mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-23 04:34:11 +08:00
7e5b2db77b
Pull MIPS updates from Ralf Baechle: "The whole series has been sitting in -next for quite a while with no complaints. The last change to the series was before the weekend the removal of an SPI patch which Grant - even though previously acked by himself - appeared to raise objections. So I removed it until the situation is clarified. Other than that all the patches have the acks from their respective maintainers, all MIPS and x86 defconfigs are building fine and I'm not aware of any problems introduced by this series. Among the key features for this patch series is a sizable patchset for Lantiq which among other things introduces support for Lantiq's flagship product, the FALCON SOC. It also means that the opensource developers behind this patchset have overtaken Lantiq's competing inhouse development team that was working behind closed doors. Less noteworthy the ath79 patchset which adds support for a few more chip variants, cleanups and fixes. Finally the usual dose of tweaking of generic code." Fix up trivial conflicts in arch/mips/lantiq/xway/gpio_{ebu,stp}.c where printk spelling fixes clashed with file move and eventual removal of the printk. * 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus: (81 commits) MIPS: lantiq: remove orphaned code MIPS: Remove all -Wall and almost all -Werror usage from arch/mips. MIPS: lantiq: implement support for FALCON soc MTD: MIPS: lantiq: verify that the NOR interface is available on falcon soc MTD: MIPS: lantiq: implement OF support watchdog: MIPS: lantiq: implement OF support and minor fixes SERIAL: MIPS: lantiq: implement OF support GPIO: MIPS: lantiq: convert gpio-stp-xway to OF GPIO: MIPS: lantiq: convert gpio-mm-lantiq to OF and of_mm_gpio GPIO: MIPS: lantiq: move gpio-stp and gpio-ebu to the subsystem folder MIPS: pci: convert lantiq driver to OF MIPS: lantiq: convert dma to platform driver MIPS: lantiq: implement support for clkdev api MIPS: lantiq: drop ltq_gpio_request() and gpio_to_irq() OF: MIPS: lantiq: implement irq_domain support OF: MIPS: lantiq: implement OF support MIPS: lantiq: drop mips_machine support OF: PCI: const usage needed by MIPS MIPS: Cavium: Remove smp_reserve_lock. MIPS: Move cache setup to setup_arch(). ...
1611 lines
40 KiB
C
1611 lines
40 KiB
C
/*
|
|
* Linux performance counter support for MIPS.
|
|
*
|
|
* Copyright (C) 2010 MIPS Technologies, Inc.
|
|
* Copyright (C) 2011 Cavium Networks, Inc.
|
|
* Author: Deng-Cheng Zhu
|
|
*
|
|
* This code is based on the implementation for ARM, which is in turn
|
|
* based on the sparc64 perf event code and the x86 code. Performance
|
|
* counter access is based on the MIPS Oprofile code. And the callchain
|
|
* support references the code of MIPS stacktrace.c.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/cpumask.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <asm/irq.h>
|
|
#include <asm/irq_regs.h>
|
|
#include <asm/stacktrace.h>
|
|
#include <asm/time.h> /* For perf_irq */
|
|
|
|
#define MIPS_MAX_HWEVENTS 4
|
|
|
|
struct cpu_hw_events {
|
|
/* Array of events on this cpu. */
|
|
struct perf_event *events[MIPS_MAX_HWEVENTS];
|
|
|
|
/*
|
|
* Set the bit (indexed by the counter number) when the counter
|
|
* is used for an event.
|
|
*/
|
|
unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
|
|
|
|
/*
|
|
* Software copy of the control register for each performance counter.
|
|
* MIPS CPUs vary in performance counters. They use this differently,
|
|
* and even may not use it.
|
|
*/
|
|
unsigned int saved_ctrl[MIPS_MAX_HWEVENTS];
|
|
};
|
|
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
|
|
.saved_ctrl = {0},
|
|
};
|
|
|
|
/* The description of MIPS performance events. */
|
|
struct mips_perf_event {
|
|
unsigned int event_id;
|
|
/*
|
|
* MIPS performance counters are indexed starting from 0.
|
|
* CNTR_EVEN indicates the indexes of the counters to be used are
|
|
* even numbers.
