) /* PGA setup for mic */
#define CS_COEF_ADC_LI_PGA_MODE (1 << 6) /* PGA setup for line-in */
#define IDX_DAC_CFG 0x0003
/* SZC bitmask, 4 modes below:
* 0 = Immediate
* 1 = zero-cross
* 2 = soft-ramp
* 3 = soft-ramp on zero-cross
*/
#define CS_COEF_DAC_HP_SZC_MODE (3 << 0) /* nid 0x02 */
#define CS_COEF_DAC_LO_SZC_MODE (3 << 2) /* nid 0x03 */
#define CS_COEF_DAC_SPK_SZC_MODE (3 << 4) /* nid 0x04 */
#define IDX_BEEP_CFG 0x0004
/* 0x0008 - test reg key */
/* 0x0009 - 0x0014 -> 12 test regs */
/* 0x0015 - visibility reg */
/*
* Cirrus Logic CS4210
*
* 1 DAC => HP(sense) / Speakers,
* 1 ADC <= LineIn(sense) / MicIn / DMicIn,
* 1 SPDIF OUT => SPDIF Trasmitter(sense)
*/
#define CS4210_DAC_NID 0x02
#define CS4210_ADC_NID 0x03
#define CS4210_VENDOR_NID 0x0B
#define CS421X_DMIC_PIN_NID 0x09 /* Port E */
#define CS421X_SPDIF_PIN_NID 0x0A /* Port H */
#define CS421X_IDX_DEV_CFG 0x01
#define CS421X_IDX_ADC_CFG 0x02
#define CS421X_IDX_DAC_CFG 0x03
#define CS421X_IDX_SPK_CTL 0x04
#define SPDIF_EVENT 0x04
/* Cirrus Logic CS4213 is like CS4210 but does not have SPDIF input/output */
#define CS4213_VENDOR_NID 0x09
static inline int cs_vendor_coef_get(struct hda_codec *codec, unsigned int idx)
{
struct cs_spec *spec = codec->spec;
snd_hda_codec_write(codec, spec->vendor_nid, 0,
AC_VERB_SET_COEF_INDEX, idx);
return snd_hda_codec_read(codec, spec->vendor_nid, 0,
AC_VERB_GET_PROC_COEF, 0);
}
static inline void cs_vendor_coef_set(struct hda_codec *codec, unsigned int idx,
unsigned int coef)
{
struct cs_spec *spec = codec->spec;
snd_hda_codec_write(codec, spec->vendor_nid, 0,
AC_VERB_SET_COEF_INDEX, idx);
snd_hda_codec_write(codec, spec->vendor_nid, 0,
AC_VERB_SET_PROC_COEF, coef);
}
#define HP_EVENT 1
#define MIC_EVENT 2
/*
* PCM callbacks
*/
static int cs_playback_pcm_open(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
struct cs_spec *spec = codec->spec;
return snd_hda_multi_out_analog_open(codec, &spec->multiout, substream,
hinfo);
}
static int cs_playback_pcm_prepare(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
unsigned int stream_tag,
unsigned int format,
struct snd_pcm_substream *substream)
{
struct cs_spec *spec = codec->spec;
return snd_hda_multi_out_analog_prepare(codec, &spec->multiout,
stream_tag, format, substream);
}
static int cs_playback_pcm_cleanup(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
struct cs_spec *spec = codec->spec;
return snd_hda_multi_out_analog_cleanup(codec, &spec->multiout);
}
/*
* Digital out
*/
static int cs_dig_playback_pcm_open(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
struct cs_spec *spec = codec->spec;
return snd_hda_multi_out_dig_open(codec, &spec->multiout);
}
static int cs_dig_playback_pcm_close(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
struct cs_spec *spec = codec->spec;
return snd_hda_multi_out_dig_close(codec, &spec->multiout);
}
static int cs_dig_playback_pcm_prepare(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
unsigned int stream_tag,
unsigned int format,
struct snd_pcm_substream *substream)
{
struct cs_spec *spec = codec->spec;
return snd_hda_multi_out_dig_prepare(codec, &spec->multiout, stream_tag,
format, substream);
}
static int cs_dig_playback_pcm_cleanup(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
struct cs_spec *spec = codec->spec;
return snd_hda_multi_out_dig_cleanup(codec, &spec->multiout);
}
static void cs_update_input_select(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
if (spec->cur_adc)
snd_hda_codec_write(codec, spec->cur_adc, 0,
AC_VERB_SET_CONNECT_SEL,
spec->adc_idx[spec->cur_input]);
}
/*
* Analog capture
*/
static int cs_capture_pcm_prepare(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
unsigned int stream_tag,
unsigned int format,
struct snd_pcm_substream *substream)
{
struct cs_spec *spec = codec->spec;
spec->cur_adc = spec->adc_nid[spec->cur_input];
spec->cur_adc_stream_tag = stream_tag;
spec->cur_adc_format = format;
cs_update_input_select(codec);
snd_hda_codec_setup_stream(codec, spec->cur_adc, stream_tag, 0, format);
return 0;
}
static int cs_capture_pcm_cleanup(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
struct cs_spec *spec = codec->spec;
snd_hda_codec_cleanup_stream(codec, spec->cur_adc);
spec->cur_adc = 0;
return 0;
}
/*
*/
static const struct hda_pcm_stream cs_pcm_analog_playback = {
.substreams = 1,
.channels_min = 2,
.channels_max = 2,
.ops = {
.open = cs_playback_pcm_open,
.prepare = cs_playback_pcm_prepare,
.cleanup = cs_playback_pcm_cleanup
},
};
static const struct hda_pcm_stream cs_pcm_analog_capture = {
.substreams = 1,
.channels_min = 2,
.channels_max = 2,
.ops = {
.prepare = cs_capture_pcm_prepare,
.cleanup = cs_capture_pcm_cleanup
},
};
static const struct hda_pcm_stream cs_pcm_digital_playback = {
.substreams = 1,
.channels_min = 2,
.channels_max = 2,
.ops = {
.open = cs_dig_playback_pcm_open,
.close = cs_dig_playback_pcm_close,
.prepare = cs_dig_playback_pcm_prepare,
.cleanup = cs_dig_playback_pcm_cleanup
},
};
static const struct hda_pcm_stream cs_pcm_digital_capture = {
.substreams = 1,
.channels_min = 2,
.channels_max = 2,
};
static int cs_build_pcms(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
struct hda_pcm *info = spec->pcm_rec;
codec->pcm_info = info;
codec->num_pcms = 0;
info->name = "Cirrus Analog";
info->stream[SNDRV_PCM_STREAM_PLAYBACK] = cs_pcm_analog_playback;
info->stream[SNDRV_PCM_STREAM_PLAYBACK].nid = spec->dac_nid[0];
info->stream[SNDRV_PCM_STREAM_PLAYBACK].channels_max =
spec->multiout.max_channels;
info->stream[SNDRV_PCM_STREAM_CAPTURE] = cs_pcm_analog_capture;
info->stream[SNDRV_PCM_STREAM_CAPTURE].nid =
spec->adc_nid[spec->cur_input];
codec->num_pcms++;
if (!spec->multiout.dig_out_nid && !spec->dig_in)
return 0;
info++;
info->name = "Cirrus Digital";
info->pcm_type = spec->autocfg.dig_out_type[0];
if (!info->pcm_type)
info->pcm_type = HDA_PCM_TYPE_SPDIF;
if (spec->multiout.dig_out_nid) {
info->stream[SNDRV_PCM_STREAM_PLAYBACK] =
cs_pcm_digital_playback;
info->stream[SNDRV_PCM_STREAM_PLAYBACK].nid =
spec->multiout.dig_out_nid;
}
if (spec->dig_in) {
info->stream[SNDRV_PCM_STREAM_CAPTURE] =
cs_pcm_digital_capture;
