2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 07:34:08 +08:00
linux-next/drivers/edac/edac_mc.c
Adrian Bunk 1a45027d1a edac: remove unneeded functions and add static accessor
Collection of patches, merged into one, from Adrian that do the following:

1) This patch makes the following needlessly global functions static:
- edac_pci_get_log_pe()
- edac_pci_get_log_npe()
- edac_pci_get_panic_on_pe()
- edac_pci_unregister_sysfs_instance_kobj()
- edac_pci_main_kobj_setup()

2) Remove unneeded function edac_device_find()

3) Added #if 0 around function  edac_pci_find()

4) make the needlessly global edac_pci_generic_check() static

5) Removed function edac_check_mc_devices()

Doug Thompson modified Adrian's patches, to bettern represent
the direction of EDAC, and make them one patch.

Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Doug Thompson <dougthompson@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-29 08:06:26 -07:00

889 lines
23 KiB
C

/*
* edac_mc kernel module
* (C) 2005, 2006 Linux Networx (http://lnxi.com)
* This file may be distributed under the terms of the
* GNU General Public License.
*
* Written by Thayne Harbaugh
* Based on work by Dan Hollis <goemon at anime dot net> and others.
* http://www.anime.net/~goemon/linux-ecc/
*
* Modified by Dave Peterson and Doug Thompson
*
*/
#include <linux/module.h>
#include <linux/proc_fs.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/sysdev.h>
#include <linux/ctype.h>
#include <linux/edac.h>
#include <asm/uaccess.h>
#include <asm/page.h>
#include <asm/edac.h>
#include "edac_core.h"
#include "edac_module.h"
/* lock to memory controller's control array */
static DEFINE_MUTEX(mem_ctls_mutex);
static LIST_HEAD(mc_devices);
#ifdef CONFIG_EDAC_DEBUG
static void edac_mc_dump_channel(struct channel_info *chan)
{
debugf4("\tchannel = %p\n", chan);
debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
debugf4("\tchannel->label = '%s'\n", chan->label);
debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
}
static void edac_mc_dump_csrow(struct csrow_info *csrow)
{
debugf4("\tcsrow = %p\n", csrow);
debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
debugf4("\tcsrow->first_page = 0x%lx\n", csrow->first_page);
debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
debugf4("\tcsrow->nr_channels = %d\n", csrow->nr_channels);
debugf4("\tcsrow->channels = %p\n", csrow->channels);
debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
}
static void edac_mc_dump_mci(struct mem_ctl_info *mci)
{
debugf3("\tmci = %p\n", mci);
debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
debugf4("\tmci->edac_check = %p\n", mci->edac_check);
debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
mci->nr_csrows, mci->csrows);
debugf3("\tdev = %p\n", mci->dev);
debugf3("\tmod_name:ctl_name = %s:%s\n", mci->mod_name, mci->ctl_name);
debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
}
#endif /* CONFIG_EDAC_DEBUG */
/* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
* Adjust 'ptr' so that its alignment is at least as stringent as what the
* compiler would provide for X and return the aligned result.
*
* If 'size' is a constant, the compiler will optimize this whole function
* down to either a no-op or the addition of a constant to the value of 'ptr'.
*/
void *edac_align_ptr(void *ptr, unsigned size)
{
unsigned align, r;
/* Here we assume that the alignment of a "long long" is the most
* stringent alignment that the compiler will ever provide by default.
* As far as I know, this is a reasonable assumption.
*/
if (size > sizeof(long))
align = sizeof(long long);
else if (size > sizeof(int))
align = sizeof(long);
else if (size > sizeof(short))
align = sizeof(int);
else if (size > sizeof(char))
align = sizeof(short);
else
return (char *)ptr;
r = size % align;
if (r == 0)
return (char *)ptr;
return (void *)(((unsigned long)ptr) + align - r);
}
/**
* edac_mc_alloc: Allocate a struct mem_ctl_info structure
* @size_pvt: size of private storage needed
* @nr_csrows: Number of CWROWS needed for this MC
* @nr_chans: Number of channels for the MC
*
* Everything is kmalloc'ed as one big chunk - more efficient.
