mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-04 11:43:54 +08:00
adb795062f
This patch adds missed "__" prefixes, otherwise these functions works as irq/preemption safe. Reported-by: Torsten Kaiser <just.for.lkml@googlemail.com> Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Signed-off-by: Tejun Heo <tj@kernel.org>
813 lines
27 KiB
C
813 lines
27 KiB
C
#ifndef __LINUX_PERCPU_H
|
|
#define __LINUX_PERCPU_H
|
|
|
|
#include <linux/preempt.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/init.h>
|
|
|
|
#include <asm/percpu.h>
|
|
|
|
/* enough to cover all DEFINE_PER_CPUs in modules */
|
|
#ifdef CONFIG_MODULES
|
|
#define PERCPU_MODULE_RESERVE (8 << 10)
|
|
#else
|
|
#define PERCPU_MODULE_RESERVE 0
|
|
#endif
|
|
|
|
#ifndef PERCPU_ENOUGH_ROOM
|
|
#define PERCPU_ENOUGH_ROOM \
|
|
(ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
|
|
PERCPU_MODULE_RESERVE)
|
|
#endif
|
|
|
|
/*
|
|
* Must be an lvalue. Since @var must be a simple identifier,
|
|
* we force a syntax error here if it isn't.
|
|
*/
|
|
#define get_cpu_var(var) (*({ \
|
|
preempt_disable(); \
|
|
&__get_cpu_var(var); }))
|
|
|
|
/*
|
|
* The weird & is necessary because sparse considers (void)(var) to be
|
|
* a direct dereference of percpu variable (var).
|
|
*/
|
|
#define put_cpu_var(var) do { \
|
|
(void)&(var); \
|
|
preempt_enable(); \
|
|
} while (0)
|
|
|
|
#define get_cpu_ptr(var) ({ \
|
|
preempt_disable(); \
|
|
this_cpu_ptr(var); })
|
|
|
|
#define put_cpu_ptr(var) do { \
|
|
(void)(var); \
|
|
preempt_enable(); \
|
|
} while (0)
|
|
|
|
/* minimum unit size, also is the maximum supported allocation size */
|
|
#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10)
|
|
|
|
/*
|
|
* Percpu allocator can serve percpu allocations before slab is
|
|
* initialized which allows slab to depend on the percpu allocator.
|
|
* The following two parameters decide how much resource to
|
|
* preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or
|
|
* larger than PERCPU_DYNAMIC_EARLY_SIZE.
|
|
*/
|
|
#define PERCPU_DYNAMIC_EARLY_SLOTS 128
|
|
#define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10)
|
|
|
|
/*
|
|
* PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
|
|
* back on the first chunk for dynamic percpu allocation if arch is
|
|
* manually allocating and mapping it for faster access (as a part of
|
|
* large page mapping for example).
|
|
*
|
|
* The following values give between one and two pages of free space
|
|
* after typical minimal boot (2-way SMP, single disk and NIC) with
|
|
* both defconfig and a distro config on x86_64 and 32. More
|
|
* intelligent way to determine this would be nice.