info->stream[SNDRV_PCM_STREAM_CAPTURE].nid = spec->dig_in;
}
codec->num_pcms++;
return 0;
}
/*
* parse codec topology
*/
static hda_nid_t get_dac(struct hda_codec *codec, hda_nid_t pin)
{
hda_nid_t dac;
if (!pin)
return 0;
if (snd_hda_get_connections(codec, pin, &dac, 1) != 1)
return 0;
return dac;
}
static int is_ext_mic(struct hda_codec *codec, unsigned int idx)
{
struct cs_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
hda_nid_t pin = cfg->inputs[idx].pin;
unsigned int val;
if (!is_jack_detectable(codec, pin))
return 0;
val = snd_hda_codec_get_pincfg(codec, pin);
return (snd_hda_get_input_pin_attr(val) != INPUT_PIN_ATTR_INT);
}
static hda_nid_t get_adc(struct hda_codec *codec, hda_nid_t pin,
unsigned int *idxp)
{
int i, idx;
hda_nid_t nid;
nid = codec->start_nid;
for (i = 0; i < codec->num_nodes; i++, nid++) {
unsigned int type;
type = get_wcaps_type(get_wcaps(codec, nid));
if (type != AC_WID_AUD_IN)
continue;
idx = snd_hda_get_conn_index(codec, nid, pin, false);
if (idx >= 0) {
*idxp = idx;
return nid;
}
}
return 0;
}
static int is_active_pin(struct hda_codec *codec, hda_nid_t nid)
{
unsigned int val;
val = snd_hda_codec_get_pincfg(codec, nid);
return (get_defcfg_connect(val) != AC_JACK_PORT_NONE);
}
static int parse_output(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
int i, extra_nids;
hda_nid_t dac;
for (i = 0; i < cfg->line_outs; i++) {
dac = get_dac(codec, cfg->line_out_pins[i]);
if (!dac)
break;
spec->dac_nid[i] = dac;
}
spec->multiout.num_dacs = i;
spec->multiout.dac_nids = spec->dac_nid;
spec->multiout.max_channels = i * 2;
/* add HP and speakers */
extra_nids = 0;
for (i = 0; i < cfg->hp_outs; i++) {
dac = get_dac(codec, cfg->hp_pins[i]);
if (!dac)
break;
if (!i)
spec->multiout.hp_nid = dac;
else
spec->multiout.extra_out_nid[extra_nids++] = dac;
}
for (i = 0; i < cfg->speaker_outs; i++) {
dac = get_dac(codec, cfg->speaker_pins[i]);
if (!dac)
break;
spec->multiout.extra_out_nid[extra_nids++] = dac;
}
if (cfg->line_out_type == AUTO_PIN_SPEAKER_OUT) {
cfg->speaker_outs = cfg->line_outs;
memcpy(cfg->speaker_pins, cfg->line_out_pins,
sizeof(cfg->speaker_pins));
cfg->line_outs = 0;
}
return 0;
}
static int parse_input(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
int i;
for (i = 0; i < cfg->num_inputs; i++) {
hda_nid_t pin = cfg->inputs[i].pin;
spec->input_idx[spec->num_inputs] = i;
spec->capsrc_idx[i] = spec->num_inputs++;
spec->cur_input = i;
spec->adc_nid[i] = get_adc(codec, pin, &spec->adc_idx[i]);
}
if (!spec->num_inputs)
return 0;
/* check whether the automatic mic switch is available */
if (spec->num_inputs == 2 &&
cfg->inputs[0].type == AUTO_PIN_MIC &&
cfg->inputs[1].type == AUTO_PIN_MIC) {
if (is_ext_mic(codec, cfg->inputs[0].pin)) {
if (!is_ext_mic(codec, cfg->inputs[1].pin)) {
spec->mic_detect = 1;
spec->automic_idx = 0;
}
} else {
if (is_ext_mic(codec, cfg->inputs[1].pin)) {
spec->mic_detect = 1;
spec->automic_idx = 1;
}
}
}
return 0;
}
static int parse_digital_output(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
hda_nid_t nid;
if (!cfg->dig_outs)
return 0;
if (snd_hda_get_connections(codec, cfg->dig_out_pins[0], &nid, 1) < 1)
return 0;
spec->multiout.dig_out_nid = nid;
spec->multiout.share_spdif = 1;
if (cfg->dig_outs > 1 &&
snd_hda_get_connections(codec, cfg->dig_out_pins[1], &nid, 1) > 0) {
spec->slave_dig_outs[0] = nid;
codec->slave_dig_outs = spec->slave_dig_outs;
}
return 0;
}
static int parse_digital_input(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
int idx;
if (cfg->dig_in_pin)
spec->dig_in = get_adc(codec, cfg->dig_in_pin, &idx);
return 0;
}
/*
* create mixer controls
*/
static const char * const dir_sfx[2] = { "Playback", "Capture" };
static int add_mute(struct hda_codec *codec, const char *name, int index,
unsigned int pval, int dir, struct snd_kcontrol **kctlp)
{
char tmp[44];
struct snd_kcontrol_new knew =
HDA_CODEC_MUTE_IDX(tmp, index, 0, 0, HDA_OUTPUT);
knew.private_value = pval;
snprintf(tmp, sizeof(tmp), "%s %s Switch", name, dir_sfx[dir]);
*kctlp = snd_ctl_new1(&knew, codec);
(*kctlp)->id.subdevice = HDA_SUBDEV_AMP_FLAG;
return snd_hda_ctl_add(codec, 0, *kctlp);
}
static int add_volume(struct hda_codec *codec, const char *name,
int index, unsigned int pval, int dir,
struct snd_kcontrol **kctlp)
{
char tmp[44];
struct snd_kcontrol_new knew =
HDA_CODEC_VOLUME_IDX(tmp, index, 0, 0, HDA_OUTPUT);
knew.private_value = pval;
snprintf(tmp, sizeof(tmp), "%s %s Volume", name, dir_sfx[dir]);
*kctlp = snd_ctl_new1(&knew, codec);
(*kctlp)->id.subdevice = HDA_SUBDEV_AMP_FLAG;
return snd_hda_ctl_add(codec, 0, *kctlp);
}
static void fix_volume_caps(struct hda_codec *codec, hda_nid_t dac)
{
unsigned int caps;
/* set the upper-limit for mixer amp to 0dB */
caps = query_amp_caps(codec, dac, HDA_OUTPUT);
caps &= ~(0x7f << AC_AMPCAP_NUM_STEPS_SHIFT);
caps |= ((caps >> AC_AMPCAP_OFFSET_SHIFT) & 0x7f)
<< AC_AMPCAP_NUM_STEPS_SHIFT;
snd_hda_override_amp_caps(codec, dac, HDA_OUTPUT, caps);
}
static int add_vmaster(struct hda_codec *codec, hda_nid_t dac)
{
struct cs_spec *spec = codec->spec;
unsigned int tlv[4];
int err;
spec->vmaster_sw =
snd_ctl_make_virtual_master("Master Playback Switch", NULL);
err = snd_hda_ctl_add(codec, dac, spec->vmaster_sw);
if (err < 0)
return err;
snd_hda_set_vmaster_tlv(codec, dac, HDA_OUTPUT, tlv);
spec->vmaster_vol =
snd_ctl_make_virtual_master("Master Playback Volume", tlv);
err = snd_hda_ctl_add(codec, dac, spec->vmaster_vol);
if (err < 0)
return err;
return 0;
}
static int add_output(struct hda_codec *codec, hda_nid_t dac, int idx,
int num_ctls, int type)
{
struct cs_spec *spec = codec->spec;
const char *name;
int err, index;
struct snd_kcontrol *kctl;
static const char * const speakers[] = {
"Front Speaker", "Surround Speaker", "Bass Speaker"
};
static const char * const line_outs[] = {
"Front Line Out", "Surround Line Out", "Bass Line Out"
};
fix_volume_caps(codec, dac);
if (!spec->vmaster_sw) {
err = add_vmaster(codec, dac);
if (err < 0)
return err;
}
index = 0;
switch (type) {
case AUTO_PIN_HP_OUT:
name = "Headphone";
index = idx;
break;
case AUTO_PIN_SPEAKER_OUT:
if (num_ctls > 1)
name = speakers[idx];
else
