mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-26 06:04:14 +08:00
e51df2c170
Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
976 lines
26 KiB
C
976 lines
26 KiB
C
/*
|
|
* The file intends to implement the functions needed by EEH, which is
|
|
* built on IODA compliant chip. Actually, lots of functions related
|
|
* to EEH would be built based on the OPAL APIs.
|
|
*
|
|
* Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/bootmem.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/io.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/msi.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/string.h>
|
|
|
|
#include <asm/eeh.h>
|
|
#include <asm/eeh_event.h>
|
|
#include <asm/io.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/msi_bitmap.h>
|
|
#include <asm/opal.h>
|
|
#include <asm/pci-bridge.h>
|
|
#include <asm/ppc-pci.h>
|
|
#include <asm/tce.h>
|
|
|
|
#include "powernv.h"
|
|
#include "pci.h"
|
|
|
|
static int ioda_eeh_nb_init = 0;
|
|
|
|
static int ioda_eeh_event(struct notifier_block *nb,
|
|
unsigned long events, void *change)
|
|
{
|
|
uint64_t changed_evts = (uint64_t)change;
|
|
|
|
/*
|
|
* We simply send special EEH event if EEH has
|
|
* been enabled, or clear pending events in
|
|
* case that we enable EEH soon
|
|
*/
|
|
if (!(changed_evts & OPAL_EVENT_PCI_ERROR) ||
|
|
!(events & OPAL_EVENT_PCI_ERROR))
|
|
return 0;
|
|
|
|
if (eeh_enabled())
|
|
eeh_send_failure_event(NULL);
|
|
else
|
|
opal_notifier_update_evt(OPAL_EVENT_PCI_ERROR, 0x0ul);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block ioda_eeh_nb = {
|
|
.notifier_call = ioda_eeh_event,
|
|
.next = NULL,
|
|
.priority = 0
|
|
};
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static int ioda_eeh_dbgfs_set(void *data, int offset, u64 val)
|
|
{
|
|
struct pci_controller *hose = data;
|
|
struct pnv_phb *phb = hose->private_data;
|
|
|
|
out_be64(phb->regs + offset, val);
|
|
return 0;
|
|
}
|
|
|
|
static int ioda_eeh_dbgfs_get(void *data, int offset, u64 *val)
|
|
{
|
|
struct pci_controller *hose = data;
|
|
struct pnv_phb *phb = hose->private_data;
|
|
|
|
*val = in_be64(phb->regs + offset);
|
|
return 0;
|
|
}
|
|
|
|
static int ioda_eeh_outb_dbgfs_set(void *data, u64 val)
|
|
{
|
|
return ioda_eeh_dbgfs_set(data, 0xD10, val);
|
|
}
|
|
|
|
static int ioda_eeh_outb_dbgfs_get(void *data, u64 *val)
|
|
{
|
|
return ioda_eeh_dbgfs_get(data, 0xD10, val);
|
|
}
|
|
|
|
static int ioda_eeh_inbA_dbgfs_set(void *data, u64 val)
|
|
{
|
|
return ioda_eeh_dbgfs_set(data, 0xD90, val);
|
|
}
|
|
|
|
static int ioda_eeh_inbA_dbgfs_get(void *data, u64 *val)
|
|
{
|
|
return ioda_eeh_dbgfs_get(data, 0xD90, val);
|
|
}
|
|
|
|
static int ioda_eeh_inbB_dbgfs_set(void *data, u64 val)
|
|
{
|
|
return ioda_eeh_dbgfs_set(data, 0xE10, val);
|
|
}
|
|
|
|
static int ioda_eeh_inbB_dbgfs_get(void *data, u64 *val)
|
|
{
|
|
return ioda_eeh_dbgfs_get(data, 0xE10, val);
|
|
}
|
|
|
|
DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_outb_dbgfs_ops, ioda_eeh_outb_dbgfs_get,
|
|
ioda_eeh_outb_dbgfs_set, "0x%llx\n");
|
|
DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_inbA_dbgfs_ops, ioda_eeh_inbA_dbgfs_get,
|
|
ioda_eeh_inbA_dbgfs_set, "0x%llx\n");
|
|
DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_inbB_dbgfs_ops, ioda_eeh_inbB_dbgfs_get,
|
|
ioda_eeh_inbB_dbgfs_set, "0x%llx\n");
|
|
#endif /* CONFIG_DEBUG_FS */
|
|
|
|
|
|
/**
|
|
* ioda_eeh_post_init - Chip dependent post initialization
|
|
* @hose: PCI controller
|
|
*
|
|
* The function will be called after eeh PEs and devices
|
|
* have been built. That means the EEH is ready to supply
|
|
* service with I/O cache.
