mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-28 07:04:00 +08:00
42d279f913
Create a char device region that will allow acquisition of user portals in order to allow applications to submit DMA operations. A char device will be created per work queue that gets exposed. The workqueue type "user" is used to mark a work queue for user char device. For example if the workqueue 0 of DSA device 0 is marked for char device, then a device node of /dev/dsa/wq0.0 will be created. Signed-off-by: Dave Jiang <dave.jiang@intel.com> Link: https://lore.kernel.org/r/157965026985.73301.976523230037106742.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Vinod Koul <vkoul@kernel.org>
262 lines
6.3 KiB
C
262 lines
6.3 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright(c) 2019 Intel Corporation. All rights rsvd. */
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/io-64-nonatomic-lo-hi.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <uapi/linux/idxd.h>
|
|
#include "../dmaengine.h"
|
|
#include "idxd.h"
|
|
#include "registers.h"
|
|
|
|
void idxd_device_wqs_clear_state(struct idxd_device *idxd)
|
|
{
|
|
int i;
|
|
|
|
lockdep_assert_held(&idxd->dev_lock);
|
|
for (i = 0; i < idxd->max_wqs; i++) {
|
|
struct idxd_wq *wq = &idxd->wqs[i];
|
|
|
|
wq->state = IDXD_WQ_DISABLED;
|
|
}
|
|
}
|
|
|
|
static int idxd_restart(struct idxd_device *idxd)
|
|
{
|
|
int i, rc;
|
|
|
|
lockdep_assert_held(&idxd->dev_lock);
|
|
|
|
rc = __idxd_device_reset(idxd);
|
|
if (rc < 0)
|
|
goto out;
|
|
|
|
rc = idxd_device_config(idxd);
|
|
if (rc < 0)
|
|
goto out;
|
|
|
|
rc = idxd_device_enable(idxd);
|
|
if (rc < 0)
|
|
goto out;
|
|
|
|
for (i = 0; i < idxd->max_wqs; i++) {
|
|
struct idxd_wq *wq = &idxd->wqs[i];
|
|
|
|
if (wq->state == IDXD_WQ_ENABLED) {
|
|
rc = idxd_wq_enable(wq);
|
|
if (rc < 0) {
|
|
dev_warn(&idxd->pdev->dev,
|
|
"Unable to re-enable wq %s\n",
|
|
dev_name(&wq->conf_dev));
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
out:
|
|
idxd_device_wqs_clear_state(idxd);
|
|
idxd->state = IDXD_DEV_HALTED;
|
|
return rc;
|
|
}
|
|
|
|
irqreturn_t idxd_irq_handler(int vec, void *data)
|
|
{
|
|
struct idxd_irq_entry *irq_entry = data;
|
|
struct idxd_device *idxd = irq_entry->idxd;
|
|
|
|
idxd_mask_msix_vector(idxd, irq_entry->id);
|
|
return IRQ_WAKE_THREAD;
|
|
}
|
|
|
|
irqreturn_t idxd_misc_thread(int vec, void *data)
|
|
{
|
|
struct idxd_irq_entry *irq_entry = data;
|
|
struct idxd_device *idxd = irq_entry->idxd;
|
|
struct device *dev = &idxd->pdev->dev;
|
|
union gensts_reg gensts;
|
|
u32 cause, val = 0;
|
|
int i, rc;
|
|
bool err = false;
|
|
|
|
cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET);
|
|
|
|
if (cause & IDXD_INTC_ERR) {
|
|
spin_lock_bh(&idxd->dev_lock);
|
|
for (i = 0; i < 4; i++)
|
|
idxd->sw_err.bits[i] = ioread64(idxd->reg_base +
|
|
IDXD_SWERR_OFFSET + i * sizeof(u64));
|
|
iowrite64(IDXD_SWERR_ACK, idxd->reg_base + IDXD_SWERR_OFFSET);
|
|
|
|
if (idxd->sw_err.valid && idxd->sw_err.wq_idx_valid) {
|
|
int id = idxd->sw_err.wq_idx;
|
|
struct idxd_wq *wq = &idxd->wqs[id];
|
|
|
|
if (wq->type == IDXD_WQT_USER)
|
|
wake_up_interruptible(&wq->idxd_cdev.err_queue);
|
|
} else {
|
|
int i;
|
|
|
|
for (i = 0; i < idxd->max_wqs; i++) {
|
|
struct idxd_wq *wq = &idxd->wqs[i];
|
|
|
|
if (wq->type == IDXD_WQT_USER)
|
|
wake_up_interruptible(&wq->idxd_cdev.err_queue);
|
|
}
|
|
}
|
|
|
|
spin_unlock_bh(&idxd->dev_lock);
|
|
val |= IDXD_INTC_ERR;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
dev_warn(dev, "err[%d]: %#16.16llx\n",
|
|
i, idxd->sw_err.bits[i]);
|
|
err = true;
|
|
}
|
|
|
|
if (cause & IDXD_INTC_CMD) {
|
|
/* Driver does use command interrupts */
|
|
val |= IDXD_INTC_CMD;
|
|
}
|
|
|
|
if (cause & IDXD_INTC_OCCUPY) {
|
|
/* Driver does not utilize occupancy interrupt */
|
|
val |= IDXD_INTC_OCCUPY;
|
|
}
|
|
|
|
if (cause & IDXD_INTC_PERFMON_OVFL) {
|
|
/*
|
|
* Driver does not utilize perfmon counter overflow interrupt
|
|
* yet.