* Only can be used if all structures have the same lifetime - otherwise
* you have to allocate and initialize your own structures.
*
* Use edac_mc_free() to free mc structures allocated by this function.
*
* Returns:
* NULL allocation failed
* struct mem_ctl_info pointer
*/
struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
unsigned nr_chans, int edac_index)
{
struct mem_ctl_info *mci;
struct csrow_info *csi, *csrow;
struct channel_info *chi, *chp, *chan;
void *pvt;
unsigned size;
int row, chn;
int err;
/* Figure out the offsets of the various items from the start of an mc
* structure. We want the alignment of each item to be at least as
* stringent as what the compiler would provide if we could simply
* hardcode everything into a single struct.
*/
mci = (struct mem_ctl_info *)0;
csi = edac_align_ptr(&mci[1], sizeof(*csi));
chi = edac_align_ptr(&csi[nr_csrows], sizeof(*chi));
pvt = edac_align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
size = ((unsigned long)pvt) + sz_pvt;
mci = kzalloc(size, GFP_KERNEL);
if (mci == NULL)
return NULL;
/* Adjust pointers so they point within the memory we just allocated
* rather than an imaginary chunk of memory located at address 0.
*/
csi = (struct csrow_info *)(((char *)mci) + ((unsigned long)csi));
chi = (struct channel_info *)(((char *)mci) + ((unsigned long)chi));
pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
/* setup index and various internal pointers */
mci->mc_idx = edac_index;
mci->csrows = csi;
mci->pvt_info = pvt;
mci->nr_csrows = nr_csrows;
for (row = 0; row < nr_csrows; row++) {
csrow = &csi[row];
csrow->csrow_idx = row;
csrow->mci = mci;
csrow->nr_channels = nr_chans;
chp = &chi[row * nr_chans];
csrow->channels = chp;
for (chn = 0; chn < nr_chans; chn++) {
chan = &chp[chn];
chan->chan_idx = chn;
chan->csrow = csrow;
}
}
mci->op_state = OP_ALLOC;
/*
* Initialize the 'root' kobj for the edac_mc controller
*/
err = edac_mc_register_sysfs_main_kobj(mci);
if (err) {
kfree(mci);
return NULL;
}
/* at this point, the root kobj is valid, and in order to
* 'free' the object, then the function:
* edac_mc_unregister_sysfs_main_kobj() must be called
* which will perform kobj unregistration and the actual free
* will occur during the kobject callback operation
*/
return mci;
}
EXPORT_SYMBOL_GPL(edac_mc_alloc);
/**
* edac_mc_free
* 'Free' a previously allocated 'mci' structure
* @mci: pointer to a struct mem_ctl_info structure
*/
void edac_mc_free(struct mem_ctl_info *mci)
{
edac_mc_unregister_sysfs_main_kobj(mci);
}
EXPORT_SYMBOL_GPL(edac_mc_free);
/*
* find_mci_by_dev
*
* scan list of controllers looking for the one that manages
* the 'dev' device
*/
static struct mem_ctl_info *find_mci_by_dev(struct device *dev)
{
struct mem_ctl_info *mci;
struct list_head *item;
debugf3("%s()\n", __func__);
list_for_each(item, &mc_devices) {
mci = list_entry(item, struct mem_ctl_info, link);
if (mci->dev == dev)
return mci;
}
return NULL;
}
/*
* handler for EDAC to check if NMI type handler has asserted interrupt
*/
static int edac_mc_assert_error_check_and_clear(void)
{
int old_state;
if (edac_op_state == EDAC_OPSTATE_POLL)
return 1;
old_state = edac_err_assert;
edac_err_assert = 0;
return old_state;
}
/*
* edac_mc_workq_function
* performs the operation scheduled by a workq request
*/
static void edac_mc_workq_function(struct work_struct *work_req)
{
struct delayed_work *d_work = (struct delayed_work *)work_req;
struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
mutex_lock(&mem_ctls_mutex);
/* if this control struct has movd to offline state, we are done */
if (mci->op_state == OP_OFFLINE) {