|
|
*/
|
|
#if BITS_PER_LONG > 32
|
|
#define PERCPU_DYNAMIC_RESERVE (20 << 10)
|
|
#else
|
|
#define PERCPU_DYNAMIC_RESERVE (12 << 10)
|
|
#endif
|
|
|
|
extern void *pcpu_base_addr;
|
|
extern const unsigned long *pcpu_unit_offsets;
|
|
|
|
struct pcpu_group_info {
|
|
int nr_units; /* aligned # of units */
|
|
unsigned long base_offset; /* base address offset */
|
|
unsigned int *cpu_map; /* unit->cpu map, empty
|
|
* entries contain NR_CPUS */
|
|
};
|
|
|
|
struct pcpu_alloc_info {
|
|
size_t static_size;
|
|
size_t reserved_size;
|
|
size_t dyn_size;
|
|
size_t unit_size;
|
|
size_t atom_size;
|
|
size_t alloc_size;
|
|
size_t __ai_size; /* internal, don't use */
|
|
int nr_groups; /* 0 if grouping unnecessary */
|
|
struct pcpu_group_info groups[];
|
|
};
|
|
|
|
enum pcpu_fc {
|
|
PCPU_FC_AUTO,
|
|
PCPU_FC_EMBED,
|
|
PCPU_FC_PAGE,
|
|
|
|
PCPU_FC_NR,
|
|
};
|
|
extern const char *pcpu_fc_names[PCPU_FC_NR];
|
|
|
|
extern enum pcpu_fc pcpu_chosen_fc;
|
|
|
|
typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
|
|
size_t align);
|
|
typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
|
|
typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
|
|
typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
|
|
|
|
extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
|
|
int nr_units);
|
|
extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
|
|
|
|
extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
|
|
void *base_addr);
|
|
|
|
#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
|
|
extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
|
|
size_t atom_size,
|
|
pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
|
|
pcpu_fc_alloc_fn_t alloc_fn,
|
|
pcpu_fc_free_fn_t free_fn);
|
|
#endif
|
|
|
|
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
|
|
extern int __init pcpu_page_first_chunk(size_t reserved_size,
|
|
pcpu_fc_alloc_fn_t alloc_fn,
|
|
pcpu_fc_free_fn_t free_fn,
|
|
pcpu_fc_populate_pte_fn_t populate_pte_fn);
|
|
#endif
|
|
|
|
/*
|
|
* Use this to get to a cpu's version of the per-cpu object
|
|
* dynamically allocated. Non-atomic access to the current CPU's
|
|
* version should probably be combined with get_cpu()/put_cpu().
|
|
*/
|
|
#ifdef CONFIG_SMP
|
|
#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
|
|
#else
|
|
#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
|
|
#endif
|
|
|
|
extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
|
|
extern bool is_kernel_percpu_address(unsigned long addr);
|
|
|
|
#if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
|
|
extern void __init setup_per_cpu_areas(void);
|
|
#endif
|
|
extern void __init percpu_init_late(void);
|
|
|
|
extern void __percpu *__alloc_percpu(size_t size, size_t align);
|
|
extern void free_percpu(void __percpu *__pdata);
|
|
extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
|
|
|
|
#define alloc_percpu(type) \
|
|
(typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
|
|
|
|
/*
|
|
* Optional methods for optimized non-lvalue per-cpu variable access.
|
|
*
|
|
* @var can be a percpu variable or a field of it and its size should
|
|
* equal char, int or long. percpu_read() evaluates to a lvalue and
|
|
* all others to void.
|
|
*
|
|
* These operations are guaranteed to be atomic.
|
|
* The generic versions disable interrupts. Archs are
|
|
* encouraged to implement single-instruction alternatives which don't
|
|
* require protection.
|
|
*/
|
|
#ifndef percpu_read
|
|
# define percpu_read(var) \
|
|
({ \
|
|
typeof(var) *pr_ptr__ = &(var); \
|
|
typeof(var) pr_ret__; \
|
|
pr_ret__ = get_cpu_var(*pr_ptr__); \
|
|
put_cpu_var(*pr_ptr__); \
|
|
pr_ret__; \
|
|
})
|
|
#endif
|
|
|
|
#define __percpu_generic_to_op(var, val, op) \
|
|
do { \
|
|
typeof(var) *pgto_ptr__ = &(var); \
|
|
get_cpu_var(*pgto_ptr__) op val; \
|
|
put_cpu_var(*pgto_ptr__); \
|
|
} while (0)
|
|
|
|
#ifndef percpu_write
|
|
# define percpu_write(var, val) __percpu_generic_to_op(var, (val), =)
|
|
#endif
|
|
|
|
#ifndef percpu_add
|
|
# define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=)
|
|
#endif
|
|
|
|
#ifndef percpu_sub
|
|
# define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=)
|
|
#endif
|
|
|
|
#ifndef percpu_and
|
|
# define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=)
|
|
#endif
|
|
|
|
#ifndef percpu_or
|
|
# define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=)
|
|
#endif
|
|
|
|
#ifndef percpu_xor
|
|
# define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=)
|
|
#endif
|
|
|
|
/*
|
|
* Branching function to split up a function into a set of functions that
|
|
* are called for different scalar sizes of the objects handled.