|
|
*/
|
|
static int ioda_eeh_post_init(struct pci_controller *hose)
|
|
{
|
|
struct pnv_phb *phb = hose->private_data;
|
|
int ret;
|
|
|
|
/* Register OPAL event notifier */
|
|
if (!ioda_eeh_nb_init) {
|
|
ret = opal_notifier_register(&ioda_eeh_nb);
|
|
if (ret) {
|
|
pr_err("%s: Can't register OPAL event notifier (%d)\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
ioda_eeh_nb_init = 1;
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
if (!phb->has_dbgfs && phb->dbgfs) {
|
|
phb->has_dbgfs = 1;
|
|
|
|
debugfs_create_file("err_injct_outbound", 0600,
|
|
phb->dbgfs, hose,
|
|
&ioda_eeh_outb_dbgfs_ops);
|
|
debugfs_create_file("err_injct_inboundA", 0600,
|
|
phb->dbgfs, hose,
|
|
&ioda_eeh_inbA_dbgfs_ops);
|
|
debugfs_create_file("err_injct_inboundB", 0600,
|
|
phb->dbgfs, hose,
|
|
&ioda_eeh_inbB_dbgfs_ops);
|
|
}
|
|
#endif
|
|
|
|
/* If EEH is enabled, we're going to rely on that.
|
|
* Otherwise, we restore to conventional mechanism
|
|
* to clear frozen PE during PCI config access.
|
|
*/
|
|
if (eeh_enabled())
|
|
phb->flags |= PNV_PHB_FLAG_EEH;
|
|
else
|
|
phb->flags &= ~PNV_PHB_FLAG_EEH;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ioda_eeh_set_option - Set EEH operation or I/O setting
|
|
* @pe: EEH PE
|
|
* @option: options
|
|
*
|
|
* Enable or disable EEH option for the indicated PE. The
|
|
* function also can be used to enable I/O or DMA for the
|
|
* PE.
|
|
*/
|
|
static int ioda_eeh_set_option(struct eeh_pe *pe, int option)
|
|
{
|
|
struct pci_controller *hose = pe->phb;
|
|
struct pnv_phb *phb = hose->private_data;
|
|
int enable, ret = 0;
|
|
s64 rc;
|
|
|
|
/* Check on PE number */
|
|
if (pe->addr < 0 || pe->addr >= phb->ioda.total_pe) {
|
|
pr_err("%s: PE address %x out of range [0, %x] "
|
|
"on PHB#%x\n",
|
|
__func__, pe->addr, phb->ioda.total_pe,
|
|
hose->global_number);
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (option) {
|
|
case EEH_OPT_DISABLE:
|
|
return -EPERM;
|
|
case EEH_OPT_ENABLE:
|
|
return 0;
|
|
case EEH_OPT_THAW_MMIO:
|
|
enable = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO;
|
|
break;
|
|
case EEH_OPT_THAW_DMA:
|
|
enable = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA;
|
|
break;
|
|
default:
|
|
pr_warn("%s: Invalid option %d\n",
|
|
__func__, option);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* If PHB supports compound PE, to handle it */
|
|
if (phb->unfreeze_pe) {
|
|
ret = phb->unfreeze_pe(phb, pe->addr, enable);
|
|
} else {
|
|
rc = opal_pci_eeh_freeze_clear(phb->opal_id,
|
|
pe->addr,
|
|
enable);
|
|
if (rc != OPAL_SUCCESS) {
|
|
pr_warn("%s: Failure %lld enable %d for PHB#%x-PE#%x\n",
|
|
__func__, rc, option, phb->hose->global_number,
|
|
pe->addr);
|
|
ret = -EIO;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ioda_eeh_phb_diag(struct eeh_pe *pe)
|
|
{
|
|
struct pnv_phb *phb = pe->phb->private_data;
|
|
long rc;
|
|
|
|
rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data,
|
|
PNV_PCI_DIAG_BUF_SIZE);
|
|
if (rc != OPAL_SUCCESS)
|
|
pr_warn("%s: Failed to get diag-data for PHB#%x (%ld)\n",
|
|
__func__, pe->phb->global_number, rc);
|
|
}
|
|
|
|
static int ioda_eeh_get_phb_state(struct eeh_pe *pe)
|
|
{
|
|
struct pnv_phb *phb = pe->phb->private_data;
|
|
u8 fstate;
|
|
__be16 pcierr;
|
|
s64 rc;
|
|
int result = 0;
|
|
|
|
rc = opal_pci_eeh_freeze_status(phb->opal_id,
|
|
pe->addr,
|
|
&fstate,
|
|
&pcierr,
|
|
NULL);
|
|
if (rc != OPAL_SUCCESS) {
|
|
pr_warn("%s: Failure %lld getting PHB#%x state\n",
|
|
__func__, rc, phb->hose->global_number);
|
|
return EEH_STATE_NOT_SUPPORT;
|
|
}
|
|
|
|
/*
|
|
* Check PHB state. If the PHB is frozen for the
|
|
* first time, to dump the PHB diag-data.