mutex_unlock(&mem_ctls_mutex);
return;
}
/* Only poll controllers that are running polled and have a check */
if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
mci->edac_check(mci);
mutex_unlock(&mem_ctls_mutex);
/* Reschedule */
queue_delayed_work(edac_workqueue, &mci->work,
msecs_to_jiffies(edac_mc_get_poll_msec()));
}
/*
* edac_mc_workq_setup
* initialize a workq item for this mci
* passing in the new delay period in msec
*
* locking model:
*
* called with the mem_ctls_mutex held
*/
static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
{
debugf0("%s()\n", __func__);
/* if this instance is not in the POLL state, then simply return */
if (mci->op_state != OP_RUNNING_POLL)
return;
INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
queue_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
}
/*
* edac_mc_workq_teardown
* stop the workq processing on this mci
*
* locking model:
*
* called WITHOUT lock held
*/
static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
{
int status;
status = cancel_delayed_work(&mci->work);
if (status == 0) {
debugf0("%s() not canceled, flush the queue\n",
__func__);
/* workq instance might be running, wait for it */
flush_workqueue(edac_workqueue);
}
}
/*
* edac_mc_reset_delay_period(unsigned long value)
*
* user space has updated our poll period value, need to
* reset our workq delays
*/
void edac_mc_reset_delay_period(int value)
{
struct mem_ctl_info *mci;
struct list_head *item;
mutex_lock(&mem_ctls_mutex);
/* scan the list and turn off all workq timers, doing so under lock
*/
list_for_each(item, &mc_devices) {
mci = list_entry(item, struct mem_ctl_info, link);
if (mci->op_state == OP_RUNNING_POLL)
cancel_delayed_work(&mci->work);
}
mutex_unlock(&mem_ctls_mutex);
/* re-walk the list, and reset the poll delay */
mutex_lock(&mem_ctls_mutex);
list_for_each(item, &mc_devices) {
mci = list_entry(item, struct mem_ctl_info, link);
edac_mc_workq_setup(mci, (unsigned long) value);
}
mutex_unlock(&mem_ctls_mutex);
}
/* Return 0 on success, 1 on failure.
* Before calling this function, caller must
* assign a unique value to mci->mc_idx.
*
* locking model:
*
* called with the mem_ctls_mutex lock held
*/
static int add_mc_to_global_list(struct mem_ctl_info *mci)
{
struct list_head *item, *insert_before;
struct mem_ctl_info *p;
insert_before = &mc_devices;
p = find_mci_by_dev(mci->dev);
if (unlikely(p != NULL))
goto fail0;
list_for_each(item, &mc_devices) {
p = list_entry(item, struct mem_ctl_info, link);
if (p->mc_idx >= mci->mc_idx) {
if (unlikely(p->mc_idx == mci->mc_idx))
goto fail1;
insert_before = item;
break;
}
}
list_add_tail_rcu(&mci->link, insert_before);
atomic_inc(&edac_handlers);
return 0;
fail0:
edac_printk(KERN_WARNING, EDAC_MC,
"%s (%s) %s %s already assigned %d\n", p->dev->bus_id,
dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
return 1;
fail1:
edac_printk(KERN_WARNING, EDAC_MC,
"bug in low-level driver: attempt to assign\n"
" duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
return 1;
}
static void complete_mc_list_del(struct rcu_head *head)
{
struct mem_ctl_info *mci;
mci = container_of(head, struct mem_ctl_info, rcu);
INIT_LIST_HEAD(&mci->link);
complete(&mci->complete);
}
static void del_mc_from_global_list(struct mem_ctl_info *mci)
{
atomic_dec(&edac_handlers);
list_del_rcu(&mci->link);
init_completion(&mci->complete);
call_rcu(&mci->rcu, complete_mc_list_del);
wait_for_completion(&mci->complete);
}
/**
* edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
*
* If found, return a pointer to the structure.
* Else return NULL.
*
* Caller must hold mem_ctls_mutex.