|
|
*/
|
|
|
|
extern void __bad_size_call_parameter(void);
|
|
|
|
#define __pcpu_size_call_return(stem, variable) \
|
|
({ typeof(variable) pscr_ret__; \
|
|
__verify_pcpu_ptr(&(variable)); \
|
|
switch(sizeof(variable)) { \
|
|
case 1: pscr_ret__ = stem##1(variable);break; \
|
|
case 2: pscr_ret__ = stem##2(variable);break; \
|
|
case 4: pscr_ret__ = stem##4(variable);break; \
|
|
case 8: pscr_ret__ = stem##8(variable);break; \
|
|
default: \
|
|
__bad_size_call_parameter();break; \
|
|
} \
|
|
pscr_ret__; \
|
|
})
|
|
|
|
#define __pcpu_size_call_return2(stem, variable, ...) \
|
|
({ \
|
|
typeof(variable) pscr2_ret__; \
|
|
__verify_pcpu_ptr(&(variable)); \
|
|
switch(sizeof(variable)) { \
|
|
case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \
|
|
case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \
|
|
case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \
|
|
case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \
|
|
default: \
|
|
__bad_size_call_parameter(); break; \
|
|
} \
|
|
pscr2_ret__; \
|
|
})
|
|
|
|
/*
|
|
* Special handling for cmpxchg_double. cmpxchg_double is passed two
|
|
* percpu variables. The first has to be aligned to a double word
|
|
* boundary and the second has to follow directly thereafter.
|
|
* We enforce this on all architectures even if they don't support
|
|
* a double cmpxchg instruction, since it's a cheap requirement, and it
|
|
* avoids breaking the requirement for architectures with the instruction.
|
|
*/
|
|
#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \
|
|
({ \
|
|
bool pdcrb_ret__; \
|
|
__verify_pcpu_ptr(&pcp1); \
|
|
BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \
|
|
VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1))); \
|
|
VM_BUG_ON((unsigned long)(&pcp2) != \
|
|
(unsigned long)(&pcp1) + sizeof(pcp1)); \
|
|
switch(sizeof(pcp1)) { \
|
|
case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \
|
|
case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \
|
|
case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \
|
|
case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \
|
|
default: \
|
|
__bad_size_call_parameter(); break; \
|
|
} \
|
|
pdcrb_ret__; \
|
|
})
|
|
|
|
#define __pcpu_size_call(stem, variable, ...) \
|
|
do { \
|
|
__verify_pcpu_ptr(&(variable)); \
|
|
switch(sizeof(variable)) { \
|
|
case 1: stem##1(variable, __VA_ARGS__);break; \
|
|
case 2: stem##2(variable, __VA_ARGS__);break; \
|
|
case 4: stem##4(variable, __VA_ARGS__);break; \
|
|
case 8: stem##8(variable, __VA_ARGS__);break; \
|
|
default: \
|
|
__bad_size_call_parameter();break; \
|
|
} \
|
|
} while (0)
|
|
|
|
/*
|
|
* Optimized manipulation for memory allocated through the per cpu
|
|
* allocator or for addresses of per cpu variables.
|
|
*
|
|
* These operation guarantee exclusivity of access for other operations
|
|
* on the *same* processor. The assumption is that per cpu data is only
|
|
* accessed by a single processor instance (the current one).
|
|
*
|
|
* The first group is used for accesses that must be done in a
|
|
* preemption safe way since we know that the context is not preempt
|
|
* safe. Interrupts may occur. If the interrupt modifies the variable
|
|
* too then RMW actions will not be reliable.
|
|
*
|
|
* The arch code can provide optimized functions in two ways:
|
|
*
|
|
* 1. Override the function completely. F.e. define this_cpu_add().
|
|
* The arch must then ensure that the various scalar format passed
|
|
* are handled correctly.
|
|
*
|
|
* 2. Provide functions for certain scalar sizes. F.e. provide
|
|
* this_cpu_add_2() to provide per cpu atomic operations for 2 byte
|
|
* sized RMW actions. If arch code does not provide operations for
|
|
* a scalar size then the fallback in the generic code will be
|
|
* used.