|
|
*/
|
|
if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) {
|
|
result = (EEH_STATE_MMIO_ACTIVE |
|
|
EEH_STATE_DMA_ACTIVE |
|
|
EEH_STATE_MMIO_ENABLED |
|
|
EEH_STATE_DMA_ENABLED);
|
|
} else if (!(pe->state & EEH_PE_ISOLATED)) {
|
|
eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
|
|
ioda_eeh_phb_diag(pe);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static int ioda_eeh_get_pe_state(struct eeh_pe *pe)
|
|
{
|
|
struct pnv_phb *phb = pe->phb->private_data;
|
|
u8 fstate;
|
|
__be16 pcierr;
|
|
s64 rc;
|
|
int result;
|
|
|
|
/*
|
|
* We don't clobber hardware frozen state until PE
|
|
* reset is completed. In order to keep EEH core
|
|
* moving forward, we have to return operational
|
|
* state during PE reset.
|
|
*/
|
|
if (pe->state & EEH_PE_RESET) {
|
|
result = (EEH_STATE_MMIO_ACTIVE |
|
|
EEH_STATE_DMA_ACTIVE |
|
|
EEH_STATE_MMIO_ENABLED |
|
|
EEH_STATE_DMA_ENABLED);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Fetch PE state from hardware. If the PHB
|
|
* supports compound PE, let it handle that.
|
|
*/
|
|
if (phb->get_pe_state) {
|
|
fstate = phb->get_pe_state(phb, pe->addr);
|
|
} else {
|
|
rc = opal_pci_eeh_freeze_status(phb->opal_id,
|
|
pe->addr,
|
|
&fstate,
|
|
&pcierr,
|
|
NULL);
|
|
if (rc != OPAL_SUCCESS) {
|
|
pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n",
|
|
__func__, rc, phb->hose->global_number, pe->addr);
|
|
return EEH_STATE_NOT_SUPPORT;
|
|
}
|
|
}
|
|
|
|
/* Figure out state */
|
|
switch (fstate) {
|
|
case OPAL_EEH_STOPPED_NOT_FROZEN:
|
|
result = (EEH_STATE_MMIO_ACTIVE |
|
|
EEH_STATE_DMA_ACTIVE |
|
|
EEH_STATE_MMIO_ENABLED |
|
|
EEH_STATE_DMA_ENABLED);
|
|
break;
|
|
case OPAL_EEH_STOPPED_MMIO_FREEZE:
|
|
result = (EEH_STATE_DMA_ACTIVE |
|
|
EEH_STATE_DMA_ENABLED);
|
|
break;
|
|
case OPAL_EEH_STOPPED_DMA_FREEZE:
|
|
result = (EEH_STATE_MMIO_ACTIVE |
|
|
EEH_STATE_MMIO_ENABLED);
|
|
break;
|
|
case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE:
|
|
result = 0;
|
|
break;
|
|
case OPAL_EEH_STOPPED_RESET:
|
|
result = EEH_STATE_RESET_ACTIVE;
|
|
break;
|
|
case OPAL_EEH_STOPPED_TEMP_UNAVAIL:
|
|
result = EEH_STATE_UNAVAILABLE;
|
|
break;
|
|
case OPAL_EEH_STOPPED_PERM_UNAVAIL:
|
|
result = EEH_STATE_NOT_SUPPORT;
|
|
break;
|
|
default:
|
|
result = EEH_STATE_NOT_SUPPORT;
|
|
pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n",
|
|
__func__, phb->hose->global_number,
|
|
pe->addr, fstate);
|
|
}
|
|
|
|
/*
|
|
* If PHB supports compound PE, to freeze all
|
|
* slave PEs for consistency.
|
|
*
|
|
* If the PE is switching to frozen state for the
|
|
* first time, to dump the PHB diag-data.
|
|
*/
|
|
if (!(result & EEH_STATE_NOT_SUPPORT) &&
|
|
!(result & EEH_STATE_UNAVAILABLE) &&
|
|
!(result & EEH_STATE_MMIO_ACTIVE) &&
|
|
!(result & EEH_STATE_DMA_ACTIVE) &&
|
|
!(pe->state & EEH_PE_ISOLATED)) {
|
|
if (phb->freeze_pe)
|
|
phb->freeze_pe(phb, pe->addr);
|
|
|
|
eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
|
|
ioda_eeh_phb_diag(pe);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* ioda_eeh_get_state - Retrieve the state of PE
|
|
* @pe: EEH PE
|
|
*
|
|
* The PE's state should be retrieved from the PEEV, PEST
|
|
* IODA tables. Since the OPAL has exported the function
|
|
* to do it, it'd better to use that.