name = "Speaker";
break;
default:
if (num_ctls > 1)
name = line_outs[idx];
else
name = "Line Out";
break;
}
err = add_mute(codec, name, index,
HDA_COMPOSE_AMP_VAL(dac, 3, 0, HDA_OUTPUT), 0, &kctl);
if (err < 0)
return err;
err = snd_ctl_add_slave(spec->vmaster_sw, kctl);
if (err < 0)
return err;
err = add_volume(codec, name, index,
HDA_COMPOSE_AMP_VAL(dac, 3, 0, HDA_OUTPUT), 0, &kctl);
if (err < 0)
return err;
err = snd_ctl_add_slave(spec->vmaster_vol, kctl);
if (err < 0)
return err;
return 0;
}
static int build_output(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
int i, err;
for (i = 0; i < cfg->line_outs; i++) {
err = add_output(codec, get_dac(codec, cfg->line_out_pins[i]),
i, cfg->line_outs, cfg->line_out_type);
if (err < 0)
return err;
}
for (i = 0; i < cfg->hp_outs; i++) {
err = add_output(codec, get_dac(codec, cfg->hp_pins[i]),
i, cfg->hp_outs, AUTO_PIN_HP_OUT);
if (err < 0)
return err;
}
for (i = 0; i < cfg->speaker_outs; i++) {
err = add_output(codec, get_dac(codec, cfg->speaker_pins[i]),
i, cfg->speaker_outs, AUTO_PIN_SPEAKER_OUT);
if (err < 0)
return err;
}
return 0;
}
/*
*/
static const struct snd_kcontrol_new cs_capture_ctls[] = {
HDA_BIND_SW("Capture Switch", 0),
HDA_BIND_VOL("Capture Volume", 0),
};
static int change_cur_input(struct hda_codec *codec, unsigned int idx,
int force)
{
struct cs_spec *spec = codec->spec;
if (spec->cur_input == idx && !force)
return 0;
if (spec->cur_adc && spec->cur_adc != spec->adc_nid[idx]) {
/* stream is running, let's swap the current ADC */
__snd_hda_codec_cleanup_stream(codec, spec->cur_adc, 1);
spec->cur_adc = spec->adc_nid[idx];
snd_hda_codec_setup_stream(codec, spec->cur_adc,
spec->cur_adc_stream_tag, 0,
spec->cur_adc_format);
}
spec->cur_input = idx;
cs_update_input_select(codec);
return 1;
}
static int cs_capture_source_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct cs_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
unsigned int idx;
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = spec->num_inputs;
if (uinfo->value.enumerated.item >= spec->num_inputs)
uinfo->value.enumerated.item = spec->num_inputs - 1;
idx = spec->input_idx[uinfo->value.enumerated.item];
snd_hda_get_pin_label(codec, cfg->inputs[idx].pin, cfg,
uinfo->value.enumerated.name,
sizeof(uinfo->value.enumerated.name), NULL);
return 0;
}
static int cs_capture_source_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct cs_spec *spec = codec->spec;
ucontrol->value.enumerated.item[0] = spec->capsrc_idx[spec->cur_input];
return 0;
}
static int cs_capture_source_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct cs_spec *spec = codec->spec;
unsigned int idx = ucontrol->value.enumerated.item[0];
if (idx >= spec->num_inputs)
return -EINVAL;
idx = spec->input_idx[idx];
return change_cur_input(codec, idx, 0);
}
static const struct snd_kcontrol_new cs_capture_source = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Capture Source",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = cs_capture_source_info,
.get = cs_capture_source_get,
.put = cs_capture_source_put,
};
static const struct hda_bind_ctls *make_bind_capture(struct hda_codec *codec,
struct hda_ctl_ops *ops)
{
struct cs_spec *spec = codec->spec;
struct hda_bind_ctls *bind;
int i, n;
bind = kzalloc(sizeof(*bind) + sizeof(long) * (spec->num_inputs + 1),
GFP_KERNEL);
if (!bind)
return NULL;
bind->ops = ops;
n = 0;
for (i = 0; i < AUTO_PIN_LAST; i++) {
if (!spec->adc_nid[i])
continue;
bind->values[n++] =
HDA_COMPOSE_AMP_VAL(spec->adc_nid[i], 3,
spec->adc_idx[i], HDA_INPUT);
}
return bind;
}
/* add a (input-boost) volume control to the given input pin */
static int add_input_volume_control(struct hda_codec *codec,
struct auto_pin_cfg *cfg,
int item)
{
hda_nid_t pin = cfg->inputs[item].pin;
u32 caps;
const char *label;
struct snd_kcontrol *kctl;
if (!(get_wcaps(codec, pin) & AC_WCAP_IN_AMP))
return 0;
caps = query_amp_caps(codec, pin, HDA_INPUT);
caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
if (caps <= 1)
return 0;
label = hda_get_autocfg_input_label(codec, cfg, item);
return add_volume(codec, label, 0,
HDA_COMPOSE_AMP_VAL(pin, 3, 0, HDA_INPUT), 1, &kctl);
}
static int build_input(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
int i, err;
if (!spec->num_inputs)
return 0;
/* make bind-capture */
spec->capture_bind[0] = make_bind_capture(codec, &snd_hda_bind_sw);
spec->capture_bind[1] = make_bind_capture(codec, &snd_hda_bind_vol);
for (i = 0; i < 2; i++) {
struct snd_kcontrol *kctl;
int n;
if (!spec->capture_bind[i])
return -ENOMEM;
kctl = snd_ctl_new1(&cs_capture_ctls[i], codec);
if (!kctl)
return -ENOMEM;
kctl->private_value = (long)spec->capture_bind[i];
err = snd_hda_ctl_add(codec, 0, kctl);
if (err < 0)
return err;
for (n = 0; n < AUTO_PIN_LAST; n++) {
if (!spec->adc_nid[n])
continue;
err = snd_hda_add_nid(codec, kctl, 0, spec->adc_nid[n]);
if (err < 0)
return err;
}
}
if (spec->num_inputs > 1 && !spec->mic_detect) {
err = snd_hda_ctl_add(codec, 0,
snd_ctl_new1(&cs_capture_source, codec));
if (err < 0)
return err;
}
for (i = 0; i < spec->num_inputs; i++) {
err = add_input_volume_control(codec, &spec->autocfg, i);
if (err < 0)
return err;
}
return 0;
}
/*
*/
static int build_digital_output(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
int err;
if (!spec->multiout.dig_out_nid)
return 0;
err = snd_hda_create_spdif_out_ctls(codec, spec->multiout.dig_out_nid,
spec->multiout.dig_out_nid);
if (err < 0)
return err;
err = snd_hda_create_spdif_share_sw(codec, &spec->multiout);
if (err < 0)
return err;
return 0;
}
static int build_digital_input(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
if (spec->dig_in)
return snd_hda_create_spdif_in_ctls(codec, spec->dig_in);
return 0;
}
/*
* auto-mute and auto-mic switching
* CS421x auto-output redirecting
* HP/SPK/SPDIF
*/
static void cs_automute(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
unsigned int hp_present;
unsigned int spdif_present;
hda_nid_t nid;
int i;
spdif_present = 0;
if (cfg->dig_outs) {
nid = cfg->dig_out_pins[0];
if (is_jack_detectable(codec, nid)) {
/*
TODO: SPDIF output redirect when SENSE_B is enabled.