|
|
*/
|
|
unsigned int cntr_mask;
|
|
#define CNTR_EVEN 0x55555555
|
|
#define CNTR_ODD 0xaaaaaaaa
|
|
#define CNTR_ALL 0xffffffff
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
enum {
|
|
T = 0,
|
|
V = 1,
|
|
P = 2,
|
|
} range;
|
|
#else
|
|
#define T
|
|
#define V
|
|
#define P
|
|
#endif
|
|
};
|
|
|
|
static struct mips_perf_event raw_event;
|
|
static DEFINE_MUTEX(raw_event_mutex);
|
|
|
|
#define UNSUPPORTED_PERF_EVENT_ID 0xffffffff
|
|
#define C(x) PERF_COUNT_HW_CACHE_##x
|
|
|
|
struct mips_pmu {
|
|
u64 max_period;
|
|
u64 valid_count;
|
|
u64 overflow;
|
|
const char *name;
|
|
int irq;
|
|
u64 (*read_counter)(unsigned int idx);
|
|
void (*write_counter)(unsigned int idx, u64 val);
|
|
const struct mips_perf_event *(*map_raw_event)(u64 config);
|
|
const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
|
|
const struct mips_perf_event (*cache_event_map)
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX];
|
|
unsigned int num_counters;
|
|
};
|
|
|
|
static struct mips_pmu mipspmu;
|
|
|
|
#define M_CONFIG1_PC (1 << 4)
|
|
|
|
#define M_PERFCTL_EXL (1 << 0)
|
|
#define M_PERFCTL_KERNEL (1 << 1)
|
|
#define M_PERFCTL_SUPERVISOR (1 << 2)
|
|
#define M_PERFCTL_USER (1 << 3)
|
|
#define M_PERFCTL_INTERRUPT_ENABLE (1 << 4)
|
|
#define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
|
|
#define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
|
|
#define M_PERFCTL_MT_EN(filter) ((filter) << 20)
|
|
#define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
|
|
#define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
|
|
#define M_TC_EN_TC M_PERFCTL_MT_EN(2)
|
|
#define M_PERFCTL_TCID(tcid) ((tcid) << 22)
|
|
#define M_PERFCTL_WIDE (1 << 30)
|
|
#define M_PERFCTL_MORE (1 << 31)
|
|
|
|
#define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
|
|
M_PERFCTL_KERNEL | \
|
|
M_PERFCTL_USER | \
|
|
M_PERFCTL_SUPERVISOR | \
|
|
M_PERFCTL_INTERRUPT_ENABLE)
|
|
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
#define M_PERFCTL_CONFIG_MASK 0x3fff801f
|
|
#else
|
|
#define M_PERFCTL_CONFIG_MASK 0x1f
|
|
#endif
|
|
#define M_PERFCTL_EVENT_MASK 0xfe0
|
|
|
|
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
static int cpu_has_mipsmt_pertccounters;
|
|
|
|
static DEFINE_RWLOCK(pmuint_rwlock);
|
|
|
|
/*
|
|
* FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
|
|
* cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
|
|
*/
|
|
#if defined(CONFIG_HW_PERF_EVENTS)
|
|
#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
|
|
0 : smp_processor_id())
|
|
#else
|
|
#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
|
|
0 : cpu_data[smp_processor_id()].vpe_id)
|
|
#endif
|
|
|
|
/* Copied from op_model_mipsxx.c */
|
|
static unsigned int vpe_shift(void)
|
|
{
|
|
if (num_possible_cpus() > 1)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int counters_total_to_per_cpu(unsigned int counters)
|
|
{
|
|
return counters >> vpe_shift();
|
|
}
|
|
|
|
static unsigned int counters_per_cpu_to_total(unsigned int counters)
|
|
{
|
|
return counters << vpe_shift();
|
|
}
|
|
|
|
#else /* !CONFIG_MIPS_MT_SMP */
|
|
#define vpe_id() 0
|
|
|
|
#endif /* CONFIG_MIPS_MT_SMP */
|
|
|
|
static void resume_local_counters(void);
|
|
static void pause_local_counters(void);
|
|
static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
|
|
static int mipsxx_pmu_handle_shared_irq(void);
|
|
|
|
static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
|
|
{
|
|
if (vpe_id() == 1)
|
|
idx = (idx + 2) & 3;
|
|
return idx;
|
|
}
|
|
|
|
static u64 mipsxx_pmu_read_counter(unsigned int idx)
|
|
{
|
|
idx = mipsxx_pmu_swizzle_perf_idx(idx);
|
|
|
|
switch (idx) {
|
|
case 0:
|
|
/*
|
|
* The counters are unsigned, we must cast to truncate
|
|
* off the high bits.
|
|
*/
|
|
return (u32)read_c0_perfcntr0();
|
|
case 1:
|
|
return (u32)read_c0_perfcntr1();
|
|
case 2:
|
|
return (u32)read_c0_perfcntr2();
|
|
case 3:
|
|
return (u32)read_c0_perfcntr3();
|
|
default:
|
|
WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
|
|
{
|
|
idx = mipsxx_pmu_swizzle_perf_idx(idx);
|
|
|
|
switch (idx) {
|
|
case 0:
|
|
return read_c0_perfcntr0_64();
|
|
case 1:
|
|
return read_c0_perfcntr1_64();
|
|
case 2:
|
|
return read_c0_perfcntr2_64();
|
|
case 3:
|
|
return read_c0_perfcntr3_64();
|
|
default:
|
|
WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
|
|
{
|
|
idx = mipsxx_pmu_swizzle_perf_idx(idx);
|
|
|
|
switch (idx) {
|
|
case 0:
|
|
write_c0_perfcntr0(val);
|
|
return;
|
|
case 1:
|
|
write_c0_perfcntr1(val);
|
|
return;
|
|
case 2:
|
|
write_c0_perfcntr2(val);
|
|
return;
|
|
case 3:
|
|
write_c0_perfcntr3(val);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
|
|
{
|
|
idx = mipsxx_pmu_swizzle_perf_idx(idx);
|
|
|
|
switch (idx) {
|
|
case 0:
|
|
write_c0_perfcntr0_64(val);
|
|
return;
|
|
case 1:
|
|
write_c0_perfcntr1_64(val);
|
|
return;
|
|
case 2:
|
|
write_c0_perfcntr2_64(val);
|
|
return;
|
|
case 3:
|
|
write_c0_perfcntr3_64(val);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static unsigned int mipsxx_pmu_read_control(unsigned int idx)
|
|
{
|
|
idx = mipsxx_pmu_swizzle_perf_idx(idx);
|
|
|
|
switch (idx) {
|
|
case 0:
|
|
return read_c0_perfctrl0();
|
|
case 1:
|
|
return read_c0_perfctrl1();
|
|
case 2:
|
|
return read_c0_perfctrl2();
|
|
case 3:
|
|
return read_c0_perfctrl3();
|
|
default:
|
|
WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
|
|
{
|
|
idx = mipsxx_pmu_swizzle_perf_idx(idx);
|
|
|
|
switch (idx) {
|
|
case 0:
|
|
write_c0_perfctrl0(val);
|
|
return;
|
|
case 1:
|
|
write_c0_perfctrl1(val);
|
|
return;
|
|
case 2:
|
|
write_c0_perfctrl2(val);
|
|
return;
|
|
case 3:
|
|
write_c0_perfctrl3(val);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
|
|
struct hw_perf_event *hwc)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* We only need to care the counter mask. The range has been
|
|
* checked definitely.
