2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 06:34:17 +08:00
linux-next/drivers/net/rrunner.c
Joe Perches c061b18df0 drivers/net: Remove address use from assignments of function pointers
"foo = &function" is more commonly written "foo = function"

Done with coccinelle script:

// <smpl>
@r@
identifier f;
@@

f(...) { ... }

@@
identifier r.f;
@@

- &f
+ f
// </smpl>

drivers/net/tehuti.c used a function and struct with the
same name, the function was renamed.

Compile tested x86 only.

Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-08-25 15:35:43 -07:00

1717 lines
42 KiB
C

/*
* rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
*
* Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
*
* Thanks to Essential Communication for providing us with hardware
* and very comprehensive documentation without which I would not have
* been able to write this driver. A special thank you to John Gibbon
* for sorting out the legal issues, with the NDA, allowing the code to
* be released under the GPL.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
* stupid bugs in my code.
*
* Softnet support and various other patches from Val Henson of
* ODS/Essential.
*
* PCI DMA mapping code partly based on work by Francois Romieu.
*/
#define DEBUG 1
#define RX_DMA_SKBUFF 1
#define PKT_COPY_THRESHOLD 512
#include <linux/module.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/hippidevice.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <net/sock.h>
#include <asm/system.h>
#include <asm/cache.h>
#include <asm/byteorder.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#define rr_if_busy(dev) netif_queue_stopped(dev)
#define rr_if_running(dev) netif_running(dev)
#include "rrunner.h"
#define RUN_AT(x) (jiffies + (x))
MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
MODULE_LICENSE("GPL");
static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
static const struct net_device_ops rr_netdev_ops = {
.ndo_open = rr_open,
.ndo_stop = rr_close,
.ndo_do_ioctl = rr_ioctl,
.ndo_start_xmit = rr_start_xmit,
.ndo_change_mtu = hippi_change_mtu,
.ndo_set_mac_address = hippi_mac_addr,
};
/*
* Implementation notes:
*
* The DMA engine only allows for DMA within physical 64KB chunks of
* memory. The current approach of the driver (and stack) is to use
* linear blocks of memory for the skbuffs. However, as the data block
* is always the first part of the skb and skbs are 2^n aligned so we
* are guarantted to get the whole block within one 64KB align 64KB
* chunk.
*
* On the long term, relying on being able to allocate 64KB linear
* chunks of memory is not feasible and the skb handling code and the
* stack will need to know about I/O vectors or something similar.
*/
static int __devinit rr_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *dev;
static int version_disp;
u8 pci_latency;
struct rr_private *rrpriv;
void *tmpptr;
dma_addr_t ring_dma;
int ret = -ENOMEM;
dev = alloc_hippi_dev(sizeof(struct rr_private));
if (!dev)
goto out3;
ret = pci_enable_device(pdev);
if (ret) {
ret = -ENODEV;
goto out2;
}
rrpriv = netdev_priv(dev);
SET_NETDEV_DEV(dev, &pdev->dev);
if (pci_request_regions(pdev, "rrunner")) {
ret = -EIO;
goto out;
}
pci_set_drvdata(pdev, dev);
rrpriv->pci_dev = pdev;
spin_lock_init(&rrpriv->lock);
dev->irq = pdev->irq;
dev->netdev_ops = &rr_netdev_ops;
dev->base_addr = pci_resource_start(pdev, 0);
/* display version info if adapter is found */
if (!version_disp) {
/* set display flag to TRUE so that */
/* we only display this string ONCE */
version_disp = 1;
printk(version);
}
pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
if (pci_latency <= 0x58){
pci_latency = 0x58;
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
}
pci_set_master(pdev);
printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
"at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
dev->base_addr, dev->irq, pci_latency);
/*
* Remap the regs into kernel space.
*/
rrpriv->regs = ioremap(dev->base_addr, 0x1000);
if (!rrpriv->regs){
printk(KERN_ERR "%s: Unable to map I/O register, "
"RoadRunner will be disabled.\n", dev->name);
ret = -EIO;
goto out;
}
tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
rrpriv->tx_ring = tmpptr;
rrpriv->tx_ring_dma = ring_dma;
if (!tmpptr) {
ret = -ENOMEM;
goto out;
}
tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
rrpriv->rx_ring = tmpptr;
rrpriv->rx_ring_dma = ring_dma;
if (!tmpptr) {
ret = -ENOMEM;
goto out;
}
tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
rrpriv->evt_ring = tmpptr;
rrpriv->evt_ring_dma = ring_dma;
if (!tmpptr) {
ret = -ENOMEM;
goto out;
}
/*
* Don't access any register before this point!
*/
#ifdef __BIG_ENDIAN
writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
&rrpriv->regs->HostCtrl);
#endif
/*
* Need to add a case for little-endian 64-bit hosts here.
