2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-04 11:24:04 +08:00
linux-next/crypto/aegis128-neon-inner.c
Arnd Bergmann 4e3901fa84 crypto: aegis128-neon - add header for internal prototypes
gcc warns if prototypes are only visible to the caller but
not the callee:

crypto/aegis128-neon-inner.c:134:6: warning: no previous prototype for 'crypto_aegis128_init_neon' [-Wmissing-prototypes]
crypto/aegis128-neon-inner.c:164:6: warning: no previous prototype for 'crypto_aegis128_update_neon' [-Wmissing-prototypes]
crypto/aegis128-neon-inner.c:221:6: warning: no previous prototype for 'crypto_aegis128_encrypt_chunk_neon' [-Wmissing-prototypes]
crypto/aegis128-neon-inner.c:270:6: warning: no previous prototype for 'crypto_aegis128_decrypt_chunk_neon' [-Wmissing-prototypes]
crypto/aegis128-neon-inner.c:316:5: warning: no previous prototype for 'crypto_aegis128_final_neon' [-Wmissing-prototypes]

The prototypes cannot be in the regular aegis.h, as the inner neon code
cannot include normal kernel headers. Instead add a new header just for
the functions provided by this file.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2023-05-24 18:12:33 +08:00

346 lines
8.4 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2019 Linaro, Ltd. <ard.biesheuvel@linaro.org>
*/
#ifdef CONFIG_ARM64
#include <asm/neon-intrinsics.h>
#define AES_ROUND "aese %0.16b, %1.16b \n\t aesmc %0.16b, %0.16b"
#else
#include <arm_neon.h>
#define AES_ROUND "aese.8 %q0, %q1 \n\t aesmc.8 %q0, %q0"
#endif
#define AEGIS_BLOCK_SIZE 16
#include <stddef.h>
#include "aegis-neon.h"
extern int aegis128_have_aes_insn;
void *memcpy(void *dest, const void *src, size_t n);
struct aegis128_state {
uint8x16_t v[5];
};
extern const uint8_t crypto_aes_sbox[];
static struct aegis128_state aegis128_load_state_neon(const void *state)
{
return (struct aegis128_state){ {
vld1q_u8(state),
vld1q_u8(state + 16),
vld1q_u8(state + 32),
vld1q_u8(state + 48),
vld1q_u8(state + 64)
} };
}
static void aegis128_save_state_neon(struct aegis128_state st, void *state)
{
vst1q_u8(state, st.v[0]);
vst1q_u8(state + 16, st.v[1]);
vst1q_u8(state + 32, st.v[2]);
vst1q_u8(state + 48, st.v[3]);
vst1q_u8(state + 64, st.v[4]);
}
static inline __attribute__((always_inline))
uint8x16_t aegis_aes_round(uint8x16_t w)
{
uint8x16_t z = {};
#ifdef CONFIG_ARM64
if (!__builtin_expect(aegis128_have_aes_insn, 1)) {
static const uint8_t shift_rows[] = {
0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3,
0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb,
};
static const uint8_t ror32by8[] = {
0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc,
};
uint8x16_t v;
// shift rows
w = vqtbl1q_u8(w, vld1q_u8(shift_rows));
// sub bytes
#ifndef CONFIG_CC_IS_GCC
v = vqtbl4q_u8(vld1q_u8_x4(crypto_aes_sbox), w);
v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0x40), w - 0x40);
v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0x80), w - 0x80);
v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0xc0), w - 0xc0);
#else
asm("tbl %0.16b, {v16.16b-v19.16b}, %1.16b" : "=w"(v) : "w"(w));
w -= 0x40;
asm("tbx %0.16b, {v20.16b-v23.16b}, %1.16b" : "+w"(v) : "w"(w));
w -= 0x40;
asm("tbx %0.16b, {v24.16b-v27.16b}, %1.16b" : "+w"(v) : "w"(w));
w -= 0x40;
asm("tbx %0.16b, {v28.16b-v31.16b}, %1.16b" : "+w"(v) : "w"(w));
#endif
// mix columns
w = (v << 1) ^ (uint8x16_t)(((int8x16_t)v >> 7) & 0x1b);
w ^= (uint8x16_t)vrev32q_u16((uint16x8_t)v);
w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
return w;
}
#endif
/*
* We use inline asm here instead of the vaeseq_u8/vaesmcq_u8 intrinsics
* to force the compiler to issue the aese/aesmc instructions in pairs.