|
|
*/
|
|
unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
|
|
|
|
for (i = mipspmu.num_counters - 1; i >= 0; i--) {
|
|
/*
|
|
* Note that some MIPS perf events can be counted by both
|
|
* even and odd counters, wheresas many other are only by
|
|
* even _or_ odd counters. This introduces an issue that
|
|
* when the former kind of event takes the counter the
|
|
* latter kind of event wants to use, then the "counter
|
|
* allocation" for the latter event will fail. In fact if
|
|
* they can be dynamically swapped, they both feel happy.
|
|
* But here we leave this issue alone for now.
|
|
*/
|
|
if (test_bit(i, &cntr_mask) &&
|
|
!test_and_set_bit(i, cpuc->used_mask))
|
|
return i;
|
|
}
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
|
|
WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
|
|
|
|
cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
|
|
(evt->config_base & M_PERFCTL_CONFIG_MASK) |
|
|
/* Make sure interrupt enabled. */
|
|
M_PERFCTL_INTERRUPT_ENABLE;
|
|
/*
|
|
* We do not actually let the counter run. Leave it until start().
|
|
*/
|
|
}
|
|
|
|
static void mipsxx_pmu_disable_event(int idx)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
unsigned long flags;
|
|
|
|
WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
|
|
|
|
local_irq_save(flags);
|
|
cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
|
|
~M_PERFCTL_COUNT_EVENT_WHENEVER;
|
|
mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static int mipspmu_event_set_period(struct perf_event *event,
|
|
struct hw_perf_event *hwc,
|
|
int idx)
|
|
{
|
|
u64 left = local64_read(&hwc->period_left);
|
|
u64 period = hwc->sample_period;
|
|
int ret = 0;
|
|
|
|
if (unlikely((left + period) & (1ULL << 63))) {
|
|
/* left underflowed by more than period. */
|
|
left = period;
|
|
local64_set(&hwc->period_left, left);
|
|
hwc->last_period = period;
|
|
ret = 1;
|
|
} else if (unlikely((left + period) <= period)) {
|
|
/* left underflowed by less than period. */
|
|
left += period;
|
|
local64_set(&hwc->period_left, left);
|
|
hwc->last_period = period;
|
|
ret = 1;
|
|
}
|
|
|
|
if (left > mipspmu.max_period) {
|
|
left = mipspmu.max_period;
|
|
local64_set(&hwc->period_left, left);
|
|
}
|
|
|
|
local64_set(&hwc->prev_count, mipspmu.overflow - left);
|
|
|
|
mipspmu.write_counter(idx, mipspmu.overflow - left);
|
|
|
|
perf_event_update_userpage(event);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void mipspmu_event_update(struct perf_event *event,
|
|
struct hw_perf_event *hwc,
|
|
int idx)
|
|
{
|
|
u64 prev_raw_count, new_raw_count;
|
|
u64 delta;
|
|
|
|
again:
|
|
prev_raw_count = local64_read(&hwc->prev_count);
|
|
new_raw_count = mipspmu.read_counter(idx);
|
|
|
|
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
|
|
new_raw_count) != prev_raw_count)
|
|
goto again;
|
|
|
|
delta = new_raw_count - prev_raw_count;
|
|
|
|
local64_add(delta, &event->count);
|
|
local64_sub(delta, &hwc->period_left);
|
|
}
|
|
|
|
static void mipspmu_start(struct perf_event *event, int flags)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
if (flags & PERF_EF_RELOAD)
|
|
WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
|
|
|
|
hwc->state = 0;
|
|
|
|
/* Set the period for the event. */
|
|
mipspmu_event_set_period(event, hwc, hwc->idx);
|
|
|
|
/* Enable the event. */
|
|
mipsxx_pmu_enable_event(hwc, hwc->idx);
|
|
}
|
|
|
|
static void mipspmu_stop(struct perf_event *event, int flags)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
if (!(hwc->state & PERF_HES_STOPPED)) {
|
|
/* We are working on a local event. */
|
|
mipsxx_pmu_disable_event(hwc->idx);
|
|
barrier();
|
|
mipspmu_event_update(event, hwc, hwc->idx);
|
|
hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
|
|
}
|
|
}
|
|
|
|
static int mipspmu_add(struct perf_event *event, int flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int idx;
|
|
int err = 0;
|
|
|
|
perf_pmu_disable(event->pmu);
|
|
|
|
/* To look for a free counter for this event. */
|
|
idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
|
|
if (idx < 0) {
|
|
err = idx;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If there is an event in the counter we are going to use then
|
|
* make sure it is disabled.