|
|
*/
|
|
|
|
#define _this_cpu_generic_read(pcp) \
|
|
({ typeof(pcp) ret__; \
|
|
preempt_disable(); \
|
|
ret__ = *this_cpu_ptr(&(pcp)); \
|
|
preempt_enable(); \
|
|
ret__; \
|
|
})
|
|
|
|
#ifndef this_cpu_read
|
|
# ifndef this_cpu_read_1
|
|
# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
|
|
# endif
|
|
# ifndef this_cpu_read_2
|
|
# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
|
|
# endif
|
|
# ifndef this_cpu_read_4
|
|
# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
|
|
# endif
|
|
# ifndef this_cpu_read_8
|
|
# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
|
|
# endif
|
|
# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
|
|
#endif
|
|
|
|
#define _this_cpu_generic_to_op(pcp, val, op) \
|
|
do { \
|
|
unsigned long flags; \
|
|
raw_local_irq_save(flags); \
|
|
*__this_cpu_ptr(&(pcp)) op val; \
|
|
raw_local_irq_restore(flags); \
|
|
} while (0)
|
|
|
|
#ifndef this_cpu_write
|
|
# ifndef this_cpu_write_1
|
|
# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
|
|
# endif
|
|
# ifndef this_cpu_write_2
|
|
# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
|
|
# endif
|
|
# ifndef this_cpu_write_4
|
|
# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
|
|
# endif
|
|
# ifndef this_cpu_write_8
|
|
# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
|
|
# endif
|
|
# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
|
|
#endif
|
|
|
|
#ifndef this_cpu_add
|
|
# ifndef this_cpu_add_1
|
|
# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
|
|
# endif
|
|
# ifndef this_cpu_add_2
|
|
# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
|
|
# endif
|
|
# ifndef this_cpu_add_4
|
|
# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
|
|
# endif
|
|
# ifndef this_cpu_add_8
|
|
# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
|
|
# endif
|
|
# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
|
|
#endif
|
|
|
|
#ifndef this_cpu_sub
|
|
# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val))
|
|
#endif
|
|
|
|
#ifndef this_cpu_inc
|
|
# define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
|
|
#endif
|
|
|
|
#ifndef this_cpu_dec
|
|
# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
|
|
#endif
|
|
|
|
#ifndef this_cpu_and
|
|
# ifndef this_cpu_and_1
|
|
# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
|
|
# endif
|
|
# ifndef this_cpu_and_2
|
|
# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
|
|
# endif
|
|
# ifndef this_cpu_and_4
|
|
# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
|
|
# endif
|
|
# ifndef this_cpu_and_8
|
|
# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
|
|
# endif
|
|
# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
|
|
#endif
|
|
|
|
#ifndef this_cpu_or
|
|
# ifndef this_cpu_or_1
|
|
# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
|
|
# endif
|
|
# ifndef this_cpu_or_2
|
|
# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
|
|
# endif
|
|
# ifndef this_cpu_or_4
|
|
# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
|
|
# endif
|
|
# ifndef this_cpu_or_8
|
|
# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
|
|
# endif
|
|
# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
|
|
#endif
|
|
|
|
#ifndef this_cpu_xor
|
|
# ifndef this_cpu_xor_1
|
|
# define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
|
|
# endif
|
|
# ifndef this_cpu_xor_2
|
|
# define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
|
|
# endif
|
|
# ifndef this_cpu_xor_4
|
|
# define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
|
|
# endif
|
|
# ifndef this_cpu_xor_8
|
|
# define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
|
|
# endif
|
|
# define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
|
|
#endif
|
|
|
|
#define _this_cpu_generic_add_return(pcp, val) \
|
|
({ \
|
|
typeof(pcp) ret__; \
|
|
unsigned long flags; \
|
|
raw_local_irq_save(flags); \
|
|
__this_cpu_add(pcp, val); \
|
|
ret__ = __this_cpu_read(pcp); \
|
|
raw_local_irq_restore(flags); \
|
|
ret__; \
|
|
})
|
|
|
|
#ifndef this_cpu_add_return
|
|
# ifndef this_cpu_add_return_1
|
|
# define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val)
|
|
# endif
|
|
# ifndef this_cpu_add_return_2
|
|
# define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val)
|
|
# endif
|
|
# ifndef this_cpu_add_return_4
|
|