* This is much faster on many cores, where the instruction pair can
* execute in a single cycle.
*/
asm(AES_ROUND : "+w"(w) : "w"(z));
return w;
}
static inline __attribute__((always_inline))
struct aegis128_state aegis128_update_neon(struct aegis128_state st,
uint8x16_t m)
{
m ^= aegis_aes_round(st.v[4]);
st.v[4] ^= aegis_aes_round(st.v[3]);
st.v[3] ^= aegis_aes_round(st.v[2]);
st.v[2] ^= aegis_aes_round(st.v[1]);
st.v[1] ^= aegis_aes_round(st.v[0]);
st.v[0] ^= m;
return st;
}
static inline __attribute__((always_inline))
void preload_sbox(void)
{
if (!IS_ENABLED(CONFIG_ARM64) ||
!IS_ENABLED(CONFIG_CC_IS_GCC) ||
__builtin_expect(aegis128_have_aes_insn, 1))
return;
asm("ld1 {v16.16b-v19.16b}, [%0], #64 \n\t"
"ld1 {v20.16b-v23.16b}, [%0], #64 \n\t"
"ld1 {v24.16b-v27.16b}, [%0], #64 \n\t"
"ld1 {v28.16b-v31.16b}, [%0] \n\t"
:: "r"(crypto_aes_sbox));
}
void crypto_aegis128_init_neon(void *state, const void *key, const void *iv)
{
static const uint8_t const0[] = {
0x00, 0x01, 0x01, 0x02, 0x03, 0x05, 0x08, 0x0d,
0x15, 0x22, 0x37, 0x59, 0x90, 0xe9, 0x79, 0x62,
};
static const uint8_t const1[] = {
0xdb, 0x3d, 0x18, 0x55, 0x6d, 0xc2, 0x2f, 0xf1,
0x20, 0x11, 0x31, 0x42, 0x73, 0xb5, 0x28, 0xdd,
};
uint8x16_t k = vld1q_u8(key);
uint8x16_t kiv = k ^ vld1q_u8(iv);
struct aegis128_state st = {{
kiv,
vld1q_u8(const1),
vld1q_u8(const0),
k ^ vld1q_u8(const0),
k ^ vld1q_u8(const1),
}};
int i;
preload_sbox();
for (i = 0; i < 5; i++) {
st = aegis128_update_neon(st, k);
st = aegis128_update_neon(st, kiv);
}
aegis128_save_state_neon(st, state);
}
void crypto_aegis128_update_neon(void *state, const void *msg)
{
struct aegis128_state st = aegis128_load_state_neon(state);
preload_sbox();
st = aegis128_update_neon(st, vld1q_u8(msg));
aegis128_save_state_neon(st, state);
}
#ifdef CONFIG_ARM
/*
* AArch32 does not provide these intrinsics natively because it does not
* implement the underlying instructions. AArch32 only provides 64-bit
* wide vtbl.8/vtbx.8 instruction, so use those instead.