|
|
*/
|
|
static int ioda_eeh_get_state(struct eeh_pe *pe)
|
|
{
|
|
struct pnv_phb *phb = pe->phb->private_data;
|
|
|
|
/* Sanity check on PE number. PHB PE should have 0 */
|
|
if (pe->addr < 0 ||
|
|
pe->addr >= phb->ioda.total_pe) {
|
|
pr_warn("%s: PHB#%x-PE#%x out of range [0, %x]\n",
|
|
__func__, phb->hose->global_number,
|
|
pe->addr, phb->ioda.total_pe);
|
|
return EEH_STATE_NOT_SUPPORT;
|
|
}
|
|
|
|
if (pe->type & EEH_PE_PHB)
|
|
return ioda_eeh_get_phb_state(pe);
|
|
|
|
return ioda_eeh_get_pe_state(pe);
|
|
}
|
|
|
|
static s64 ioda_eeh_phb_poll(struct pnv_phb *phb)
|
|
{
|
|
s64 rc = OPAL_HARDWARE;
|
|
|
|
while (1) {
|
|
rc = opal_pci_poll(phb->opal_id);
|
|
if (rc <= 0)
|
|
break;
|
|
|
|
if (system_state < SYSTEM_RUNNING)
|
|
udelay(1000 * rc);
|
|
else
|
|
msleep(rc);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
int ioda_eeh_phb_reset(struct pci_controller *hose, int option)
|
|
{
|
|
struct pnv_phb *phb = hose->private_data;
|
|
s64 rc = OPAL_HARDWARE;
|
|
|
|
pr_debug("%s: Reset PHB#%x, option=%d\n",
|
|
__func__, hose->global_number, option);
|
|
|
|
/* Issue PHB complete reset request */
|
|
if (option == EEH_RESET_FUNDAMENTAL ||
|
|
option == EEH_RESET_HOT)
|
|
rc = opal_pci_reset(phb->opal_id,
|
|
OPAL_PHB_COMPLETE,
|
|
OPAL_ASSERT_RESET);
|
|
else if (option == EEH_RESET_DEACTIVATE)
|
|
rc = opal_pci_reset(phb->opal_id,
|
|
OPAL_PHB_COMPLETE,
|
|
OPAL_DEASSERT_RESET);
|
|
if (rc < 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Poll state of the PHB until the request is done
|
|
* successfully. The PHB reset is usually PHB complete
|
|
* reset followed by hot reset on root bus. So we also
|
|
* need the PCI bus settlement delay.
|
|
*/
|
|
rc = ioda_eeh_phb_poll(phb);
|
|
if (option == EEH_RESET_DEACTIVATE) {
|
|
if (system_state < SYSTEM_RUNNING)
|
|
udelay(1000 * EEH_PE_RST_SETTLE_TIME);
|
|
else
|
|
msleep(EEH_PE_RST_SETTLE_TIME);
|
|
}
|
|
out:
|
|
if (rc != OPAL_SUCCESS)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ioda_eeh_root_reset(struct pci_controller *hose, int option)
|
|
{
|
|
struct pnv_phb *phb = hose->private_data;
|
|
s64 rc = OPAL_SUCCESS;
|
|
|
|
pr_debug("%s: Reset PHB#%x, option=%d\n",
|
|
__func__, hose->global_number, option);
|
|
|
|
/*
|
|
* During the reset deassert time, we needn't care
|
|
* the reset scope because the firmware does nothing
|
|
* for fundamental or hot reset during deassert phase.
|
|
*/
|
|
if (option == EEH_RESET_FUNDAMENTAL)
|
|
rc = opal_pci_reset(phb->opal_id,
|
|
OPAL_PCI_FUNDAMENTAL_RESET,
|
|
OPAL_ASSERT_RESET);
|
|
else if (option == EEH_RESET_HOT)
|
|
rc = opal_pci_reset(phb->opal_id,
|
|
OPAL_PCI_HOT_RESET,
|
|
OPAL_ASSERT_RESET);
|
|
else if (option == EEH_RESET_DEACTIVATE)
|
|
rc = opal_pci_reset(phb->opal_id,
|
|
OPAL_PCI_HOT_RESET,
|
|
OPAL_DEASSERT_RESET);
|
|
if (rc < 0)
|
|
goto out;
|
|
|
|
/* Poll state of the PHB until the request is done */
|
|
rc = ioda_eeh_phb_poll(phb);
|
|
if (option == EEH_RESET_DEACTIVATE)
|
|
msleep(EEH_PE_RST_SETTLE_TIME);
|
|
out:
|
|
if (rc != OPAL_SUCCESS)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ioda_eeh_bridge_reset(struct pci_dev *dev, int option)
|
|
|
|
{
|
|
struct device_node *dn = pci_device_to_OF_node(dev);
|
|
struct eeh_dev *edev = of_node_to_eeh_dev(dn);
|
|
int aer = edev ? edev->aer_cap : 0;
|
|
u32 ctrl;
|
|
|
|
pr_debug("%s: Reset PCI bus %04x:%02x with option %d\n",
|
|
__func__, pci_domain_nr(dev->bus),
|
|
dev->bus->number, option);
|
|
|
|
switch (option) {
|
|
case EEH_RESET_FUNDAMENTAL:
|
|
case EEH_RESET_HOT:
|
|
/* Don't report linkDown event */
|
|
if (aer) {
|
|
eeh_ops->read_config(dn, aer + PCI_ERR_UNCOR_MASK,
|
|
4, &ctrl);
|
|
ctrl |= PCI_ERR_UNC_SURPDN;
|
|
eeh_ops->write_config(dn, aer + PCI_ERR_UNCOR_MASK,