*/
struct mem_ctl_info *edac_mc_find(int idx)
{
struct list_head *item;
struct mem_ctl_info *mci;
list_for_each(item, &mc_devices) {
mci = list_entry(item, struct mem_ctl_info, link);
if (mci->mc_idx >= idx) {
if (mci->mc_idx == idx)
return mci;
break;
}
}
return NULL;
}
EXPORT_SYMBOL(edac_mc_find);
/**
* edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
* create sysfs entries associated with mci structure
* @mci: pointer to the mci structure to be added to the list
* @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure.
*
* Return:
* 0 Success
* !0 Failure
*/
/* FIXME - should a warning be printed if no error detection? correction? */
int edac_mc_add_mc(struct mem_ctl_info *mci)
{
debugf0("%s()\n", __func__);
#ifdef CONFIG_EDAC_DEBUG
if (edac_debug_level >= 3)
edac_mc_dump_mci(mci);
if (edac_debug_level >= 4) {
int i;
for (i = 0; i < mci->nr_csrows; i++) {
int j;
edac_mc_dump_csrow(&mci->csrows[i]);
for (j = 0; j < mci->csrows[i].nr_channels; j++)
edac_mc_dump_channel(&mci->csrows[i].
channels[j]);
}
}
#endif
mutex_lock(&mem_ctls_mutex);
if (add_mc_to_global_list(mci))
goto fail0;
/* set load time so that error rate can be tracked */
mci->start_time = jiffies;
if (edac_create_sysfs_mci_device(mci)) {
edac_mc_printk(mci, KERN_WARNING,
"failed to create sysfs device\n");
goto fail1;
}
/* If there IS a check routine, then we are running POLLED */
if (mci->edac_check != NULL) {
/* This instance is NOW RUNNING */
mci->op_state = OP_RUNNING_POLL;
edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
} else {
mci->op_state = OP_RUNNING_INTERRUPT;
}
/* Report action taken */
edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':"
" DEV %s\n", mci->mod_name, mci->ctl_name, dev_name(mci));
mutex_unlock(&mem_ctls_mutex);
return 0;
fail1:
del_mc_from_global_list(mci);
fail0:
mutex_unlock(&mem_ctls_mutex);
return 1;
}
EXPORT_SYMBOL_GPL(edac_mc_add_mc);
/**
* edac_mc_del_mc: Remove sysfs entries for specified mci structure and
* remove mci structure from global list
* @pdev: Pointer to 'struct device' representing mci structure to remove.
*
* Return pointer to removed mci structure, or NULL if device not found.
*/
struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
{
struct mem_ctl_info *mci;
debugf0("%s()\n", __func__);
mutex_lock(&mem_ctls_mutex);
/* find the requested mci struct in the global list */
mci = find_mci_by_dev(dev);
if (mci == NULL) {
mutex_unlock(&mem_ctls_mutex);
return NULL;
}
/* marking MCI offline */
mci->op_state = OP_OFFLINE;
del_mc_from_global_list(mci);
mutex_unlock(&mem_ctls_mutex);
/* flush workq processes and remove sysfs */
edac_mc_workq_teardown(mci);
edac_remove_sysfs_mci_device(mci);
edac_printk(KERN_INFO, EDAC_MC,
"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
mci->mod_name, mci->ctl_name, dev_name(mci));
return mci;
}
EXPORT_SYMBOL_GPL(edac_mc_del_mc);
static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
u32 size)
{
struct page *pg;
void *virt_addr;
unsigned long flags = 0;
debugf3("%s()\n", __func__);
/* ECC error page was not in our memory. Ignore it. */
if (!pfn_valid(page))
return;
/* Find the actual page structure then map it and fix */
pg = pfn_to_page(page);
if (PageHighMem(pg))
local_irq_save(flags);
virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
/* Perform architecture specific atomic scrub operation */
atomic_scrub(virt_addr + offset, size);
/* Unmap and complete */
kunmap_atomic(virt_addr, KM_BOUNCE_READ);
if (PageHighMem(pg))
local_irq_restore(flags);
}
/* FIXME - should return -1 */
int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
{
struct csrow_info *csrows = mci->csrows;
int row, i;
debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
row = -1;
for (i = 0; i < mci->nr_csrows; i++) {