*/
static uint8x16_t vqtbl1q_u8(uint8x16_t a, uint8x16_t b)
{
union {
uint8x16_t val;
uint8x8x2_t pair;
} __a = { a };
return vcombine_u8(vtbl2_u8(__a.pair, vget_low_u8(b)),
vtbl2_u8(__a.pair, vget_high_u8(b)));
}
static uint8x16_t vqtbx1q_u8(uint8x16_t v, uint8x16_t a, uint8x16_t b)
{
union {
uint8x16_t val;
uint8x8x2_t pair;
} __a = { a };
return vcombine_u8(vtbx2_u8(vget_low_u8(v), __a.pair, vget_low_u8(b)),
vtbx2_u8(vget_high_u8(v), __a.pair, vget_high_u8(b)));
}
static int8_t vminvq_s8(int8x16_t v)
{
int8x8_t s = vpmin_s8(vget_low_s8(v), vget_high_s8(v));
s = vpmin_s8(s, s);
s = vpmin_s8(s, s);
s = vpmin_s8(s, s);
return vget_lane_s8(s, 0);
}
#endif
static const uint8_t permute[] __aligned(64) = {
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
};
void crypto_aegis128_encrypt_chunk_neon(void *state, void *dst, const void *src,
unsigned int size)
{
struct aegis128_state st = aegis128_load_state_neon(state);
const int short_input = size < AEGIS_BLOCK_SIZE;
uint8x16_t msg;
preload_sbox();
while (size >= AEGIS_BLOCK_SIZE) {
uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
msg = vld1q_u8(src);
st = aegis128_update_neon(st, msg);
msg ^= s;
vst1q_u8(dst, msg);
size -= AEGIS_BLOCK_SIZE;
src += AEGIS_BLOCK_SIZE;
dst += AEGIS_BLOCK_SIZE;
}
if (size > 0) {
uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
uint8_t buf[AEGIS_BLOCK_SIZE];
const void *in = src;
void *out = dst;
uint8x16_t m;
if (__builtin_expect(short_input, 0))
in = out = memcpy(buf + AEGIS_BLOCK_SIZE - size, src, size);
m = vqtbl1q_u8(vld1q_u8(in + size - AEGIS_BLOCK_SIZE),
vld1q_u8(permute + 32 - size));
st = aegis128_update_neon(st, m);
vst1q_u8(out + size - AEGIS_BLOCK_SIZE,
vqtbl1q_u8(m ^ s, vld1q_u8(permute + size)));
if (__builtin_expect(short_input, 0))
memcpy(dst, out, size);
else
vst1q_u8(out - AEGIS_BLOCK_SIZE, msg);
}
aegis128_save_state_neon(st, state);
}
void crypto_aegis128_decrypt_chunk_neon(void *state, void *dst, const void *src,
unsigned int size)
{
struct aegis128_state st = aegis128_load_state_neon(state);
const int short_input = size < AEGIS_BLOCK_SIZE;
uint8x16_t msg;
preload_sbox();
while (size >= AEGIS_BLOCK_SIZE) {
msg = vld1q_u8(src) ^ st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
st = aegis128_update_neon(st, msg);
vst1q_u8(dst, msg);
size -= AEGIS_BLOCK_SIZE;
src += AEGIS_BLOCK_SIZE;
dst += AEGIS_BLOCK_SIZE;
}
if (size > 0) {
uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
uint8_t buf[AEGIS_BLOCK_SIZE];
const void *in = src;
void *out = dst;
uint8x16_t m;
if (__builtin_expect(short_input, 0))
in = out = memcpy(buf + AEGIS_BLOCK_SIZE - size, src, size);
m = s ^ vqtbx1q_u8(s, vld1q_u8(in + size - AEGIS_BLOCK_SIZE),
vld1q_u8(permute + 32 - size));
st = aegis128_update_neon(st, m);
vst1q_u8(out + size - AEGIS_BLOCK_SIZE,
vqtbl1q_u8(m, vld1q_u8(permute + size)));
if (__builtin_expect(short_input, 0))
memcpy(dst, out, size);
else
vst1q_u8(out - AEGIS_BLOCK_SIZE, msg);
}
aegis128_save_state_neon(st, state);
}
int crypto_aegis128_final_neon(void *state, void *tag_xor,
unsigned int assoclen,
unsigned int cryptlen,
unsigned int authsize)
{
struct aegis128_state st = aegis128_load_state_neon(state);
uint8x16_t v;
int i;
preload_sbox();
v = st.v[3] ^ (uint8x16_t)vcombine_u64(vmov_n_u64(8ULL * assoclen),
vmov_n_u64(8ULL * cryptlen));
for (i = 0; i < 7; i++)
st = aegis128_update_neon(st, v);
v = st.v[0] ^ st.v[1] ^ st.v[2] ^ st.v[3] ^ st.v[4];
if (authsize > 0) {
v = vqtbl1q_u8(~vceqq_u8(v, vld1q_u8(tag_xor)),
vld1q_u8(permute + authsize));
return vminvq_s8((int8x16_t)v);
}
vst1q_u8(tag_xor, v);
return 0;
}