Shared (SENSE_A) jack (e.g HP/mini-TOSLINK)
assumed.
*/
if (snd_hda_jack_detect(codec, nid)
/* && spec->sense_b */)
spdif_present = 1;
}
}
hp_present = 0;
for (i = 0; i < cfg->hp_outs; i++) {
nid = cfg->hp_pins[i];
if (!is_jack_detectable(codec, nid))
continue;
hp_present = snd_hda_jack_detect(codec, nid);
if (hp_present)
break;
}
/* mute speakers if spdif or hp jack is plugged in */
for (i = 0; i < cfg->speaker_outs; i++) {
int pin_ctl = hp_present ? 0 : PIN_OUT;
/* detect on spdif is specific to CS4210 */
if (spdif_present && (spec->vendor_nid == CS4210_VENDOR_NID))
pin_ctl = 0;
nid = cfg->speaker_pins[i];
snd_hda_set_pin_ctl(codec, nid, pin_ctl);
}
if (spec->gpio_eapd_hp) {
unsigned int gpio = hp_present ?
spec->gpio_eapd_hp : spec->gpio_eapd_speaker;
snd_hda_codec_write(codec, 0x01, 0,
AC_VERB_SET_GPIO_DATA, gpio);
}
/* specific to CS4210 */
if (spec->vendor_nid == CS4210_VENDOR_NID) {
/* mute HPs if spdif jack (SENSE_B) is present */
for (i = 0; i < cfg->hp_outs; i++) {
nid = cfg->hp_pins[i];
snd_hda_set_pin_ctl(codec, nid,
(spdif_present && spec->sense_b) ? 0 : PIN_HP);
}
/* SPDIF TX on/off */
if (cfg->dig_outs) {
nid = cfg->dig_out_pins[0];
snd_hda_set_pin_ctl(codec, nid,
spdif_present ? PIN_OUT : 0);
}
/* Update board GPIOs if neccessary ... */
}
}
/*
* Auto-input redirect for CS421x
* Switch max 3 inputs of a single ADC (nid 3)
*/
static void cs_automic(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
hda_nid_t nid;
unsigned int present;
nid = cfg->inputs[spec->automic_idx].pin;
present = snd_hda_jack_detect(codec, nid);
/* specific to CS421x, single ADC */
if (spec->vendor_nid == CS420X_VENDOR_NID) {
if (present)
change_cur_input(codec, spec->automic_idx, 0);
else
change_cur_input(codec, !spec->automic_idx, 0);
} else {
if (present) {
if (spec->cur_input != spec->automic_idx) {
spec->last_input = spec->cur_input;
spec->cur_input = spec->automic_idx;
}
} else {
spec->cur_input = spec->last_input;
}
cs_update_input_select(codec);
}
}
/*
*/
static void init_output(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
int i;
/* mute first */
for (i = 0; i < spec->multiout.num_dacs; i++)
snd_hda_codec_write(codec, spec->multiout.dac_nids[i], 0,
AC_VERB_SET_AMP_GAIN_MUTE, AMP_OUT_MUTE);
if (spec->multiout.hp_nid)
snd_hda_codec_write(codec, spec->multiout.hp_nid, 0,
AC_VERB_SET_AMP_GAIN_MUTE, AMP_OUT_MUTE);
for (i = 0; i < ARRAY_SIZE(spec->multiout.extra_out_nid); i++) {
if (!spec->multiout.extra_out_nid[i])
break;
snd_hda_codec_write(codec, spec->multiout.extra_out_nid[i], 0,
AC_VERB_SET_AMP_GAIN_MUTE, AMP_OUT_MUTE);
}
/* set appropriate pin controls */
for (i = 0; i < cfg->line_outs; i++)
snd_hda_set_pin_ctl(codec, cfg->line_out_pins[i], PIN_OUT);
/* HP */
for (i = 0; i < cfg->hp_outs; i++) {
hda_nid_t nid = cfg->hp_pins[i];
snd_hda_set_pin_ctl(codec, nid, PIN_HP);
if (!cfg->speaker_outs)
continue;
if (get_wcaps(codec, nid) & AC_WCAP_UNSOL_CAP) {
snd_hda_jack_detect_enable(codec, nid, HP_EVENT);
spec->hp_detect = 1;
}
}
/* Speaker */
for (i = 0; i < cfg->speaker_outs; i++)
snd_hda_set_pin_ctl(codec, cfg->speaker_pins[i], PIN_OUT);
/* SPDIF is enabled on presence detect for CS421x */
if (spec->hp_detect || spec->spdif_detect)
cs_automute(codec);
}
static void init_input(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
unsigned int coef;
int i;
for (i = 0; i < cfg->num_inputs; i++) {
unsigned int ctl;
hda_nid_t pin = cfg->inputs[i].pin;
if (!spec->adc_nid[i])
continue;
/* set appropriate pin control and mute first */
ctl = PIN_IN;
if (cfg->inputs[i].type == AUTO_PIN_MIC)
ctl |= snd_hda_get_default_vref(codec, pin);
snd_hda_set_pin_ctl(codec, pin, ctl);
snd_hda_codec_write(codec, spec->adc_nid[i], 0,
AC_VERB_SET_AMP_GAIN_MUTE,
AMP_IN_MUTE(spec->adc_idx[i]));
if (spec->mic_detect && spec->automic_idx == i)
snd_hda_jack_detect_enable(codec, pin, MIC_EVENT);
}
/* CS420x has multiple ADC, CS421x has single ADC */
if (spec->vendor_nid == CS420X_VENDOR_NID) {
change_cur_input(codec, spec->cur_input, 1);
if (spec->mic_detect)
cs_automic(codec);
coef = 0x000a; /* ADC1/2 - Digital and Analog Soft Ramp */
if (is_active_pin(codec, CS_DMIC2_PIN_NID))
coef |= 0x0500; /* DMIC2 2 chan on, GPIO1 off */
if (is_active_pin(codec, CS_DMIC1_PIN_NID))
coef |= 0x1800; /* DMIC1 2 chan on, GPIO0 off
* No effect if SPDIF_OUT2 is
* selected in IDX_SPDIF_CTL.