|
|
*/
|
|
event->hw.idx = idx;
|
|
mipsxx_pmu_disable_event(idx);
|
|
cpuc->events[idx] = event;
|
|
|
|
hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
|
|
if (flags & PERF_EF_START)
|
|
mipspmu_start(event, PERF_EF_RELOAD);
|
|
|
|
/* Propagate our changes to the userspace mapping. */
|
|
perf_event_update_userpage(event);
|
|
|
|
out:
|
|
perf_pmu_enable(event->pmu);
|
|
return err;
|
|
}
|
|
|
|
static void mipspmu_del(struct perf_event *event, int flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int idx = hwc->idx;
|
|
|
|
WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
|
|
|
|
mipspmu_stop(event, PERF_EF_UPDATE);
|
|
cpuc->events[idx] = NULL;
|
|
clear_bit(idx, cpuc->used_mask);
|
|
|
|
perf_event_update_userpage(event);
|
|
}
|
|
|
|
static void mipspmu_read(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
/* Don't read disabled counters! */
|
|
if (hwc->idx < 0)
|
|
return;
|
|
|
|
mipspmu_event_update(event, hwc, hwc->idx);
|
|
}
|
|
|
|
static void mipspmu_enable(struct pmu *pmu)
|
|
{
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
write_unlock(&pmuint_rwlock);
|
|
#endif
|
|
resume_local_counters();
|
|
}
|
|
|
|
/*
|
|
* MIPS performance counters can be per-TC. The control registers can
|
|
* not be directly accessed accross CPUs. Hence if we want to do global
|
|
* control, we need cross CPU calls. on_each_cpu() can help us, but we
|
|
* can not make sure this function is called with interrupts enabled. So
|
|
* here we pause local counters and then grab a rwlock and leave the
|
|
* counters on other CPUs alone. If any counter interrupt raises while
|
|
* we own the write lock, simply pause local counters on that CPU and
|
|
* spin in the handler. Also we know we won't be switched to another
|
|
* CPU after pausing local counters and before grabbing the lock.
|
|
*/
|
|
static void mipspmu_disable(struct pmu *pmu)
|
|
{
|
|
pause_local_counters();
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
write_lock(&pmuint_rwlock);
|
|
#endif
|
|
}
|
|
|
|
static atomic_t active_events = ATOMIC_INIT(0);
|
|
static DEFINE_MUTEX(pmu_reserve_mutex);
|
|
static int (*save_perf_irq)(void);
|
|
|
|
static int mipspmu_get_irq(void)
|
|
{
|
|
int err;
|
|
|
|
if (mipspmu.irq >= 0) {
|
|
/* Request my own irq handler. */
|
|
err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
|
|
IRQF_PERCPU | IRQF_NOBALANCING,
|
|
"mips_perf_pmu", NULL);
|
|
if (err) {
|
|
pr_warning("Unable to request IRQ%d for MIPS "
|
|
"performance counters!\n", mipspmu.irq);
|
|
}
|
|
} else if (cp0_perfcount_irq < 0) {
|
|
/*
|
|
* We are sharing the irq number with the timer interrupt.
|
|
*/
|
|
save_perf_irq = perf_irq;
|
|
perf_irq = mipsxx_pmu_handle_shared_irq;
|
|
err = 0;
|
|
} else {
|
|
pr_warning("The platform hasn't properly defined its "
|
|
"interrupt controller.\n");
|
|
err = -ENOENT;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void mipspmu_free_irq(void)
|
|
{
|
|
if (mipspmu.irq >= 0)
|
|
free_irq(mipspmu.irq, NULL);
|
|
else if (cp0_perfcount_irq < 0)
|
|
perf_irq = save_perf_irq;
|
|
}
|
|
|
|
/*
|
|
* mipsxx/rm9000/loongson2 have different performance counters, they have
|
|
* specific low-level init routines.
|
|
*/
|
|
static void reset_counters(void *arg);
|
|
static int __hw_perf_event_init(struct perf_event *event);
|
|
|
|
static void hw_perf_event_destroy(struct perf_event *event)
|
|
{
|
|
if (atomic_dec_and_mutex_lock(&active_events,
|
|
&pmu_reserve_mutex)) {
|
|
/*
|
|
* We must not call the destroy function with interrupts
|
|
* disabled.
|
|
*/
|
|
on_each_cpu(reset_counters,
|
|
(void *)(long)mipspmu.num_counters, 1);
|
|
mipspmu_free_irq();
|
|
mutex_unlock(&pmu_reserve_mutex);
|
|
}
|
|
}
|
|
|
|
static int mipspmu_event_init(struct perf_event *event)
|
|
{
|
|
int err = 0;
|
|
|
|
/* does not support taken branch sampling */
|
|
if (has_branch_stack(event))
|
|
return -EOPNOTSUPP;
|
|
|
|
switch (event->attr.type) {
|
|
case PERF_TYPE_RAW:
|
|
case PERF_TYPE_HARDWARE:
|
|
case PERF_TYPE_HW_CACHE:
|
|
break;
|
|
|
|
default:
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (event->cpu >= nr_cpumask_bits ||
|
|
(event->cpu >= 0 && !cpu_online(event->cpu)))
|
|
return -ENODEV;
|
|
|
|
if (!atomic_inc_not_zero(&active_events)) {
|
|
mutex_lock(&pmu_reserve_mutex);
|
|
if (atomic_read(&active_events) == 0)
|
|
err = mipspmu_get_irq();
|
|
|
|
if (!err)
|
|
atomic_inc(&active_events);
|
|
mutex_unlock(&pmu_reserve_mutex);
|
|
}
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
return __hw_perf_event_init(event);
|
|
}
|
|
|
|
static struct pmu pmu = {
|
|
.pmu_enable = mipspmu_enable,
|
|
.pmu_disable = mipspmu_disable,
|
|
.event_init = mipspmu_event_init,
|
|
.add = mipspmu_add,
|
|
.del = mipspmu_del,
|
|
.start = mipspmu_start,
|
|
.stop = mipspmu_stop,
|
|
.read = mipspmu_read,
|
|
};
|
|
|
|
static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
|
|
{
|
|
/*
|
|
* Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
|
|
* event_id.