# define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val)
|
|
# endif
|
|
# ifndef this_cpu_add_return_8
|
|
# define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val)
|
|
# endif
|
|
# define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
|
|
#endif
|
|
|
|
#define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val))
|
|
#define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
|
|
#define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
|
|
|
|
#define _this_cpu_generic_xchg(pcp, nval) \
|
|
({ typeof(pcp) ret__; \
|
|
unsigned long flags; \
|
|
raw_local_irq_save(flags); \
|
|
ret__ = __this_cpu_read(pcp); \
|
|
__this_cpu_write(pcp, nval); \
|
|
raw_local_irq_restore(flags); \
|
|
ret__; \
|
|
})
|
|
|
|
#ifndef this_cpu_xchg
|
|
# ifndef this_cpu_xchg_1
|
|
# define this_cpu_xchg_1(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
|
|
# endif
|
|
# ifndef this_cpu_xchg_2
|
|
# define this_cpu_xchg_2(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
|
|
# endif
|
|
# ifndef this_cpu_xchg_4
|
|
# define this_cpu_xchg_4(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
|
|
# endif
|
|
# ifndef this_cpu_xchg_8
|
|
# define this_cpu_xchg_8(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
|
|
# endif
|
|
# define this_cpu_xchg(pcp, nval) \
|
|
__pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval)
|
|
#endif
|
|
|
|
#define _this_cpu_generic_cmpxchg(pcp, oval, nval) \
|
|
({ \
|
|
typeof(pcp) ret__; \
|
|
unsigned long flags; \
|
|
raw_local_irq_save(flags); \
|
|
ret__ = __this_cpu_read(pcp); \
|
|
if (ret__ == (oval)) \
|
|
__this_cpu_write(pcp, nval); \
|
|
raw_local_irq_restore(flags); \
|
|
ret__; \
|
|
})
|
|
|
|
#ifndef this_cpu_cmpxchg
|
|
# ifndef this_cpu_cmpxchg_1
|
|
# define this_cpu_cmpxchg_1(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
|
|
# endif
|
|
# ifndef this_cpu_cmpxchg_2
|
|
# define this_cpu_cmpxchg_2(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
|
|
# endif
|
|
# ifndef this_cpu_cmpxchg_4
|
|
# define this_cpu_cmpxchg_4(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
|
|
# endif
|
|
# ifndef this_cpu_cmpxchg_8
|
|
# define this_cpu_cmpxchg_8(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
|
|
# endif
|
|
# define this_cpu_cmpxchg(pcp, oval, nval) \
|
|
__pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
|
|
#endif
|
|
|
|
/*
|
|
* cmpxchg_double replaces two adjacent scalars at once. The first
|
|
* two parameters are per cpu variables which have to be of the same
|
|
* size. A truth value is returned to indicate success or failure
|
|
* (since a double register result is difficult to handle). There is
|
|
* very limited hardware support for these operations, so only certain
|
|
* sizes may work.
|
|
*/
|
|
#define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
|
({ \
|
|
int ret__; \
|
|
unsigned long flags; \
|
|
raw_local_irq_save(flags); \
|
|
ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2, \
|
|
oval1, oval2, nval1, nval2); \
|
|
raw_local_irq_restore(flags); \
|
|
ret__; \
|
|
})
|
|
|
|
#ifndef this_cpu_cmpxchg_double
|
|
# ifndef this_cpu_cmpxchg_double_1
|
|
# define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
|
_this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
|
|
# endif
|
|
# ifndef this_cpu_cmpxchg_double_2
|
|
# define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
|
_this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
|
|
# endif
|
|
# ifndef this_cpu_cmpxchg_double_4
|
|
# define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
|
_this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
|
|
# endif
|
|
# ifndef this_cpu_cmpxchg_double_8
|
|
# define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
|
_this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
|
|
# endif
|
|
# define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
|
__pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
|
|
#endif
|
|
|
|
/*
|
|
* Generic percpu operations for context that are safe from preemption/interrupts.
|
|
* Either we do not care about races or the caller has the
|
|
* responsibility of handling preemption/interrupt issues. Arch code can still
|
|
* override these instructions since the arch per cpu code may be more
|
|
* efficient and may actually get race freeness for free (that is the
|
|
* case for x86 for example).