*/
cs_vendor_coef_set(codec, IDX_ADC_CFG, coef);
} else {
if (spec->mic_detect)
cs_automic(codec);
else {
spec->cur_adc = spec->adc_nid[spec->cur_input];
cs_update_input_select(codec);
}
}
}
static const struct hda_verb cs_coef_init_verbs[] = {
{0x11, AC_VERB_SET_PROC_STATE, 1},
{0x11, AC_VERB_SET_COEF_INDEX, IDX_DAC_CFG},
{0x11, AC_VERB_SET_PROC_COEF,
(0x002a /* DAC1/2/3 SZCMode Soft Ramp */
| 0x0040 /* Mute DACs on FIFO error */
| 0x1000 /* Enable DACs High Pass Filter */
| 0x0400 /* Disable Coefficient Auto increment */
)},
/* Beep */
{0x11, AC_VERB_SET_COEF_INDEX, IDX_DAC_CFG},
{0x11, AC_VERB_SET_PROC_COEF, 0x0007}, /* Enable Beep thru DAC1/2/3 */
{} /* terminator */
};
/* Errata: CS4207 rev C0/C1/C2 Silicon
*
* http://www.cirrus.com/en/pubs/errata/ER880C3.pdf
*
* 6. At high temperature (TA > +85°C), the digital supply current (IVD)
* may be excessive (up to an additional 200 μA), which is most easily
* observed while the part is being held in reset (RESET# active low).
*
* Root Cause: At initial powerup of the device, the logic that drives
* the clock and write enable to the S/PDIF SRC RAMs is not properly
* initialized.
* Certain random patterns will cause a steady leakage current in those
* RAM cells. The issue will resolve once the SRCs are used (turned on).
*
* Workaround: The following verb sequence briefly turns on the S/PDIF SRC
* blocks, which will alleviate the issue.
*/
static const struct hda_verb cs_errata_init_verbs[] = {
{0x01, AC_VERB_SET_POWER_STATE, 0x00}, /* AFG: D0 */
{0x11, AC_VERB_SET_PROC_STATE, 0x01}, /* VPW: processing on */
{0x11, AC_VERB_SET_COEF_INDEX, 0x0008},
{0x11, AC_VERB_SET_PROC_COEF, 0x9999},
{0x11, AC_VERB_SET_COEF_INDEX, 0x0017},
{0x11, AC_VERB_SET_PROC_COEF, 0xa412},
{0x11, AC_VERB_SET_COEF_INDEX, 0x0001},
{0x11, AC_VERB_SET_PROC_COEF, 0x0009},
{0x07, AC_VERB_SET_POWER_STATE, 0x00}, /* S/PDIF Rx: D0 */
{0x08, AC_VERB_SET_POWER_STATE, 0x00}, /* S/PDIF Tx: D0 */
{0x11, AC_VERB_SET_COEF_INDEX, 0x0017},
{0x11, AC_VERB_SET_PROC_COEF, 0x2412},
{0x11, AC_VERB_SET_COEF_INDEX, 0x0008},
{0x11, AC_VERB_SET_PROC_COEF, 0x0000},
{0x11, AC_VERB_SET_COEF_INDEX, 0x0001},
{0x11, AC_VERB_SET_PROC_COEF, 0x0008},
{0x11, AC_VERB_SET_PROC_STATE, 0x00},
#if 0 /* Don't to set to D3 as we are in power-up sequence */
{0x07, AC_VERB_SET_POWER_STATE, 0x03}, /* S/PDIF Rx: D3 */
{0x08, AC_VERB_SET_POWER_STATE, 0x03}, /* S/PDIF Tx: D3 */
/*{0x01, AC_VERB_SET_POWER_STATE, 0x03},*/ /* AFG: D3 This is already handled */
#endif
{} /* terminator */
};
/* SPDIF setup */
static void init_digital(struct hda_codec *codec)
{
unsigned int coef;
coef = 0x0002; /* SRC_MUTE soft-mute on SPDIF (if no lock) */
coef |= 0x0008; /* Replace with mute on error */
if (is_active_pin(codec, CS_DIG_OUT2_PIN_NID))
coef |= 0x4000; /* RX to TX1 or TX2 Loopthru / SPDIF2
* SPDIF_OUT2 is shared with GPIO1 and
* DMIC_SDA2.
*/
cs_vendor_coef_set(codec, IDX_SPDIF_CTL, coef);
}
static int cs_init(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
/* init_verb sequence for C0/C1/C2 errata*/
snd_hda_sequence_write(codec, cs_errata_init_verbs);
snd_hda_sequence_write(codec, cs_coef_init_verbs);
if (spec->gpio_mask) {
snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_MASK,
spec->gpio_mask);
snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_DIRECTION,
spec->gpio_dir);
snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_DATA,
spec->gpio_data);
}
init_output(codec);
init_input(codec);
init_digital(codec);
snd_hda_jack_report_sync(codec);
return 0;
}
static int cs_build_controls(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
int err;
err = build_output(codec);
if (err < 0)
return err;
err = build_input(codec);
if (err < 0)
return err;
err = build_digital_output(codec);
if (err < 0)
return err;
err = build_digital_input(codec);
if (err < 0)
return err;
err = cs_init(codec);
if (err < 0)
return err;
err = snd_hda_jack_add_kctls(codec, &spec->autocfg);
if (err < 0)
return err;
return 0;
}
static void cs_free(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
kfree(spec->capture_bind[0]);
kfree(spec->capture_bind[1]);
kfree(codec->spec);
}
static void cs_unsol_event(struct hda_codec *codec, unsigned int res)
{
switch (snd_hda_jack_get_action(codec, res >> 26)) {
case HP_EVENT:
cs_automute(codec);
break;
case MIC_EVENT:
cs_automic(codec);
break;
}
snd_hda_jack_report_sync(codec);
}
static const struct hda_codec_ops cs_patch_ops = {
.build_controls = cs_build_controls,
.build_pcms = cs_build_pcms,
.init = cs_init,
.free = cs_free,
.unsol_event = cs_unsol_event,
};
static int cs_parse_auto_config(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
int err;
err = snd_hda_parse_pin_def_config(codec, &spec->autocfg, NULL);
if (err < 0)
return err;
err = parse_output(codec);
if (err < 0)
return err;
err = parse_input(codec);
if (err < 0)
return err;
err = parse_digital_output(codec);
if (err < 0)
return err;
err = parse_digital_input(codec);
if (err < 0)
return err;
return 0;
}
static const char * const cs420x_models[CS420X_MODELS] = {
[CS420X_MBP53] = "mbp53",
[CS420X_MBP55] = "mbp55",
[CS420X_IMAC27] = "imac27",