|
|
*/
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
return ((unsigned int)pev->range << 24) |
|
|
(pev->cntr_mask & 0xffff00) |
|
|
(pev->event_id & 0xff);
|
|
#else
|
|
return (pev->cntr_mask & 0xffff00) |
|
|
(pev->event_id & 0xff);
|
|
#endif
|
|
}
|
|
|
|
static const struct mips_perf_event *mipspmu_map_general_event(int idx)
|
|
{
|
|
const struct mips_perf_event *pev;
|
|
|
|
pev = ((*mipspmu.general_event_map)[idx].event_id ==
|
|
UNSUPPORTED_PERF_EVENT_ID ? ERR_PTR(-EOPNOTSUPP) :
|
|
&(*mipspmu.general_event_map)[idx]);
|
|
|
|
return pev;
|
|
}
|
|
|
|
static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
|
|
{
|
|
unsigned int cache_type, cache_op, cache_result;
|
|
const struct mips_perf_event *pev;
|
|
|
|
cache_type = (config >> 0) & 0xff;
|
|
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
cache_op = (config >> 8) & 0xff;
|
|
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
cache_result = (config >> 16) & 0xff;
|
|
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
pev = &((*mipspmu.cache_event_map)
|
|
[cache_type]
|
|
[cache_op]
|
|
[cache_result]);
|
|
|
|
if (pev->event_id == UNSUPPORTED_PERF_EVENT_ID)
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
|
|
return pev;
|
|
|
|
}
|
|
|
|
static int validate_group(struct perf_event *event)
|
|
{
|
|
struct perf_event *sibling, *leader = event->group_leader;
|
|
struct cpu_hw_events fake_cpuc;
|
|
|
|
memset(&fake_cpuc, 0, sizeof(fake_cpuc));
|
|
|
|
if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
|
|
return -EINVAL;
|
|
|
|
list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
|
|
if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This is needed by specific irq handlers in perf_event_*.c */
|
|
static void handle_associated_event(struct cpu_hw_events *cpuc,
|
|
int idx, struct perf_sample_data *data,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct perf_event *event = cpuc->events[idx];
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
mipspmu_event_update(event, hwc, idx);
|
|
data->period = event->hw.last_period;
|
|
if (!mipspmu_event_set_period(event, hwc, idx))
|
|
return;
|
|
|
|
if (perf_event_overflow(event, data, regs))
|
|
mipsxx_pmu_disable_event(idx);
|
|
}
|
|
|
|
|
|
static int __n_counters(void)
|
|
{
|
|
if (!(read_c0_config1() & M_CONFIG1_PC))
|
|
return 0;
|
|
if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
|
|
return 1;
|
|
if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
|
|
return 2;
|
|
if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
|
|
return 3;
|
|
|
|
return 4;
|
|
}
|
|
|
|
static int n_counters(void)
|
|
{
|
|
int counters;
|
|
|
|
switch (current_cpu_type()) {
|
|
case CPU_R10000:
|
|
counters = 2;
|
|
break;
|
|
|
|
case CPU_R12000:
|
|
case CPU_R14000:
|
|
counters = 4;
|
|
break;
|
|
|
|
default:
|
|
counters = __n_counters();
|
|
}
|
|
|
|
return counters;
|
|
}
|
|
|
|
static void reset_counters(void *arg)
|
|
{
|
|
int counters = (int)(long)arg;
|
|
switch (counters) {
|
|
case 4:
|
|
mipsxx_pmu_write_control(3, 0);
|
|
mipspmu.write_counter(3, 0);
|
|
case 3:
|
|
mipsxx_pmu_write_control(2, 0);
|
|
mipspmu.write_counter(2, 0);
|
|
case 2:
|
|
mipsxx_pmu_write_control(1, 0);
|
|
mipspmu.write_counter(1, 0);
|
|
case 1:
|
|
mipsxx_pmu_write_control(0, 0);
|
|
mipspmu.write_counter(0, 0);
|
|
}
|
|
}
|
|
|
|
/* 24K/34K/1004K cores can share the same event map. */
|
|
static const struct mips_perf_event mipsxxcore_event_map
|
|
[PERF_COUNT_HW_MAX] = {
|
|
[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
|
|
[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
|
|
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
|
|
[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
};
|
|
|
|
/* 74K core has different branch event code. */
|
|
static const struct mips_perf_event mipsxx74Kcore_event_map
|
|
[PERF_COUNT_HW_MAX] = {
|
|
[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
|
|
[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
|
|
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
|
|
[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
};
|
|
|
|
static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
|
|
[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
|
|
[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
|
|
[PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL },
|
|
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
|
|
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
|
|
[PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
|
|
};
|
|
|
|
/* 24K/34K/1004K cores can share the same cache event map. */
|
|
static const struct mips_perf_event mipsxxcore_cache_map
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
|
|
[C(L1D)] = {
|
|
/*
|
|
* Like some other architectures (e.g. ARM), the performance
|
|
* counters don't differentiate between read and write
|
|
* accesses/misses, so this isn't strictly correct, but it's the
|
|
* best we can do. Writes and reads get combined.
|
|
*/
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
},
|
|
[C(L1I)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
|
|
/*
|
|
* Note that MIPS has only "hit" events countable for
|
|
* the prefetch operation.