|
|
*
|
|
* If there is no other protection through preempt disable and/or
|
|
* disabling interupts then one of these RMW operations can show unexpected
|
|
* behavior because the execution thread was rescheduled on another processor
|
|
* or an interrupt occurred and the same percpu variable was modified from
|
|
* the interrupt context.
|
|
*/
|
|
#ifndef __this_cpu_read
|
|
# ifndef __this_cpu_read_1
|
|
# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp)))
|
|
# endif
|
|
# ifndef __this_cpu_read_2
|
|
# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp)))
|
|
# endif
|
|
# ifndef __this_cpu_read_4
|
|
# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp)))
|
|
# endif
|
|
# ifndef __this_cpu_read_8
|
|
# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp)))
|
|
# endif
|
|
# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp))
|
|
#endif
|
|
|
|
#define __this_cpu_generic_to_op(pcp, val, op) \
|
|
do { \
|
|
*__this_cpu_ptr(&(pcp)) op val; \
|
|
} while (0)
|
|
|
|
#ifndef __this_cpu_write
|
|
# ifndef __this_cpu_write_1
|
|
# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
|
|
# endif
|
|
# ifndef __this_cpu_write_2
|
|
# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
|
|
# endif
|
|
# ifndef __this_cpu_write_4
|
|
# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
|
|
# endif
|
|
# ifndef __this_cpu_write_8
|
|
# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
|
|
# endif
|
|
# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val))
|
|
#endif
|
|
|
|
#ifndef __this_cpu_add
|
|
# ifndef __this_cpu_add_1
|
|
# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
|
|
# endif
|
|
# ifndef __this_cpu_add_2
|
|
# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
|
|
# endif
|
|
# ifndef __this_cpu_add_4
|
|
# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
|
|
# endif
|
|
# ifndef __this_cpu_add_8
|
|
# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
|
|
# endif
|
|
# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val))
|
|
#endif
|
|
|
|
#ifndef __this_cpu_sub
|
|
# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val))
|
|
#endif
|
|
|
|
#ifndef __this_cpu_inc
|
|
# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
|
|
#endif
|
|
|
|
#ifndef __this_cpu_dec
|
|
# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
|
|
#endif
|
|
|
|
#ifndef __this_cpu_and
|
|
# ifndef __this_cpu_and_1
|
|
# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
|
|
# endif
|
|
# ifndef __this_cpu_and_2
|
|
# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
|
|
# endif
|
|
# ifndef __this_cpu_and_4
|
|
# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
|
|
# endif
|
|
# ifndef __this_cpu_and_8
|
|
# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
|
|
# endif
|
|
# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val))
|
|
#endif
|
|
|
|
#ifndef __this_cpu_or
|
|
# ifndef __this_cpu_or_1
|
|
# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
|
|
# endif
|
|
# ifndef __this_cpu_or_2
|
|
# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
|
|
# endif
|
|
# ifndef __this_cpu_or_4
|
|
# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
|
|
# endif
|
|
# ifndef __this_cpu_or_8
|
|
# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
|
|
# endif
|
|
# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val))
|
|
#endif
|
|
|
|
#ifndef __this_cpu_xor
|
|
# ifndef __this_cpu_xor_1
|
|
# define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
|
|
# endif
|
|
# ifndef __this_cpu_xor_2
|
|
# define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
|
|
# endif
|
|
# ifndef __this_cpu_xor_4
|
|
# define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
|
|
# endif
|
|
# ifndef __this_cpu_xor_8
|
|
# define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
|
|
# endif
|
|
# define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val))
|
|
#endif
|
|
|
|
#define __this_cpu_generic_add_return(pcp, val) \
|
|
({ \
|
|
__this_cpu_add(pcp, val); \
|
|