|
|
4, ctrl);
|
|
}
|
|
|
|
eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &ctrl);
|
|
ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
|
|
eeh_ops->write_config(dn, PCI_BRIDGE_CONTROL, 2, ctrl);
|
|
msleep(EEH_PE_RST_HOLD_TIME);
|
|
|
|
break;
|
|
case EEH_RESET_DEACTIVATE:
|
|
eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &ctrl);
|
|
ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
|
|
eeh_ops->write_config(dn, PCI_BRIDGE_CONTROL, 2, ctrl);
|
|
msleep(EEH_PE_RST_SETTLE_TIME);
|
|
|
|
/* Continue reporting linkDown event */
|
|
if (aer) {
|
|
eeh_ops->read_config(dn, aer + PCI_ERR_UNCOR_MASK,
|
|
4, &ctrl);
|
|
ctrl &= ~PCI_ERR_UNC_SURPDN;
|
|
eeh_ops->write_config(dn, aer + PCI_ERR_UNCOR_MASK,
|
|
4, ctrl);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void pnv_pci_reset_secondary_bus(struct pci_dev *dev)
|
|
{
|
|
struct pci_controller *hose;
|
|
|
|
if (pci_is_root_bus(dev->bus)) {
|
|
hose = pci_bus_to_host(dev->bus);
|
|
ioda_eeh_root_reset(hose, EEH_RESET_HOT);
|
|
ioda_eeh_root_reset(hose, EEH_RESET_DEACTIVATE);
|
|
} else {
|
|
ioda_eeh_bridge_reset(dev, EEH_RESET_HOT);
|
|
ioda_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ioda_eeh_reset - Reset the indicated PE
|
|
* @pe: EEH PE
|
|
* @option: reset option
|
|
*
|
|
* Do reset on the indicated PE. For PCI bus sensitive PE,
|
|
* we need to reset the parent p2p bridge. The PHB has to
|
|
* be reinitialized if the p2p bridge is root bridge. For
|
|
* PCI device sensitive PE, we will try to reset the device
|
|
* through FLR. For now, we don't have OPAL APIs to do HARD
|
|
* reset yet, so all reset would be SOFT (HOT) reset.
|
|
*/
|
|
static int ioda_eeh_reset(struct eeh_pe *pe, int option)
|
|
{
|
|
struct pci_controller *hose = pe->phb;
|
|
struct pci_bus *bus;
|
|
int ret;
|
|
|
|
/*
|
|
* For PHB reset, we always have complete reset. For those PEs whose
|
|
* primary bus derived from root complex (root bus) or root port
|
|
* (usually bus#1), we apply hot or fundamental reset on the root port.
|
|
* For other PEs, we always have hot reset on the PE primary bus.
|
|
*
|
|
* Here, we have different design to pHyp, which always clear the
|
|
* frozen state during PE reset. However, the good idea here from
|
|
* benh is to keep frozen state before we get PE reset done completely
|
|
* (until BAR restore). With the frozen state, HW drops illegal IO
|
|
* or MMIO access, which can incur recrusive frozen PE during PE
|
|
* reset. The side effect is that EEH core has to clear the frozen
|
|
* state explicitly after BAR restore.
|
|
*/
|
|
if (pe->type & EEH_PE_PHB) {
|
|
ret = ioda_eeh_phb_reset(hose, option);
|
|
} else {
|
|
bus = eeh_pe_bus_get(pe);
|
|
if (pci_is_root_bus(bus) ||
|
|
pci_is_root_bus(bus->parent))
|
|
ret = ioda_eeh_root_reset(hose, option);
|
|
else
|
|
ret = ioda_eeh_bridge_reset(bus->self, option);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ioda_eeh_get_log - Retrieve error log
|
|
* @pe: frozen PE
|
|
* @severity: permanent or temporary error
|
|
* @drv_log: device driver log
|
|
* @len: length of device driver log
|
|
*
|
|
* Retrieve error log, which contains log from device driver
|
|
* and firmware.
|
|
*/
|
|
static int ioda_eeh_get_log(struct eeh_pe *pe, int severity,
|
|
char *drv_log, unsigned long len)
|
|
{
|
|
pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ioda_eeh_configure_bridge - Configure the PCI bridges for the indicated PE
|
|
* @pe: EEH PE
|
|
*
|
|
* For particular PE, it might have included PCI bridges. In order
|
|
* to make the PE work properly, those PCI bridges should be configured
|
|
* correctly. However, we need do nothing on P7IOC since the reset
|
|
* function will do everything that should be covered by the function.