struct csrow_info *csrow = &csrows[i];
if (csrow->nr_pages == 0)
continue;
debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
"mask(0x%lx)\n", mci->mc_idx, __func__,
csrow->first_page, page, csrow->last_page,
csrow->page_mask);
if ((page >= csrow->first_page) &&
(page <= csrow->last_page) &&
((page & csrow->page_mask) ==
(csrow->first_page & csrow->page_mask))) {
row = i;
break;
}
}
if (row == -1)
edac_mc_printk(mci, KERN_ERR,
"could not look up page error address %lx\n",
(unsigned long)page);
return row;
}
EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
/* FIXME - setable log (warning/emerg) levels */
/* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
void edac_mc_handle_ce(struct mem_ctl_info *mci,
unsigned long page_frame_number,
unsigned long offset_in_page, unsigned long syndrome,
int row, int channel, const char *msg)
{
unsigned long remapped_page;
debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
/* FIXME - maybe make panic on INTERNAL ERROR an option */
if (row >= mci->nr_csrows || row < 0) {
/* something is wrong */
edac_mc_printk(mci, KERN_ERR,
"INTERNAL ERROR: row out of range "
"(%d >= %d)\n", row, mci->nr_csrows);
edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
return;
}
if (channel >= mci->csrows[row].nr_channels || channel < 0) {
/* something is wrong */
edac_mc_printk(mci, KERN_ERR,
"INTERNAL ERROR: channel out of range "
"(%d >= %d)\n", channel,
mci->csrows[row].nr_channels);
edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
return;
}
if (edac_mc_get_log_ce())
/* FIXME - put in DIMM location */
edac_mc_printk(mci, KERN_WARNING,
"CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
"0x%lx, row %d, channel %d, label \"%s\": %s\n",
page_frame_number, offset_in_page,
mci->csrows[row].grain, syndrome, row, channel,
mci->csrows[row].channels[channel].label, msg);
mci->ce_count++;
mci->csrows[row].ce_count++;
mci->csrows[row].channels[channel].ce_count++;
if (mci->scrub_mode & SCRUB_SW_SRC) {
/*
* Some MC's can remap memory so that it is still available
* at a different address when PCI devices map into memory.
* MC's that can't do this lose the memory where PCI devices
* are mapped. This mapping is MC dependant and so we call
* back into the MC driver for it to map the MC page to
* a physical (CPU) page which can then be mapped to a virtual
* page - which can then be scrubbed.
*/
remapped_page = mci->ctl_page_to_phys ?
mci->ctl_page_to_phys(mci, page_frame_number) :
page_frame_number;
edac_mc_scrub_block(remapped_page, offset_in_page,
mci->csrows[row].grain);
}
}
EXPORT_SYMBOL_GPL(edac_mc_handle_ce);
void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg)
{
if (edac_mc_get_log_ce())
edac_mc_printk(mci, KERN_WARNING,
"CE - no information available: %s\n", msg);
mci->ce_noinfo_count++;
mci->ce_count++;
}
EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info);
void edac_mc_handle_ue(struct mem_ctl_info *mci,
unsigned long page_frame_number,
unsigned long offset_in_page, int row, const char *msg)
{
int len = EDAC_MC_LABEL_LEN * 4;
char labels[len + 1];
char *pos = labels;
int chan;
int chars;
debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
/* FIXME - maybe make panic on INTERNAL ERROR an option */
if (row >= mci->nr_csrows || row < 0) {
/* something is wrong */
edac_mc_printk(mci, KERN_ERR,
"INTERNAL ERROR: row out of range "
"(%d >= %d)\n", row, mci->nr_csrows);
edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
return;
}
chars = snprintf(pos, len + 1, "%s",
mci->csrows[row].channels[0].label);
len -= chars;
pos += chars;
for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
chan++) {
chars = snprintf(pos, len + 1, ":%s",
mci->csrows[row].channels[chan].label);
len -= chars;
pos += chars;
}
if (edac_mc_get_log_ue())