__this_cpu_read(pcp); \
|
|
})
|
|
|
|
#ifndef __this_cpu_add_return
|
|
# ifndef __this_cpu_add_return_1
|
|
# define __this_cpu_add_return_1(pcp, val) __this_cpu_generic_add_return(pcp, val)
|
|
# endif
|
|
# ifndef __this_cpu_add_return_2
|
|
# define __this_cpu_add_return_2(pcp, val) __this_cpu_generic_add_return(pcp, val)
|
|
# endif
|
|
# ifndef __this_cpu_add_return_4
|
|
# define __this_cpu_add_return_4(pcp, val) __this_cpu_generic_add_return(pcp, val)
|
|
# endif
|
|
# ifndef __this_cpu_add_return_8
|
|
# define __this_cpu_add_return_8(pcp, val) __this_cpu_generic_add_return(pcp, val)
|
|
# endif
|
|
# define __this_cpu_add_return(pcp, val) \
|
|
__pcpu_size_call_return2(__this_cpu_add_return_, pcp, val)
|
|
#endif
|
|
|
|
#define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(val))
|
|
#define __this_cpu_inc_return(pcp) __this_cpu_add_return(pcp, 1)
|
|
#define __this_cpu_dec_return(pcp) __this_cpu_add_return(pcp, -1)
|
|
|
|
#define __this_cpu_generic_xchg(pcp, nval) \
|
|
({ typeof(pcp) ret__; \
|
|
ret__ = __this_cpu_read(pcp); \
|
|
__this_cpu_write(pcp, nval); \
|
|
ret__; \
|
|
})
|
|
|
|
#ifndef __this_cpu_xchg
|
|
# ifndef __this_cpu_xchg_1
|
|
# define __this_cpu_xchg_1(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
|
|
# endif
|
|
# ifndef __this_cpu_xchg_2
|
|
# define __this_cpu_xchg_2(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
|
|
# endif
|
|
# ifndef __this_cpu_xchg_4
|
|
# define __this_cpu_xchg_4(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
|
|
# endif
|
|
# ifndef __this_cpu_xchg_8
|
|
# define __this_cpu_xchg_8(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
|
|
# endif
|
|
# define __this_cpu_xchg(pcp, nval) \
|
|
__pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval)
|
|
#endif
|
|
|
|
#define __this_cpu_generic_cmpxchg(pcp, oval, nval) \
|
|
({ \
|
|
typeof(pcp) ret__; \
|
|
ret__ = __this_cpu_read(pcp); \
|
|
if (ret__ == (oval)) \
|
|
__this_cpu_write(pcp, nval); \
|
|
ret__; \
|
|
})
|
|
|
|
#ifndef __this_cpu_cmpxchg
|
|
# ifndef __this_cpu_cmpxchg_1
|
|
# define __this_cpu_cmpxchg_1(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
|
|
# endif
|
|
# ifndef __this_cpu_cmpxchg_2
|
|
# define __this_cpu_cmpxchg_2(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
|
|
# endif
|
|
# ifndef __this_cpu_cmpxchg_4
|
|
# define __this_cpu_cmpxchg_4(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
|
|
# endif
|
|
# ifndef __this_cpu_cmpxchg_8
|
|
# define __this_cpu_cmpxchg_8(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
|
|
# endif
|
|
# define __this_cpu_cmpxchg(pcp, oval, nval) \
|
|
__pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval)
|
|
#endif
|
|
|
|
#define __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
|
({ \
|
|
int __ret = 0; \
|
|
if (__this_cpu_read(pcp1) == (oval1) && \
|
|
__this_cpu_read(pcp2) == (oval2)) { \
|
|
__this_cpu_write(pcp1, (nval1)); \
|
|
__this_cpu_write(pcp2, (nval2)); \
|
|
__ret = 1; \
|
|
} \
|
|
(__ret); \
|
|
})
|
|
|
|
#ifndef __this_cpu_cmpxchg_double
|
|
# ifndef __this_cpu_cmpxchg_double_1
|
|
# define __this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
|
__this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
|
|
# endif
|
|
# ifndef __this_cpu_cmpxchg_double_2
|
|
# define __this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
|
__this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
|
|
# endif
|
|
# ifndef __this_cpu_cmpxchg_double_4
|
|
# define __this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
|
__this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
|
|
# endif
|
|
# ifndef __this_cpu_cmpxchg_double_8
|
|
# define __this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
|
__this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
|
|
# endif
|
|
# define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
|
__pcpu_double_call_return_bool(__this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
|
|
#endif
|
|
|
|
#endif /* __LINUX_PERCPU_H */
|