|
|
*/
|
|
static int ioda_eeh_configure_bridge(struct eeh_pe *pe)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void ioda_eeh_hub_diag_common(struct OpalIoP7IOCErrorData *data)
|
|
{
|
|
/* GEM */
|
|
if (data->gemXfir || data->gemRfir ||
|
|
data->gemRirqfir || data->gemMask || data->gemRwof)
|
|
pr_info(" GEM: %016llx %016llx %016llx %016llx %016llx\n",
|
|
be64_to_cpu(data->gemXfir),
|
|
be64_to_cpu(data->gemRfir),
|
|
be64_to_cpu(data->gemRirqfir),
|
|
be64_to_cpu(data->gemMask),
|
|
be64_to_cpu(data->gemRwof));
|
|
|
|
/* LEM */
|
|
if (data->lemFir || data->lemErrMask ||
|
|
data->lemAction0 || data->lemAction1 || data->lemWof)
|
|
pr_info(" LEM: %016llx %016llx %016llx %016llx %016llx\n",
|
|
be64_to_cpu(data->lemFir),
|
|
be64_to_cpu(data->lemErrMask),
|
|
be64_to_cpu(data->lemAction0),
|
|
be64_to_cpu(data->lemAction1),
|
|
be64_to_cpu(data->lemWof));
|
|
}
|
|
|
|
static void ioda_eeh_hub_diag(struct pci_controller *hose)
|
|
{
|
|
struct pnv_phb *phb = hose->private_data;
|
|
struct OpalIoP7IOCErrorData *data = &phb->diag.hub_diag;
|
|
long rc;
|
|
|
|
rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data));
|
|
if (rc != OPAL_SUCCESS) {
|
|
pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n",
|
|
__func__, phb->hub_id, rc);
|
|
return;
|
|
}
|
|
|
|
switch (data->type) {
|
|
case OPAL_P7IOC_DIAG_TYPE_RGC:
|
|
pr_info("P7IOC diag-data for RGC\n\n");
|
|
ioda_eeh_hub_diag_common(data);
|
|
if (data->rgc.rgcStatus || data->rgc.rgcLdcp)
|
|
pr_info(" RGC: %016llx %016llx\n",
|
|
be64_to_cpu(data->rgc.rgcStatus),
|
|
be64_to_cpu(data->rgc.rgcLdcp));
|
|
break;
|
|
case OPAL_P7IOC_DIAG_TYPE_BI:
|
|
pr_info("P7IOC diag-data for BI %s\n\n",
|
|
data->bi.biDownbound ? "Downbound" : "Upbound");
|
|
ioda_eeh_hub_diag_common(data);
|
|
if (data->bi.biLdcp0 || data->bi.biLdcp1 ||
|
|
data->bi.biLdcp2 || data->bi.biFenceStatus)
|
|
pr_info(" BI: %016llx %016llx %016llx %016llx\n",
|
|
be64_to_cpu(data->bi.biLdcp0),
|
|
be64_to_cpu(data->bi.biLdcp1),
|
|
be64_to_cpu(data->bi.biLdcp2),
|
|
be64_to_cpu(data->bi.biFenceStatus));
|
|
break;
|
|
case OPAL_P7IOC_DIAG_TYPE_CI:
|
|
pr_info("P7IOC diag-data for CI Port %d\n\n",
|
|
data->ci.ciPort);
|
|
ioda_eeh_hub_diag_common(data);
|
|
if (data->ci.ciPortStatus || data->ci.ciPortLdcp)
|
|
pr_info(" CI: %016llx %016llx\n",
|
|
be64_to_cpu(data->ci.ciPortStatus),
|
|
be64_to_cpu(data->ci.ciPortLdcp));
|
|
break;
|
|
case OPAL_P7IOC_DIAG_TYPE_MISC:
|
|
pr_info("P7IOC diag-data for MISC\n\n");
|
|
ioda_eeh_hub_diag_common(data);
|
|
break;
|
|
case OPAL_P7IOC_DIAG_TYPE_I2C:
|
|
pr_info("P7IOC diag-data for I2C\n\n");
|
|
ioda_eeh_hub_diag_common(data);
|
|
break;
|
|
default:
|
|
pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n",
|
|
__func__, phb->hub_id, data->type);
|
|
}
|
|
}
|
|
|
|
static int ioda_eeh_get_pe(struct pci_controller *hose,
|
|
u16 pe_no, struct eeh_pe **pe)
|
|
{
|
|
struct pnv_phb *phb = hose->private_data;
|
|
struct pnv_ioda_pe *pnv_pe;
|
|
struct eeh_pe *dev_pe;
|
|
struct eeh_dev edev;
|
|
|
|
/*
|
|
* If PHB supports compound PE, to fetch
|
|
* the master PE because slave PE is invisible
|
|
* to EEH core.