|
|
*/
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
},
|
|
[C(LL)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
|
|
[C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
|
|
[C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
},
|
|
[C(DTLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
},
|
|
[C(ITLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
},
|
|
[C(BPU)] = {
|
|
/* Using the same code for *HW_BRANCH* */
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
},
|
|
[C(NODE)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
},
|
|
};
|
|
|
|
/* 74K core has completely different cache event map. */
|
|
static const struct mips_perf_event mipsxx74Kcore_cache_map
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
|
|
[C(L1D)] = {
|
|
/*
|
|
* Like some other architectures (e.g. ARM), the performance
|
|
* counters don't differentiate between read and write
|
|
* accesses/misses, so this isn't strictly correct, but it's the
|
|
* best we can do. Writes and reads get combined.
|
|
*/
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
|
|
[C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
|
|
[C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
},
|
|
[C(L1I)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
|
|
/*
|
|
* Note that MIPS has only "hit" events countable for
|
|
* the prefetch operation.
|
|
*/
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
},
|
|
[C(LL)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
|
|
[C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
|
|
[C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
},
|
|
[C(DTLB)] = {
|
|
/* 74K core does not have specific DTLB events. */
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
},
|
|
[C(ITLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
},
|
|
[C(BPU)] = {
|
|
/* Using the same code for *HW_BRANCH* */
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
|
|
[C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
},
|
|
[C(NODE)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
},
|
|
};
|
|
|
|
|
|
static const struct mips_perf_event octeon_cache_map
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
|
|
[C(L1D)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL },
|
|
[C(RESULT_MISS)] = { 0x2e, CNTR_ALL },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x30, CNTR_ALL },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
},
|
|
[C(L1I)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x18, CNTR_ALL },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { 0x19, CNTR_ALL },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
},
|
|
[C(LL)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
},
|
|
[C(DTLB)] = {
|
|
/*
|
|
* Only general DTLB misses are counted use the same event for
|
|
* read and write.
|
|
*/
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { 0x35, CNTR_ALL },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { 0x35, CNTR_ALL },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
},
|
|
[C(ITLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { 0x37, CNTR_ALL },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
},
|
|
[C(BPU)] = {
|
|
/* Using the same code for *HW_BRANCH* */
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
[C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
|
|
},
|
|
},
|
|
};
|
|
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
static void check_and_calc_range(struct perf_event *event,
|
|
const struct mips_perf_event *pev)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
if (event->cpu >= 0) {
|
|
if (pev->range > V) {
|
|
/*
|
|
* The user selected an event that is processor
|
|
* wide, while expecting it to be VPE wide.
|
|
*/
|
|
hwc->config_base |= M_TC_EN_ALL;
|
|
} else {
|
|
/*
|
|
* FIXME: cpu_data[event->cpu].vpe_id reports 0
|
|
* for both CPUs.
|
|
*/
|
|
hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
|
|
hwc->config_base |= M_TC_EN_VPE;
|
|
}
|
|
} else
|
|
hwc->config_base |= M_TC_EN_ALL;
|
|
}
|
|
#else
|
|
static void check_and_calc_range(struct perf_event *event,
|
|
const struct mips_perf_event *pev)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static int __hw_perf_event_init(struct perf_event *event)
|
|
{
|
|
struct perf_event_attr *attr = &event->attr;
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
const struct mips_perf_event *pev;
|
|
int err;
|
|
|
|
/* Returning MIPS event descriptor for generic perf event. */
|
|
if (PERF_TYPE_HARDWARE == event->attr.type) {
|
|
if (event->attr.config >= PERF_COUNT_HW_MAX)
|
|
return -EINVAL;
|
|
pev = mipspmu_map_general_event(event->attr.config);
|
|
} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
|
|
pev = mipspmu_map_cache_event(event->attr.config);
|
|
} else if (PERF_TYPE_RAW == event->attr.type) {
|
|
/* We are working on the global raw event. */
|
|
mutex_lock(&raw_event_mutex);
|
|
pev = mipspmu.map_raw_event(event->attr.config);
|
|
} else {
|
|
/* The event type is not (yet) supported. */
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (IS_ERR(pev)) {
|
|
if (PERF_TYPE_RAW == event->attr.type)
|
|
mutex_unlock(&raw_event_mutex);
|
|
return PTR_ERR(pev);
|
|
}
|
|
|
|
/*
|
|
* We allow max flexibility on how each individual counter shared
|
|
* by the single CPU operates (the mode exclusion and the range).
|
|
*/
|
|
hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
|
|
|
|
/* Calculate range bits and validate it. */
|
|
if (num_possible_cpus() > 1)
|
|
check_and_calc_range(event, pev);
|
|
|
|
hwc->event_base = mipspmu_perf_event_encode(pev);
|
|
if (PERF_TYPE_RAW == event->attr.type)
|
|
mutex_unlock(&raw_event_mutex);
|
|
|
|
if (!attr->exclude_user)
|
|
hwc->config_base |= M_PERFCTL_USER;
|
|
if (!attr->exclude_kernel) {
|
|
hwc->config_base |= M_PERFCTL_KERNEL;
|
|
/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
|
|
hwc->config_base |= M_PERFCTL_EXL;
|
|
}
|
|
if (!attr->exclude_hv)
|
|
hwc->config_base |= M_PERFCTL_SUPERVISOR;
|
|
|
|
hwc->config_base &= M_PERFCTL_CONFIG_MASK;
|
|
/*
|
|
* The event can belong to another cpu. We do not assign a local
|
|
* counter for it for now.
