2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 15:44:01 +08:00
linux-next/kernel/dma/pool.c
Tiezhu Yang 94035edcb4 dma-pool: no need to check return value of debugfs_create functions
When calling debugfs functions, there is no need to ever check the
return value.  The function can work or not, but the code logic should
never do something different based on this.

Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
2020-11-27 10:33:42 +01:00

296 lines
7.5 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2012 ARM Ltd.
* Copyright (C) 2020 Google LLC
*/
#include <linux/cma.h>
#include <linux/debugfs.h>
#include <linux/dma-map-ops.h>
#include <linux/dma-direct.h>
#include <linux/init.h>
#include <linux/genalloc.h>
#include <linux/set_memory.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
static struct gen_pool *atomic_pool_dma __ro_after_init;
static unsigned long pool_size_dma;
static struct gen_pool *atomic_pool_dma32 __ro_after_init;
static unsigned long pool_size_dma32;
static struct gen_pool *atomic_pool_kernel __ro_after_init;
static unsigned long pool_size_kernel;
/* Size can be defined by the coherent_pool command line */
static size_t atomic_pool_size;
/* Dynamic background expansion when the atomic pool is near capacity */
static struct work_struct atomic_pool_work;
static int __init early_coherent_pool(char *p)
{
atomic_pool_size = memparse(p, &p);
return 0;
}
early_param("coherent_pool", early_coherent_pool);
static void __init dma_atomic_pool_debugfs_init(void)
{
struct dentry *root;
root = debugfs_create_dir("dma_pools", NULL);
debugfs_create_ulong("pool_size_dma", 0400, root, &pool_size_dma);
debugfs_create_ulong("pool_size_dma32", 0400, root, &pool_size_dma32);
debugfs_create_ulong("pool_size_kernel", 0400, root, &pool_size_kernel);
}
static void dma_atomic_pool_size_add(gfp_t gfp, size_t size)
{
if (gfp & __GFP_DMA)
pool_size_dma += size;
else if (gfp & __GFP_DMA32)
pool_size_dma32 += size;
else
pool_size_kernel += size;
}
static bool cma_in_zone(gfp_t gfp)
{
unsigned long size;
phys_addr_t end;
struct cma *cma;
cma = dev_get_cma_area(NULL);
if (!cma)
return false;
size = cma_get_size(cma);
if (!size)
return false;
/* CMA can't cross zone boundaries, see cma_activate_area() */
end = cma_get_base(cma) + size - 1;
if (IS_ENABLED(CONFIG_ZONE_DMA) && (gfp & GFP_DMA))
return end <= DMA_BIT_MASK(zone_dma_bits);
if (IS_ENABLED(CONFIG_ZONE_DMA32) && (gfp & GFP_DMA32))
return end <= DMA_BIT_MASK(32);
return true;
}
static int atomic_pool_expand(struct gen_pool *pool, size_t pool_size,
gfp_t gfp)
{
unsigned int order;
struct page *page = NULL;
void *addr;
int ret = -ENOMEM;
/* Cannot allocate larger than MAX_ORDER-1 */
order = min(get_order(pool_size), MAX_ORDER-1);
do {
pool_size = 1 << (PAGE_SHIFT + order);
if (cma_in_zone(gfp))
page = dma_alloc_from_contiguous(NULL, 1 << order,
order, false);
if (!page)
page = alloc_pages(gfp, order);
} while (!page && order-- > 0);
if (!page)
goto out;
arch_dma_prep_coherent(page, pool_size);
#ifdef CONFIG_DMA_DIRECT_REMAP
addr = dma_common_contiguous_remap(page, pool_size,
pgprot_dmacoherent(PAGE_KERNEL),
__builtin_return_address(0));
if (!addr)
goto free_page;
#else
addr = page_to_virt(page);
#endif
/*
* Memory in the atomic DMA pools must be unencrypted, the pools do not
* shrink so no re-encryption occurs in dma_direct_free().