edac_mc_printk(mci, KERN_EMERG,
"UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
"labels \"%s\": %s\n", page_frame_number,
offset_in_page, mci->csrows[row].grain, row,
labels, msg);
if (edac_mc_get_panic_on_ue())
panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, "
"row %d, labels \"%s\": %s\n", mci->mc_idx,
page_frame_number, offset_in_page,
mci->csrows[row].grain, row, labels, msg);
mci->ue_count++;
mci->csrows[row].ue_count++;
}
EXPORT_SYMBOL_GPL(edac_mc_handle_ue);
void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg)
{
if (edac_mc_get_panic_on_ue())
panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
if (edac_mc_get_log_ue())
edac_mc_printk(mci, KERN_WARNING,
"UE - no information available: %s\n", msg);
mci->ue_noinfo_count++;
mci->ue_count++;
}
EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info);
/*************************************************************
* On Fully Buffered DIMM modules, this help function is
* called to process UE events
*/
void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci,
unsigned int csrow,
unsigned int channela,
unsigned int channelb, char *msg)
{
int len = EDAC_MC_LABEL_LEN * 4;
char labels[len + 1];
char *pos = labels;
int chars;
if (csrow >= mci->nr_csrows) {
/* something is wrong */
edac_mc_printk(mci, KERN_ERR,
"INTERNAL ERROR: row out of range (%d >= %d)\n",
csrow, mci->nr_csrows);
edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
return;
}
if (channela >= mci->csrows[csrow].nr_channels) {
/* something is wrong */
edac_mc_printk(mci, KERN_ERR,
"INTERNAL ERROR: channel-a out of range "
"(%d >= %d)\n",
channela, mci->csrows[csrow].nr_channels);
edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
return;
}
if (channelb >= mci->csrows[csrow].nr_channels) {
/* something is wrong */
edac_mc_printk(mci, KERN_ERR,
"INTERNAL ERROR: channel-b out of range "
"(%d >= %d)\n",
channelb, mci->csrows[csrow].nr_channels);
edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
return;
}
mci->ue_count++;
mci->csrows[csrow].ue_count++;
/* Generate the DIMM labels from the specified channels */
chars = snprintf(pos, len + 1, "%s",
mci->csrows[csrow].channels[channela].label);
len -= chars;
pos += chars;
chars = snprintf(pos, len + 1, "-%s",
mci->csrows[csrow].channels[channelb].label);
if (edac_mc_get_log_ue())
edac_mc_printk(mci, KERN_EMERG,
"UE row %d, channel-a= %d channel-b= %d "
"labels \"%s\": %s\n", csrow, channela, channelb,
labels, msg);
if (edac_mc_get_panic_on_ue())
panic("UE row %d, channel-a= %d channel-b= %d "
"labels \"%s\": %s\n", csrow, channela,
channelb, labels, msg);
}
EXPORT_SYMBOL(edac_mc_handle_fbd_ue);
/*************************************************************
* On Fully Buffered DIMM modules, this help function is
* called to process CE events
*/
void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci,
unsigned int csrow, unsigned int channel, char *msg)
{
/* Ensure boundary values */
if (csrow >= mci->nr_csrows) {
/* something is wrong */
edac_mc_printk(mci, KERN_ERR,
"INTERNAL ERROR: row out of range (%d >= %d)\n",
csrow, mci->nr_csrows);
edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
return;
}
if (channel >= mci->csrows[csrow].nr_channels) {
/* something is wrong */
edac_mc_printk(mci, KERN_ERR,
"INTERNAL ERROR: channel out of range (%d >= %d)\n",
channel, mci->csrows[csrow].nr_channels);
edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
return;
}
if (edac_mc_get_log_ce())
/* FIXME - put in DIMM location */
edac_mc_printk(mci, KERN_WARNING,
"CE row %d, channel %d, label \"%s\": %s\n",
csrow, channel,
mci->csrows[csrow].channels[channel].label, msg);
mci->ce_count++;
mci->csrows[csrow].ce_count++;
mci->csrows[csrow].channels[channel].ce_count++;
}
EXPORT_SYMBOL(edac_mc_handle_fbd_ce);