|
|
*/
|
|
hwc->idx = -1;
|
|
hwc->config = 0;
|
|
|
|
if (!hwc->sample_period) {
|
|
hwc->sample_period = mipspmu.max_period;
|
|
hwc->last_period = hwc->sample_period;
|
|
local64_set(&hwc->period_left, hwc->sample_period);
|
|
}
|
|
|
|
err = 0;
|
|
if (event->group_leader != event)
|
|
err = validate_group(event);
|
|
|
|
event->destroy = hw_perf_event_destroy;
|
|
|
|
if (err)
|
|
event->destroy(event);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void pause_local_counters(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
int ctr = mipspmu.num_counters;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
do {
|
|
ctr--;
|
|
cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
|
|
mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
|
|
~M_PERFCTL_COUNT_EVENT_WHENEVER);
|
|
} while (ctr > 0);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static void resume_local_counters(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
int ctr = mipspmu.num_counters;
|
|
|
|
do {
|
|
ctr--;
|
|
mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
|
|
} while (ctr > 0);
|
|
}
|
|
|
|
static int mipsxx_pmu_handle_shared_irq(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
struct perf_sample_data data;
|
|
unsigned int counters = mipspmu.num_counters;
|
|
u64 counter;
|
|
int handled = IRQ_NONE;
|
|
struct pt_regs *regs;
|
|
|
|
if (cpu_has_mips_r2 && !(read_c0_cause() & (1 << 26)))
|
|
return handled;
|
|
/*
|
|
* First we pause the local counters, so that when we are locked
|
|
* here, the counters are all paused. When it gets locked due to
|
|
* perf_disable(), the timer interrupt handler will be delayed.
|
|
*
|
|
* See also mipsxx_pmu_start().
|
|
*/
|
|
pause_local_counters();
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
read_lock(&pmuint_rwlock);
|
|
#endif
|
|
|
|
regs = get_irq_regs();
|
|
|
|
perf_sample_data_init(&data, 0, 0);
|
|
|
|
switch (counters) {
|
|
#define HANDLE_COUNTER(n) \
|
|
case n + 1: \
|
|
if (test_bit(n, cpuc->used_mask)) { \
|
|
counter = mipspmu.read_counter(n); \
|
|
if (counter & mipspmu.overflow) { \
|
|
handle_associated_event(cpuc, n, &data, regs); \
|
|
handled = IRQ_HANDLED; \
|
|
} \
|
|
}
|
|
HANDLE_COUNTER(3)
|
|
HANDLE_COUNTER(2)
|
|
HANDLE_COUNTER(1)
|
|
HANDLE_COUNTER(0)
|
|
}
|
|
|
|
/*
|
|
* Do all the work for the pending perf events. We can do this
|
|
* in here because the performance counter interrupt is a regular
|
|
* interrupt, not NMI.
|
|
*/
|
|
if (handled == IRQ_HANDLED)
|
|
irq_work_run();
|
|
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
read_unlock(&pmuint_rwlock);
|
|
#endif
|
|
resume_local_counters();
|
|
return handled;
|
|
}
|
|
|
|
static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
|
|
{
|
|
return mipsxx_pmu_handle_shared_irq();
|
|
}
|
|
|
|
/* 24K */
|
|
#define IS_BOTH_COUNTERS_24K_EVENT(b) \
|
|
((b) == 0 || (b) == 1 || (b) == 11)
|
|
|
|
/* 34K */
|
|
#define IS_BOTH_COUNTERS_34K_EVENT(b) \
|
|
((b) == 0 || (b) == 1 || (b) == 11)
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
#define IS_RANGE_P_34K_EVENT(r, b) \
|
|
((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
|
|
(b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
|
|
(r) == 176 || ((b) >= 50 && (b) <= 55) || \
|
|
((b) >= 64 && (b) <= 67))
|
|
#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
|
|
#endif
|
|
|
|
/* 74K */
|
|
#define IS_BOTH_COUNTERS_74K_EVENT(b) \
|
|
((b) == 0 || (b) == 1)
|
|
|
|
/* 1004K */
|
|
#define IS_BOTH_COUNTERS_1004K_EVENT(b) \
|
|
((b) == 0 || (b) == 1 || (b) == 11)
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
#define IS_RANGE_P_1004K_EVENT(r, b) \
|
|
((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
|
|
(b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
|
|
(r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
|
|
(r) == 188 || (b) == 61 || (b) == 62 || \
|
|
((b) >= 64 && (b) <= 67))
|
|
#define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
|
|
#endif
|
|
|
|
/*
|
|
* User can use 0-255 raw events, where 0-127 for the events of even
|
|
* counters, and 128-255 for odd counters. Note that bit 7 is used to
|
|
* indicate the parity. So, for example, when user wants to take the
|
|
* Event Num of 15 for odd counters (by referring to the user manual),
|
|
* then 128 needs to be added to 15 as the input for the event config,
|
|
* i.e., 143 (0x8F) to be used.
|
|
*/
|
|
static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
|
|
{
|
|
unsigned int raw_id = config & 0xff;
|
|
unsigned int base_id = raw_id & 0x7f;
|
|
|
|
raw_event.event_id = base_id;
|
|
|
|
switch (current_cpu_type()) {
|
|
case CPU_24K:
|
|
if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
|
|
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
|
|
else
|
|
raw_event.cntr_mask =
|
|
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
/*
|
|
* This is actually doing nothing. Non-multithreading
|
|
* CPUs will not check and calculate the range.