*/
ret = set_memory_decrypted((unsigned long)page_to_virt(page),
1 << order);
if (ret)
goto remove_mapping;
ret = gen_pool_add_virt(pool, (unsigned long)addr, page_to_phys(page),
pool_size, NUMA_NO_NODE);
if (ret)
goto encrypt_mapping;
dma_atomic_pool_size_add(gfp, pool_size);
return 0;
encrypt_mapping:
ret = set_memory_encrypted((unsigned long)page_to_virt(page),
1 << order);
if (WARN_ON_ONCE(ret)) {
/* Decrypt succeeded but encrypt failed, purposely leak */
goto out;
}
remove_mapping:
#ifdef CONFIG_DMA_DIRECT_REMAP
dma_common_free_remap(addr, pool_size);
#endif
free_page: __maybe_unused
__free_pages(page, order);
out:
return ret;
}
static void atomic_pool_resize(struct gen_pool *pool, gfp_t gfp)
{
if (pool && gen_pool_avail(pool) < atomic_pool_size)
atomic_pool_expand(pool, gen_pool_size(pool), gfp);
}
static void atomic_pool_work_fn(struct work_struct *work)
{
if (IS_ENABLED(CONFIG_ZONE_DMA))
atomic_pool_resize(atomic_pool_dma,
GFP_KERNEL | GFP_DMA);
if (IS_ENABLED(CONFIG_ZONE_DMA32))
atomic_pool_resize(atomic_pool_dma32,
GFP_KERNEL | GFP_DMA32);
atomic_pool_resize(atomic_pool_kernel, GFP_KERNEL);
}
static __init struct gen_pool *__dma_atomic_pool_init(size_t pool_size,
gfp_t gfp)
{
struct gen_pool *pool;
int ret;
pool = gen_pool_create(PAGE_SHIFT, NUMA_NO_NODE);
if (!pool)
return NULL;
gen_pool_set_algo(pool, gen_pool_first_fit_order_align, NULL);
ret = atomic_pool_expand(pool, pool_size, gfp);
if (ret) {
gen_pool_destroy(pool);
pr_err("DMA: failed to allocate %zu KiB %pGg pool for atomic allocation\n",
pool_size >> 10, &gfp);
return NULL;
}
pr_info("DMA: preallocated %zu KiB %pGg pool for atomic allocations\n",
gen_pool_size(pool) >> 10, &gfp);
return pool;
}
static int __init dma_atomic_pool_init(void)
{
int ret = 0;
/*
* If coherent_pool was not used on the command line, default the pool
* sizes to 128KB per 1GB of memory, min 128KB, max MAX_ORDER-1.
*/
if (!atomic_pool_size) {
unsigned long pages = totalram_pages() / (SZ_1G / SZ_128K);
pages = min_t(unsigned long, pages, MAX_ORDER_NR_PAGES);
atomic_pool_size = max_t(size_t, pages << PAGE_SHIFT, SZ_128K);
}
INIT_WORK(&atomic_pool_work, atomic_pool_work_fn);
atomic_pool_kernel = __dma_atomic_pool_init(atomic_pool_size,
GFP_KERNEL);
if (!atomic_pool_kernel)
ret = -ENOMEM;
if (IS_ENABLED(CONFIG_ZONE_DMA)) {
atomic_pool_dma = __dma_atomic_pool_init(atomic_pool_size,
GFP_KERNEL | GFP_DMA);
if (!atomic_pool_dma)
ret = -ENOMEM;
}
if (IS_ENABLED(CONFIG_ZONE_DMA32)) {
atomic_pool_dma32 = __dma_atomic_pool_init(atomic_pool_size,
GFP_KERNEL | GFP_DMA32);
if (!atomic_pool_dma32)
ret = -ENOMEM;
}
dma_atomic_pool_debugfs_init();
return ret;
}
postcore_initcall(dma_atomic_pool_init);
static inline struct gen_pool *dma_guess_pool(struct gen_pool *prev, gfp_t gfp)
{
if (prev == NULL) {
if (IS_ENABLED(CONFIG_ZONE_DMA32) && (gfp & GFP_DMA32))
return atomic_pool_dma32;
if (IS_ENABLED(CONFIG_ZONE_DMA) && (gfp & GFP_DMA))
return atomic_pool_dma;
return atomic_pool_kernel;
}
if (prev == atomic_pool_kernel)
return atomic_pool_dma32 ? atomic_pool_dma32 : atomic_pool_dma;
if (prev == atomic_pool_dma32)
return atomic_pool_dma;
return NULL;
}
static struct page *__dma_alloc_from_pool(struct device *dev, size_t size,
struct gen_pool *pool, void **cpu_addr,
bool (*phys_addr_ok)(struct device *, phys_addr_t, size_t))
{
unsigned long addr;
phys_addr_t phys;
addr = gen_pool_alloc(pool, size);
if (!addr)
return NULL;
phys = gen_pool_virt_to_phys(pool, addr);
if (phys_addr_ok && !phys_addr_ok(dev, phys, size)) {
gen_pool_free(pool, addr, size);
return NULL;
}
if (gen_pool_avail(pool) < atomic_pool_size)
schedule_work(&atomic_pool_work);
*cpu_addr = (void *)addr;
memset(*cpu_addr, 0, size);
return pfn_to_page(__phys_to_pfn(phys));
}
struct page *dma_alloc_from_pool(struct device *dev, size_t size,
void **cpu_addr, gfp_t gfp,
bool (*phys_addr_ok)(struct device *, phys_addr_t, size_t))
{
struct gen_pool *pool = NULL;
struct page *page;
while ((pool = dma_guess_pool(pool, gfp))) {
page = __dma_alloc_from_pool(dev, size, pool, cpu_addr,
phys_addr_ok);
if (page)
return page;
}
WARN(1, "Failed to get suitable pool for %s\n", dev_name(dev));
return NULL;
}
bool dma_free_from_pool(struct device *dev, void *start, size_t size)
{
struct gen_pool *pool = NULL;
while ((pool = dma_guess_pool(pool, 0))) {
if (!gen_pool_has_addr(pool, (unsigned long)start, size))
continue;
gen_pool_free(pool, (unsigned long)start, size);
return true;
}
return false;
}