[CS420X_IMAC27_122] = "imac27_122",
[CS420X_APPLE] = "apple",
[CS420X_AUTO] = "auto",
};
static const struct snd_pci_quirk cs420x_cfg_tbl[] = {
SND_PCI_QUIRK(0x10de, 0x0ac0, "MacBookPro 5,3", CS420X_MBP53),
SND_PCI_QUIRK(0x10de, 0x0d94, "MacBookAir 3,1(2)", CS420X_MBP55),
SND_PCI_QUIRK(0x10de, 0xcb79, "MacBookPro 5,5", CS420X_MBP55),
SND_PCI_QUIRK(0x10de, 0xcb89, "MacBookPro 7,1", CS420X_MBP55),
/* this conflicts with too many other models */
/*SND_PCI_QUIRK(0x8086, 0x7270, "IMac 27 Inch", CS420X_IMAC27),*/
{} /* terminator */
};
static const struct snd_pci_quirk cs420x_codec_cfg_tbl[] = {
SND_PCI_QUIRK(0x106b, 0x2000, "iMac 12,2", CS420X_IMAC27_122),
SND_PCI_QUIRK_VENDOR(0x106b, "Apple", CS420X_APPLE),
{} /* terminator */
};
struct cs_pincfg {
hda_nid_t nid;
u32 val;
};
static const struct cs_pincfg mbp53_pincfgs[] = {
{ 0x09, 0x012b4050 },
{ 0x0a, 0x90100141 },
{ 0x0b, 0x90100140 },
{ 0x0c, 0x018b3020 },
{ 0x0d, 0x90a00110 },
{ 0x0e, 0x400000f0 },
{ 0x0f, 0x01cbe030 },
{ 0x10, 0x014be060 },
{ 0x12, 0x400000f0 },
{ 0x15, 0x400000f0 },
{} /* terminator */
};
static const struct cs_pincfg mbp55_pincfgs[] = {
{ 0x09, 0x012b4030 },
{ 0x0a, 0x90100121 },
{ 0x0b, 0x90100120 },
{ 0x0c, 0x400000f0 },
{ 0x0d, 0x90a00110 },
{ 0x0e, 0x400000f0 },
{ 0x0f, 0x400000f0 },
{ 0x10, 0x014be040 },
{ 0x12, 0x400000f0 },
{ 0x15, 0x400000f0 },
{} /* terminator */
};
static const struct cs_pincfg imac27_pincfgs[] = {
{ 0x09, 0x012b4050 },
{ 0x0a, 0x90100140 },
{ 0x0b, 0x90100142 },
{ 0x0c, 0x018b3020 },
{ 0x0d, 0x90a00110 },
{ 0x0e, 0x400000f0 },
{ 0x0f, 0x01cbe030 },
{ 0x10, 0x014be060 },
{ 0x12, 0x01ab9070 },
{ 0x15, 0x400000f0 },
{} /* terminator */
};
static const struct cs_pincfg *cs_pincfgs[CS420X_MODELS] = {
[CS420X_MBP53] = mbp53_pincfgs,
[CS420X_MBP55] = mbp55_pincfgs,
[CS420X_IMAC27] = imac27_pincfgs,
};
static void fix_pincfg(struct hda_codec *codec, int model,
const struct cs_pincfg **pin_configs)
{
const struct cs_pincfg *cfg = pin_configs[model];
if (!cfg)
return;
for (; cfg->nid; cfg++)
snd_hda_codec_set_pincfg(codec, cfg->nid, cfg->val);
}
static int patch_cs420x(struct hda_codec *codec)
{
struct cs_spec *spec;
int err;
spec = kzalloc(sizeof(*spec), GFP_KERNEL);
if (!spec)
return -ENOMEM;
codec->spec = spec;
spec->vendor_nid = CS420X_VENDOR_NID;
spec->board_config =
snd_hda_check_board_config(codec, CS420X_MODELS,
cs420x_models, cs420x_cfg_tbl);
if (spec->board_config < 0)
spec->board_config =
snd_hda_check_board_codec_sid_config(codec,
CS420X_MODELS, NULL, cs420x_codec_cfg_tbl);
if (spec->board_config >= 0)
fix_pincfg(codec, spec->board_config, cs_pincfgs);
switch (spec->board_config) {
case CS420X_IMAC27:
case CS420X_MBP53:
case CS420X_MBP55:
case CS420X_APPLE:
spec->gpio_eapd_hp = 2; /* GPIO1 = headphones */
spec->gpio_eapd_speaker = 8; /* GPIO3 = speakers */
spec->gpio_mask = spec->gpio_dir =
spec->gpio_eapd_hp | spec->gpio_eapd_speaker;
break;
case CS420X_IMAC27_122:
spec->gpio_eapd_hp = 4; /* GPIO2 = headphones */
spec->gpio_eapd_speaker = 8; /* GPIO3 = speakers */
spec->gpio_mask = spec->gpio_dir =
spec->gpio_eapd_hp | spec->gpio_eapd_speaker;
break;
}
err = cs_parse_auto_config(codec);
if (err < 0)
goto error;
codec->patch_ops = cs_patch_ops;
return 0;
error:
kfree(codec->spec);
codec->spec = NULL;
return err;
}
/*
* Cirrus Logic CS4210
*
* 1 DAC => HP(sense) / Speakers,
* 1 ADC <= LineIn(sense) / MicIn / DMicIn,
* 1 SPDIF OUT => SPDIF Trasmitter(sense)
*/
/* CS4210 board names */
static const char *cs421x_models[CS421X_MODELS] = {
[CS421X_CDB4210] = "cdb4210",
};
static const struct snd_pci_quirk cs421x_cfg_tbl[] = {
/* Test Intel board + CDB2410 */
SND_PCI_QUIRK(0x8086, 0x5001, "DP45SG/CDB4210", CS421X_CDB4210),
{} /* terminator */
};
/* CS4210 board pinconfigs */
/* Default CS4210 (CDB4210)*/
static const struct cs_pincfg cdb4210_pincfgs[] = {
{ 0x05, 0x0321401f },
{ 0x06, 0x90170010 },
{ 0x07, 0x03813031 },
{ 0x08, 0xb7a70037 },
{ 0x09, 0xb7a6003e },
{ 0x0a, 0x034510f0 },
{} /* terminator */
};
static const struct cs_pincfg *cs421x_pincfgs[CS421X_MODELS] = {
[CS421X_CDB4210] = cdb4210_pincfgs,
};
static const struct hda_verb cs421x_coef_init_verbs[] = {
{0x0B, AC_VERB_SET_PROC_STATE, 1},
{0x0B, AC_VERB_SET_COEF_INDEX, CS421X_IDX_DEV_CFG},
/*
Disable Coefficient Index Auto-Increment(DAI)=1,
PDREF=0
*/
{0x0B, AC_VERB_SET_PROC_COEF, 0x0001 },
{0x0B, AC_VERB_SET_COEF_INDEX, CS421X_IDX_ADC_CFG},
/* ADC SZCMode = Digital Soft Ramp */
{0x0B, AC_VERB_SET_PROC_COEF, 0x0002 },
{0x0B, AC_VERB_SET_COEF_INDEX, CS421X_IDX_DAC_CFG},
{0x0B, AC_VERB_SET_PROC_COEF,
(0x0002 /* DAC SZCMode = Digital Soft Ramp */
| 0x0004 /* Mute DAC on FIFO error */
| 0x0008 /* Enable DAC High Pass Filter */
)},
{} /* terminator */
};
/* Errata: CS4210 rev A1 Silicon
*
* http://www.cirrus.com/en/pubs/errata/
*
* Description:
* 1. Performance degredation is present in the ADC.
* 2. Speaker output is not completely muted upon HP detect.
* 3. Noise is present when clipping occurs on the amplified
* speaker outputs.
*
* Workaround:
* The following verb sequence written to the registers during
* initialization will correct the issues listed above.