|
|
*/
|
|
val |= IDXD_INTC_PERFMON_OVFL;
|
|
}
|
|
|
|
val ^= cause;
|
|
if (val)
|
|
dev_warn_once(dev, "Unexpected interrupt cause bits set: %#x\n",
|
|
val);
|
|
|
|
iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET);
|
|
if (!err)
|
|
return IRQ_HANDLED;
|
|
|
|
gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET);
|
|
if (gensts.state == IDXD_DEVICE_STATE_HALT) {
|
|
spin_lock_bh(&idxd->dev_lock);
|
|
if (gensts.reset_type == IDXD_DEVICE_RESET_SOFTWARE) {
|
|
rc = idxd_restart(idxd);
|
|
if (rc < 0)
|
|
dev_err(&idxd->pdev->dev,
|
|
"idxd restart failed, device halt.");
|
|
} else {
|
|
idxd_device_wqs_clear_state(idxd);
|
|
idxd->state = IDXD_DEV_HALTED;
|
|
dev_err(&idxd->pdev->dev,
|
|
"idxd halted, need %s.\n",
|
|
gensts.reset_type == IDXD_DEVICE_RESET_FLR ?
|
|
"FLR" : "system reset");
|
|
}
|
|
spin_unlock_bh(&idxd->dev_lock);
|
|
}
|
|
|
|
idxd_unmask_msix_vector(idxd, irq_entry->id);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int irq_process_pending_llist(struct idxd_irq_entry *irq_entry,
|
|
int *processed)
|
|
{
|
|
struct idxd_desc *desc, *t;
|
|
struct llist_node *head;
|
|
int queued = 0;
|
|
|
|
head = llist_del_all(&irq_entry->pending_llist);
|
|
if (!head)
|
|
return 0;
|
|
|
|
llist_for_each_entry_safe(desc, t, head, llnode) {
|
|
if (desc->completion->status) {
|
|
idxd_dma_complete_txd(desc, IDXD_COMPLETE_NORMAL);
|
|
idxd_free_desc(desc->wq, desc);
|
|
(*processed)++;
|
|
} else {
|
|
list_add_tail(&desc->list, &irq_entry->work_list);
|
|
queued++;
|
|
}
|
|
}
|
|
|
|
return queued;
|
|
}
|
|
|
|
static int irq_process_work_list(struct idxd_irq_entry *irq_entry,
|
|
int *processed)
|
|
{
|
|
struct list_head *node, *next;
|
|
int queued = 0;
|
|
|
|
if (list_empty(&irq_entry->work_list))
|
|
return 0;
|
|
|
|
list_for_each_safe(node, next, &irq_entry->work_list) {
|
|
struct idxd_desc *desc =
|
|
container_of(node, struct idxd_desc, list);
|
|
|
|
if (desc->completion->status) {
|
|
list_del(&desc->list);
|
|
/* process and callback */
|
|
idxd_dma_complete_txd(desc, IDXD_COMPLETE_NORMAL);
|
|
idxd_free_desc(desc->wq, desc);
|
|
(*processed)++;
|
|
} else {
|
|
queued++;
|
|
}
|
|
}
|
|
|
|
return queued;
|
|
}
|
|
|
|
irqreturn_t idxd_wq_thread(int irq, void *data)
|
|
{
|
|
struct idxd_irq_entry *irq_entry = data;
|
|
int rc, processed = 0, retry = 0;
|
|
|
|
/*
|
|
* There are two lists we are processing. The pending_llist is where
|
|
* submmiter adds all the submitted descriptor after sending it to
|
|
* the workqueue. It's a lockless singly linked list. The work_list
|
|
* is the common linux double linked list. We are in a scenario of
|
|
* multiple producers and a single consumer. The producers are all
|
|
* the kernel submitters of descriptors, and the consumer is the
|
|
* kernel irq handler thread for the msix vector when using threaded
|
|
* irq. To work with the restrictions of llist to remain lockless,
|
|
* we are doing the following steps:
|
|
* 1. Iterate through the work_list and process any completed
|
|
* descriptor. Delete the completed entries during iteration.
|
|
* 2. llist_del_all() from the pending list.
|
|
* 3. Iterate through the llist that was deleted from the pending list
|
|
* and process the completed entries.
|
|
* 4. If the entry is still waiting on hardware, list_add_tail() to
|
|
* the work_list.
|
|
* 5. Repeat until no more descriptors.
|
|
*/
|
|
do {
|
|
rc = irq_process_work_list(irq_entry, &processed);
|
|
if (rc != 0) {
|
|
retry++;
|
|
continue;
|
|
}
|
|
|
|
rc = irq_process_pending_llist(irq_entry, &processed);
|
|
} while (rc != 0 && retry != 10);
|
|
|
|
idxd_unmask_msix_vector(irq_entry->idxd, irq_entry->id);
|
|
|
|
if (processed == 0)
|
|
return IRQ_NONE;
|
|
|
|
return IRQ_HANDLED;
|
|
}
|