|
|
*/
|
|
raw_event.range = P;
|
|
#endif
|
|
break;
|
|
case CPU_34K:
|
|
if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
|
|
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
|
|
else
|
|
raw_event.cntr_mask =
|
|
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
|
|
raw_event.range = P;
|
|
else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
|
|
raw_event.range = V;
|
|
else
|
|
raw_event.range = T;
|
|
#endif
|
|
break;
|
|
case CPU_74K:
|
|
if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
|
|
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
|
|
else
|
|
raw_event.cntr_mask =
|
|
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
raw_event.range = P;
|
|
#endif
|
|
break;
|
|
case CPU_1004K:
|
|
if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
|
|
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
|
|
else
|
|
raw_event.cntr_mask =
|
|
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
|
|
raw_event.range = P;
|
|
else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
|
|
raw_event.range = V;
|
|
else
|
|
raw_event.range = T;
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
return &raw_event;
|
|
}
|
|
|
|
static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
|
|
{
|
|
unsigned int raw_id = config & 0xff;
|
|
unsigned int base_id = raw_id & 0x7f;
|
|
|
|
|
|
raw_event.cntr_mask = CNTR_ALL;
|
|
raw_event.event_id = base_id;
|
|
|
|
if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
|
|
if (base_id > 0x42)
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
} else {
|
|
if (base_id > 0x3a)
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
}
|
|
|
|
switch (base_id) {
|
|
case 0x00:
|
|
case 0x0f:
|
|
case 0x1e:
|
|
case 0x1f:
|
|
case 0x2f:
|
|
case 0x34:
|
|
case 0x3b ... 0x3f:
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return &raw_event;
|
|
}
|
|
|
|
static int __init
|
|
init_hw_perf_events(void)
|
|
{
|
|
int counters, irq;
|
|
int counter_bits;
|
|
|
|
pr_info("Performance counters: ");
|
|
|
|
counters = n_counters();
|
|
if (counters == 0) {
|
|
pr_cont("No available PMU.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
|
|
if (!cpu_has_mipsmt_pertccounters)
|
|
counters = counters_total_to_per_cpu(counters);
|
|
#endif
|
|
|
|
#ifdef MSC01E_INT_BASE
|
|
if (cpu_has_veic) {
|
|
/*
|
|
* Using platform specific interrupt controller defines.
|
|
*/
|
|
irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
|
|
} else {
|
|
#endif
|
|
if ((cp0_perfcount_irq >= 0) &&
|
|
(cp0_compare_irq != cp0_perfcount_irq))
|
|
irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
|
|
else
|
|
irq = -1;
|
|
#ifdef MSC01E_INT_BASE
|
|
}
|
|
#endif
|
|
|
|
mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
|
|
|
|
switch (current_cpu_type()) {
|
|
case CPU_24K:
|
|
mipspmu.name = "mips/24K";
|
|
mipspmu.general_event_map = &mipsxxcore_event_map;
|
|
mipspmu.cache_event_map = &mipsxxcore_cache_map;
|
|
break;
|
|
case CPU_34K:
|
|
mipspmu.name = "mips/34K";
|
|
mipspmu.general_event_map = &mipsxxcore_event_map;
|
|
mipspmu.cache_event_map = &mipsxxcore_cache_map;
|
|
break;
|
|
case CPU_74K:
|
|
mipspmu.name = "mips/74K";
|
|
mipspmu.general_event_map = &mipsxx74Kcore_event_map;
|
|
mipspmu.cache_event_map = &mipsxx74Kcore_cache_map;
|
|
break;
|
|
case CPU_1004K:
|
|
mipspmu.name = "mips/1004K";
|
|
mipspmu.general_event_map = &mipsxxcore_event_map;
|
|
mipspmu.cache_event_map = &mipsxxcore_cache_map;
|
|
break;
|
|
case CPU_CAVIUM_OCTEON:
|
|
case CPU_CAVIUM_OCTEON_PLUS:
|
|
case CPU_CAVIUM_OCTEON2:
|
|
mipspmu.name = "octeon";
|
|
mipspmu.general_event_map = &octeon_event_map;
|
|
mipspmu.cache_event_map = &octeon_cache_map;
|
|
mipspmu.map_raw_event = octeon_pmu_map_raw_event;
|
|
break;
|
|
default:
|
|
pr_cont("Either hardware does not support performance "
|
|
"counters, or not yet implemented.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
mipspmu.num_counters = counters;
|
|
mipspmu.irq = irq;
|
|
|
|
if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
|
|
mipspmu.max_period = (1ULL << 63) - 1;
|
|
mipspmu.valid_count = (1ULL << 63) - 1;
|
|
mipspmu.overflow = 1ULL << 63;
|
|
mipspmu.read_counter = mipsxx_pmu_read_counter_64;
|
|
mipspmu.write_counter = mipsxx_pmu_write_counter_64;
|
|
counter_bits = 64;
|
|
} else {
|
|
mipspmu.max_period = (1ULL << 31) - 1;
|
|
mipspmu.valid_count = (1ULL << 31) - 1;
|
|
mipspmu.overflow = 1ULL << 31;
|
|
mipspmu.read_counter = mipsxx_pmu_read_counter;
|
|
mipspmu.write_counter = mipsxx_pmu_write_counter;
|
|
counter_bits = 32;
|
|
}
|
|
|
|
on_each_cpu(reset_counters, (void *)(long)counters, 1);
|
|
|
|
pr_cont("%s PMU enabled, %d %d-bit counters available to each "
|
|
"CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
|
|
irq < 0 ? " (share with timer interrupt)" : "");
|
|
|
|
perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
|
|
|
|
return 0;
|
|
}
|
|
early_initcall(init_hw_perf_events);
|