*/
static const struct hda_verb cs421x_coef_init_verbs_A1_silicon_fixes[] = {
{0x0B, AC_VERB_SET_PROC_STATE, 0x01}, /* VPW: processing on */
{0x0B, AC_VERB_SET_COEF_INDEX, 0x0006},
{0x0B, AC_VERB_SET_PROC_COEF, 0x9999}, /* Test mode: on */
{0x0B, AC_VERB_SET_COEF_INDEX, 0x000A},
{0x0B, AC_VERB_SET_PROC_COEF, 0x14CB}, /* Chop double */
{0x0B, AC_VERB_SET_COEF_INDEX, 0x0011},
{0x0B, AC_VERB_SET_PROC_COEF, 0xA2D0}, /* Increase ADC current */
{0x0B, AC_VERB_SET_COEF_INDEX, 0x001A},
{0x0B, AC_VERB_SET_PROC_COEF, 0x02A9}, /* Mute speaker */
{0x0B, AC_VERB_SET_COEF_INDEX, 0x001B},
{0x0B, AC_VERB_SET_PROC_COEF, 0X1006}, /* Remove noise */
{} /* terminator */
};
/* Speaker Amp Gain is controlled by the vendor widget's coef 4 */
static const DECLARE_TLV_DB_SCALE(cs421x_speaker_boost_db_scale, 900, 300, 0);
static int cs421x_boost_vol_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 3;
return 0;
}
static int cs421x_boost_vol_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] =
cs_vendor_coef_get(codec, CS421X_IDX_SPK_CTL) & 0x0003;
return 0;
}
static int cs421x_boost_vol_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
unsigned int vol = ucontrol->value.integer.value[0];
unsigned int coef =
cs_vendor_coef_get(codec, CS421X_IDX_SPK_CTL);
unsigned int original_coef = coef;
coef &= ~0x0003;
coef |= (vol & 0x0003);
if (original_coef == coef)
return 0;
else {
cs_vendor_coef_set(codec, CS421X_IDX_SPK_CTL, coef);
return 1;
}
}
static const struct snd_kcontrol_new cs421x_speaker_bost_ctl = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_TLV_READ),
.name = "Speaker Boost Playback Volume",
.info = cs421x_boost_vol_info,
.get = cs421x_boost_vol_get,
.put = cs421x_boost_vol_put,
.tlv = { .p = cs421x_speaker_boost_db_scale },
};
static void cs4210_pinmux_init(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
unsigned int def_conf, coef;
/* GPIO, DMIC_SCL, DMIC_SDA and SENSE_B are multiplexed */
coef = cs_vendor_coef_get(codec, CS421X_IDX_DEV_CFG);
if (spec->gpio_mask)
coef |= 0x0008; /* B1,B2 are GPIOs */
else
coef &= ~0x0008;
if (spec->sense_b)
coef |= 0x0010; /* B2 is SENSE_B, not inverted */
else
coef &= ~0x0010;
cs_vendor_coef_set(codec, CS421X_IDX_DEV_CFG, coef);
if ((spec->gpio_mask || spec->sense_b) &&
is_active_pin(codec, CS421X_DMIC_PIN_NID)) {
/*
GPIO or SENSE_B forced - disconnect the DMIC pin.
*/
def_conf = snd_hda_codec_get_pincfg(codec, CS421X_DMIC_PIN_NID);
def_conf &= ~AC_DEFCFG_PORT_CONN;
def_conf |= (AC_JACK_PORT_NONE << AC_DEFCFG_PORT_CONN_SHIFT);
snd_hda_codec_set_pincfg(codec, CS421X_DMIC_PIN_NID, def_conf);
}
}
static void init_cs421x_digital(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
int i;
for (i = 0; i < cfg->dig_outs; i++) {
hda_nid_t nid = cfg->dig_out_pins[i];
if (!cfg->speaker_outs)
continue;
if (get_wcaps(codec, nid) & AC_WCAP_UNSOL_CAP) {
snd_hda_jack_detect_enable(codec, nid, SPDIF_EVENT);
spec->spdif_detect = 1;
}
}
}
static int cs421x_init(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
if (spec->vendor_nid == CS4210_VENDOR_NID) {
snd_hda_sequence_write(codec, cs421x_coef_init_verbs);
snd_hda_sequence_write(codec, cs421x_coef_init_verbs_A1_silicon_fixes);
cs4210_pinmux_init(codec);
}
if (spec->gpio_mask) {
snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_MASK,
spec->gpio_mask);
snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_DIRECTION,
spec->gpio_dir);
snd_hda_codec_write(codec, 0x01, 0, AC_VERB_SET_GPIO_DATA,
spec->gpio_data);
}
init_output(codec);
init_input(codec);
init_cs421x_digital(codec);
snd_hda_jack_report_sync(codec);
return 0;
}
/*
* CS4210 Input MUX (1 ADC)
*/
static int cs421x_mux_enum_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct cs_spec *spec = codec->spec;
return snd_hda_input_mux_info(&spec->input_mux, uinfo);
}
static int cs421x_mux_enum_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct cs_spec *spec = codec->spec;
ucontrol->value.enumerated.item[0] = spec->cur_input;
return 0;
}
static int cs421x_mux_enum_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct cs_spec *spec = codec->spec;
return snd_hda_input_mux_put(codec, &spec->input_mux, ucontrol,
spec->adc_nid[0], &spec->cur_input);
}
static struct snd_kcontrol_new cs421x_capture_source = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Capture Source",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = cs421x_mux_enum_info,
.get = cs421x_mux_enum_get,
.put = cs421x_mux_enum_put,
};
static int cs421x_add_input_volume_control(struct hda_codec *codec, int item)
{
struct cs_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
const struct hda_input_mux *imux = &spec->input_mux;
hda_nid_t pin = cfg->inputs[item].pin;
struct snd_kcontrol *kctl;
u32 caps;
if (!(get_wcaps(codec, pin) & AC_WCAP_IN_AMP))
return 0;
caps = query_amp_caps(codec, pin, HDA_INPUT);
caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
if (caps <= 1)
return 0;
return add_volume(codec, imux->items[item].label, 0,
HDA_COMPOSE_AMP_VAL(pin, 3, 0, HDA_INPUT), 1, &kctl);
}
/* add a (input-boost) volume control to the given input pin */
static int build_cs421x_input(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
struct hda_input_mux *imux = &spec->input_mux;
int i, err, type_idx;
const char *label;
if (!spec->num_inputs)
return 0;
/* make bind-capture */
spec->capture_bind[0] = make_bind_capture(codec, &snd_hda_bind_sw);
spec->capture_bind[1] = make_bind_capture(codec, &snd_hda_bind_vol);
for (i = 0; i < 2; i++) {
struct snd_kcontrol *kctl;
int n;
if (!spec->capture_bind[i])
return -ENOMEM;
kctl = snd_ctl_new1(&cs_capture_ctls[i], codec);
if (!kctl)
return -ENOMEM;
kctl->private_value = (long)spec->capture_bind[i];
err = snd_hda_ctl_add(codec, 0, kctl);
if (err < 0)
return err;
for (n = 0; n < AUTO_PIN_LAST; n++) {
if (!spec->adc_nid[n])
continue;
err = snd_hda_add_nid(codec, kctl, 0, spec->adc_nid[n]);
if (err < 0)
return err;
}
}
/* Add Input MUX Items + Capture Volume/Switch */