|
|
*/
|
|
if (phb->get_pe_state) {
|
|
pnv_pe = &phb->ioda.pe_array[pe_no];
|
|
if (pnv_pe->flags & PNV_IODA_PE_SLAVE) {
|
|
pnv_pe = pnv_pe->master;
|
|
WARN_ON(!pnv_pe ||
|
|
!(pnv_pe->flags & PNV_IODA_PE_MASTER));
|
|
pe_no = pnv_pe->pe_number;
|
|
}
|
|
}
|
|
|
|
/* Find the PE according to PE# */
|
|
memset(&edev, 0, sizeof(struct eeh_dev));
|
|
edev.phb = hose;
|
|
edev.pe_config_addr = pe_no;
|
|
dev_pe = eeh_pe_get(&edev);
|
|
if (!dev_pe)
|
|
return -EEXIST;
|
|
|
|
/*
|
|
* At this point, we're sure the compound PE should
|
|
* be put into frozen state.
|
|
*/
|
|
*pe = dev_pe;
|
|
if (phb->freeze_pe &&
|
|
!(dev_pe->state & EEH_PE_ISOLATED))
|
|
phb->freeze_pe(phb, pe_no);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ioda_eeh_next_error - Retrieve next error for EEH core to handle
|
|
* @pe: The affected PE
|
|
*
|
|
* The function is expected to be called by EEH core while it gets
|
|
* special EEH event (without binding PE). The function calls to
|
|
* OPAL APIs for next error to handle. The informational error is
|
|
* handled internally by platform. However, the dead IOC, dead PHB,
|
|
* fenced PHB and frozen PE should be handled by EEH core eventually.
|
|
*/
|
|
static int ioda_eeh_next_error(struct eeh_pe **pe)
|
|
{
|
|
struct pci_controller *hose;
|
|
struct pnv_phb *phb;
|
|
struct eeh_pe *phb_pe, *parent_pe;
|
|
__be64 frozen_pe_no;
|
|
__be16 err_type, severity;
|
|
int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
|
|
long rc;
|
|
int state, ret = EEH_NEXT_ERR_NONE;
|
|
|
|
/*
|
|
* While running here, it's safe to purge the event queue.
|
|
* And we should keep the cached OPAL notifier event sychronized
|
|
* between the kernel and firmware.
|
|
*/
|
|
eeh_remove_event(NULL, false);
|
|
opal_notifier_update_evt(OPAL_EVENT_PCI_ERROR, 0x0ul);
|
|
|
|
list_for_each_entry(hose, &hose_list, list_node) {
|
|
/*
|
|
* If the subordinate PCI buses of the PHB has been
|
|
* removed or is exactly under error recovery, we
|
|
* needn't take care of it any more.
|
|
*/
|
|
phb = hose->private_data;
|
|
phb_pe = eeh_phb_pe_get(hose);
|
|
if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED))
|
|
continue;
|
|
|
|
rc = opal_pci_next_error(phb->opal_id,
|
|
&frozen_pe_no, &err_type, &severity);
|
|
|
|
/* If OPAL API returns error, we needn't proceed */
|
|
if (rc != OPAL_SUCCESS) {
|
|
pr_devel("%s: Invalid return value on "
|
|
"PHB#%x (0x%lx) from opal_pci_next_error",
|
|
__func__, hose->global_number, rc);
|
|
continue;
|
|
}
|
|
|
|
/* If the PHB doesn't have error, stop processing */
|
|
if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR ||
|
|
be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) {
|
|
pr_devel("%s: No error found on PHB#%x\n",
|
|
__func__, hose->global_number);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Processing the error. We're expecting the error with
|
|
* highest priority reported upon multiple errors on the
|
|
* specific PHB.