for (i = 0; i < spec->num_inputs; i++) {
label = hda_get_autocfg_input_label(codec, cfg, i);
snd_hda_add_imux_item(imux, label, spec->adc_idx[i], &type_idx);
err = cs421x_add_input_volume_control(codec, i);
if (err < 0)
return err;
}
/*
Add 'Capture Source' Switch if
* 2 inputs and no mic detec
* 3 inputs
*/
if ((spec->num_inputs == 2 && !spec->mic_detect) ||
(spec->num_inputs == 3)) {
err = snd_hda_ctl_add(codec, spec->adc_nid[0],
snd_ctl_new1(&cs421x_capture_source, codec));
if (err < 0)
return err;
}
return 0;
}
/* Single DAC (Mute/Gain) */
static int build_cs421x_output(struct hda_codec *codec)
{
hda_nid_t dac = CS4210_DAC_NID;
struct cs_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
struct snd_kcontrol *kctl;
int err;
char *name = "Master";
fix_volume_caps(codec, dac);
err = add_mute(codec, name, 0,
HDA_COMPOSE_AMP_VAL(dac, 3, 0, HDA_OUTPUT), 0, &kctl);
if (err < 0)
return err;
err = add_volume(codec, name, 0,
HDA_COMPOSE_AMP_VAL(dac, 3, 0, HDA_OUTPUT), 0, &kctl);
if (err < 0)
return err;
if (cfg->speaker_outs && (spec->vendor_nid == CS4210_VENDOR_NID)) {
err = snd_hda_ctl_add(codec, 0,
snd_ctl_new1(&cs421x_speaker_bost_ctl, codec));
if (err < 0)
return err;
}
return err;
}
static int cs421x_build_controls(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
int err;
err = build_cs421x_output(codec);
if (err < 0)
return err;
err = build_cs421x_input(codec);
if (err < 0)
return err;
err = build_digital_output(codec);
if (err < 0)
return err;
err = cs421x_init(codec);
if (err < 0)
return err;
err = snd_hda_jack_add_kctls(codec, &spec->autocfg);
if (err < 0)
return err;
return 0;
}
static void cs421x_unsol_event(struct hda_codec *codec, unsigned int res)
{
switch (snd_hda_jack_get_action(codec, res >> 26)) {
case HP_EVENT:
case SPDIF_EVENT:
cs_automute(codec);
break;
case MIC_EVENT:
cs_automic(codec);
break;
}
snd_hda_jack_report_sync(codec);
}
static int parse_cs421x_input(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
struct auto_pin_cfg *cfg = &spec->autocfg;
int i;
for (i = 0; i < cfg->num_inputs; i++) {
hda_nid_t pin = cfg->inputs[i].pin;
spec->adc_nid[i] = get_adc(codec, pin, &spec->adc_idx[i]);
spec->cur_input = spec->last_input = i;
spec->num_inputs++;
/* check whether the automatic mic switch is available */
if (is_ext_mic(codec, i) && cfg->num_inputs >= 2) {
spec->mic_detect = 1;
spec->automic_idx = i;
}
}
return 0;
}
static int cs421x_parse_auto_config(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
int err;
err = snd_hda_parse_pin_def_config(codec, &spec->autocfg, NULL);
if (err < 0)
return err;
err = parse_output(codec);
if (err < 0)
return err;
err = parse_cs421x_input(codec);
if (err < 0)
return err;
err = parse_digital_output(codec);
if (err < 0)
return err;
return 0;
}
#ifdef CONFIG_PM
/*
Manage PDREF, when transitioning to D3hot
(DAC,ADC) -> D3, PDREF=1, AFG->D3
*/
static int cs421x_suspend(struct hda_codec *codec)
{
struct cs_spec *spec = codec->spec;
unsigned int coef;
snd_hda_shutup_pins(codec);
snd_hda_codec_write(codec, CS4210_DAC_NID, 0,
AC_VERB_SET_POWER_STATE, AC_PWRST_D3);
snd_hda_codec_write(codec, CS4210_ADC_NID, 0,
AC_VERB_SET_POWER_STATE, AC_PWRST_D3);
if (spec->vendor_nid == CS4210_VENDOR_NID) {
coef = cs_vendor_coef_get(codec, CS421X_IDX_DEV_CFG);
coef |= 0x0004; /* PDREF */
cs_vendor_coef_set(codec, CS421X_IDX_DEV_CFG, coef);
}
return 0;
}
#endif
static struct hda_codec_ops cs421x_patch_ops = {
.build_controls = cs421x_build_controls,
.build_pcms = cs_build_pcms,
.init = cs421x_init,
.free = cs_free,
.unsol_event = cs421x_unsol_event,
#ifdef CONFIG_PM
.suspend = cs421x_suspend,
#endif
};
static int patch_cs4210(struct hda_codec *codec)
{
struct cs_spec *spec;
int err;
spec = kzalloc(sizeof(*spec), GFP_KERNEL);
if (!spec)
return -ENOMEM;
codec->spec = spec;
spec->vendor_nid = CS4210_VENDOR_NID;
spec->board_config =
snd_hda_check_board_config(codec, CS421X_MODELS,
cs421x_models, cs421x_cfg_tbl);
if (spec->board_config >= 0)
fix_pincfg(codec, spec->board_config, cs421x_pincfgs);
/*
Setup GPIO/SENSE for each board (if used)
*/
switch (spec->board_config) {
case CS421X_CDB4210:
snd_printd("CS4210 board: %s\n",
cs421x_models[spec->board_config]);
/* spec->gpio_mask = 3;
spec->gpio_dir = 3;
spec->gpio_data = 3;
*/
spec->sense_b = 1;
break;
}
/*
Update the GPIO/DMIC/SENSE_B pinmux before the configuration
is auto-parsed. If GPIO or SENSE_B is forced, DMIC input
is disabled.
*/
cs4210_pinmux_init(codec);
err = cs421x_parse_auto_config(codec);
if (err < 0)
goto error;
codec->patch_ops = cs421x_patch_ops;
return 0;
error:
kfree(codec->spec);
codec->spec = NULL;
return err;
}
static int patch_cs4213(struct hda_codec *codec)
{
struct cs_spec *spec;
int err;
spec = kzalloc(sizeof(*spec), GFP_KERNEL);
if (!spec)
return -ENOMEM;
codec->spec = spec;
spec->vendor_nid = CS4213_VENDOR_NID;
err = cs421x_parse_auto_config(codec);
if (err < 0)
goto error;
codec->patch_ops = cs421x_patch_ops;
return 0;
error:
kfree(codec->spec);
codec->spec = NULL;
return err;
}
/*
* patch entries
*/
static const struct hda_codec_preset snd_hda_preset_cirrus[] = {
{ .id = 0x10134206, .name = "CS4206", .patch = patch_cs420x },
{ .id = 0x10134207, .name = "CS4207", .patch = patch_cs420x },
{ .id = 0x10134210, .name = "CS4210", .patch = patch_cs4210 },
{ .id = 0x10134213, .name = "CS4213", .patch = patch_cs4213 },
{} /* terminator */
};
MODULE_ALIAS("snd-hda-codec-id:10134206");
MODULE_ALIAS("snd-hda-codec-id:10134207");
MODULE_ALIAS("snd-hda-codec-id:10134210");
MODULE_ALIAS("snd-hda-codec-id:10134213");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Cirrus Logic HD-audio codec");
static struct hda_codec_preset_list cirrus_list = {
.preset = snd_hda_preset_cirrus,
.owner = THIS_MODULE,
};
static int __init patch_cirrus_init(void)
{
return snd_hda_add_codec_preset(&cirrus_list);
}
static void __exit patch_cirrus_exit(void)
{
snd_hda_delete_codec_preset(&cirrus_list);
}
module_init(patch_cirrus_init)
module_exit(patch_cirrus_exit)