|
|
*/
|
|
pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n",
|
|
__func__, be16_to_cpu(err_type), be16_to_cpu(severity),
|
|
be64_to_cpu(frozen_pe_no), hose->global_number);
|
|
switch (be16_to_cpu(err_type)) {
|
|
case OPAL_EEH_IOC_ERROR:
|
|
if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) {
|
|
pr_err("EEH: dead IOC detected\n");
|
|
ret = EEH_NEXT_ERR_DEAD_IOC;
|
|
} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
|
|
pr_info("EEH: IOC informative error "
|
|
"detected\n");
|
|
ioda_eeh_hub_diag(hose);
|
|
ret = EEH_NEXT_ERR_NONE;
|
|
}
|
|
|
|
break;
|
|
case OPAL_EEH_PHB_ERROR:
|
|
if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) {
|
|
*pe = phb_pe;
|
|
pr_err("EEH: dead PHB#%x detected, "
|
|
"location: %s\n",
|
|
hose->global_number,
|
|
eeh_pe_loc_get(phb_pe));
|
|
ret = EEH_NEXT_ERR_DEAD_PHB;
|
|
} else if (be16_to_cpu(severity) ==
|
|
OPAL_EEH_SEV_PHB_FENCED) {
|
|
*pe = phb_pe;
|
|
pr_err("EEH: Fenced PHB#%x detected, "
|
|
"location: %s\n",
|
|
hose->global_number,
|
|
eeh_pe_loc_get(phb_pe));
|
|
ret = EEH_NEXT_ERR_FENCED_PHB;
|
|
} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
|
|
pr_info("EEH: PHB#%x informative error "
|
|
"detected, location: %s\n",
|
|
hose->global_number,
|
|
eeh_pe_loc_get(phb_pe));
|
|
ioda_eeh_phb_diag(phb_pe);
|
|
pnv_pci_dump_phb_diag_data(hose, phb_pe->data);
|
|
ret = EEH_NEXT_ERR_NONE;
|
|
}
|
|
|
|
break;
|
|
case OPAL_EEH_PE_ERROR:
|
|
/*
|
|
* If we can't find the corresponding PE, we
|
|
* just try to unfreeze.
|
|
*/
|
|
if (ioda_eeh_get_pe(hose,
|
|
be64_to_cpu(frozen_pe_no), pe)) {
|
|
/* Try best to clear it */
|
|
pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n",
|
|
hose->global_number, frozen_pe_no);
|
|
pr_info("EEH: PHB location: %s\n",
|
|
eeh_pe_loc_get(phb_pe));
|
|
opal_pci_eeh_freeze_clear(phb->opal_id, frozen_pe_no,
|
|
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
|
|
ret = EEH_NEXT_ERR_NONE;
|
|
} else if ((*pe)->state & EEH_PE_ISOLATED ||
|
|
eeh_pe_passed(*pe)) {
|
|
ret = EEH_NEXT_ERR_NONE;
|
|
} else {
|
|
pr_err("EEH: Frozen PE#%x on PHB#%x detected\n",
|
|
(*pe)->addr, (*pe)->phb->global_number);
|
|
pr_err("EEH: PE location: %s, PHB location: %s\n",
|
|
eeh_pe_loc_get(*pe), eeh_pe_loc_get(phb_pe));
|
|
ret = EEH_NEXT_ERR_FROZEN_PE;
|
|
}
|
|
|
|
break;
|
|
default:
|
|
pr_warn("%s: Unexpected error type %d\n",
|
|
__func__, be16_to_cpu(err_type));
|
|
}
|
|
|
|
/*
|
|
* EEH core will try recover from fenced PHB or
|
|
* frozen PE. In the time for frozen PE, EEH core
|
|
* enable IO path for that before collecting logs,
|
|
* but it ruins the site. So we have to dump the
|
|
* log in advance here.
|
|
*/
|
|
if ((ret == EEH_NEXT_ERR_FROZEN_PE ||
|
|
ret == EEH_NEXT_ERR_FENCED_PHB) &&
|
|
!((*pe)->state & EEH_PE_ISOLATED)) {
|
|
eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
|
|
ioda_eeh_phb_diag(*pe);
|
|
}
|
|
|
|
/*
|
|
* We probably have the frozen parent PE out there and
|
|
* we need have to handle frozen parent PE firstly.
|
|
*/
|
|
if (ret == EEH_NEXT_ERR_FROZEN_PE) {
|
|
parent_pe = (*pe)->parent;
|
|
while (parent_pe) {
|
|
/* Hit the ceiling ? */
|
|
if (parent_pe->type & EEH_PE_PHB)
|
|
break;
|
|
|
|
/* Frozen parent PE ? */
|
|
state = ioda_eeh_get_state(parent_pe);
|
|
if (state > 0 &&
|
|
(state & active_flags) != active_flags)
|
|
*pe = parent_pe;
|
|
|
|
/* Next parent level */
|
|
parent_pe = parent_pe->parent;
|
|
}
|
|
|
|
/* We possibly migrate to another PE */
|
|
eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
|
|
}
|
|
|
|
/*
|
|
* If we have no errors on the specific PHB or only
|
|
* informative error there, we continue poking it.
|
|
* Otherwise, we need actions to be taken by upper
|
|
* layer.
|
|
*/
|
|
if (ret > EEH_NEXT_ERR_INF)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct pnv_eeh_ops ioda_eeh_ops = {
|
|
.post_init = ioda_eeh_post_init,
|
|
.set_option = ioda_eeh_set_option,
|
|
.get_state = ioda_eeh_get_state,
|
|
.reset = ioda_eeh_reset,
|
|
.get_log = ioda_eeh_get_log,
|
|
.configure_bridge = ioda_eeh_configure_bridge,
|
|
.next_error = ioda_eeh_next_error
|
|
};
|