*/
rr_init(dev);
dev->base_addr = 0;
ret = register_netdev(dev);
if (ret)
goto out;
return 0;
out:
if (rrpriv->rx_ring)
pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
rrpriv->rx_ring_dma);
if (rrpriv->tx_ring)
pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
rrpriv->tx_ring_dma);
if (rrpriv->regs)
iounmap(rrpriv->regs);
if (pdev) {
pci_release_regions(pdev);
pci_set_drvdata(pdev, NULL);
}
out2:
free_netdev(dev);
out3:
return ret;
}
static void __devexit rr_remove_one (struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
if (dev) {
struct rr_private *rr = netdev_priv(dev);
if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
printk(KERN_ERR "%s: trying to unload running NIC\n",
dev->name);
writel(HALT_NIC, &rr->regs->HostCtrl);
}
pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
rr->evt_ring_dma);
pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
rr->rx_ring_dma);
pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
rr->tx_ring_dma);
unregister_netdev(dev);
iounmap(rr->regs);
free_netdev(dev);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
}
/*
* Commands are considered to be slow, thus there is no reason to
* inline this.
*/
static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
{
struct rr_regs __iomem *regs;
u32 idx;
regs = rrpriv->regs;
/*
* This is temporary - it will go away in the final version.
* We probably also want to make this function inline.
*/
if (readl(&regs->HostCtrl) & NIC_HALTED){
printk("issuing command for halted NIC, code 0x%x, "
"HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
if (readl(&regs->Mode) & FATAL_ERR)
printk("error codes Fail1 %02x, Fail2 %02x\n",
readl(&regs->Fail1), readl(&regs->Fail2));
}
idx = rrpriv->info->cmd_ctrl.pi;
writel(*(u32*)(cmd), &regs->CmdRing[idx]);
wmb();
idx = (idx - 1) % CMD_RING_ENTRIES;
rrpriv->info->cmd_ctrl.pi = idx;
wmb();
if (readl(&regs->Mode) & FATAL_ERR)
printk("error code %02x\n", readl(&regs->Fail1));
}
/*
* Reset the board in a sensible manner. The NIC is already halted
* when we get here and a spin-lock is held.
*/
static int rr_reset(struct net_device *dev)
{
struct rr_private *rrpriv;
struct rr_regs __iomem *regs;
u32 start_pc;
int i;
rrpriv = netdev_priv(dev);
regs = rrpriv->regs;
rr_load_firmware(dev);
writel(0x01000000, &regs->TX_state);
writel(0xff800000, &regs->RX_state);
writel(0, &regs->AssistState);
writel(CLEAR_INTA, &regs->LocalCtrl);
writel(0x01, &regs->BrkPt);
writel(0, &regs->Timer);
writel(0, &regs->TimerRef);
writel(RESET_DMA, &regs->DmaReadState);
writel(RESET_DMA, &regs->DmaWriteState);
writel(0, &regs->DmaWriteHostHi);
writel(0, &regs->DmaWriteHostLo);
writel(0, &regs->DmaReadHostHi);
writel(0, &regs->DmaReadHostLo);
writel(0, &regs->DmaReadLen);
writel(0, &regs->DmaWriteLen);
writel(0, &regs->DmaWriteLcl);
writel(0, &regs->DmaWriteIPchecksum);
writel(0, &regs->DmaReadLcl);
writel(0, &regs->DmaReadIPchecksum);
writel(0, &regs->PciState);
#if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
#elif (BITS_PER_LONG == 64)
writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
#else
writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
#endif
#if 0
/*
* Don't worry, this is just black magic.
*/
writel(0xdf000, &regs->RxBase);
writel(0xdf000, &regs->RxPrd);
writel(0xdf000, &regs->RxCon);
writel(0xce000, &regs->TxBase);
writel(0xce000, &regs->TxPrd);
writel(0xce000, &regs->TxCon);
writel(0, &regs->RxIndPro);
writel(0, &regs->RxIndCon);
writel(0, &regs->RxIndRef);
writel(0, &regs->TxIndPro);
writel(0, &regs->TxIndCon);
writel(0, &regs->TxIndRef);
writel(0xcc000, &regs->pad10[0]);
writel(0, &regs->DrCmndPro);
writel(0, &regs->DrCmndCon);
writel(0, &regs->DwCmndPro);
writel(0, &regs->DwCmndCon);
writel(0, &regs->DwCmndRef);
writel(0, &regs->DrDataPro);
writel(0, &regs->DrDataCon);
writel(0, &regs->DrDataRef);
writel(0, &regs->DwDataPro);
writel(0, &regs->DwDataCon);
writel(0, &regs->DwDataRef);
#endif
writel(0xffffffff, &regs->MbEvent);
writel(0, &regs->Event);
writel(0, &regs->TxPi);
writel(0, &regs->IpRxPi);
writel(0, &regs->EvtCon);
writel(0, &regs->EvtPrd);
rrpriv->info->evt_ctrl.pi = 0;
for (i = 0; i < CMD_RING_ENTRIES; i++)
writel(0, &regs->CmdRing[i]);
/*
* Why 32 ? is this not cache line size dependent?
*/
writel(RBURST_64|WBURST_64, &regs->PciState);
wmb();
start_pc = rr_read_eeprom_word(rrpriv,
offsetof(struct eeprom, rncd_info.FwStart));
#if (DEBUG > 1)
printk("%s: Executing firmware at address 0x%06x\n",
dev->name, start_pc);
#endif
writel(start_pc + 0x800, &regs->Pc);
wmb();
udelay(5);
writel(start_pc, &regs->Pc);
wmb();
return 0;
}
/*
* Read a string from the EEPROM.
*/
static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
unsigned long offset,
unsigned char *buf,
unsigned long length)
{
struct rr_regs __iomem *regs = rrpriv->regs;
u32 misc, io, host, i;
io = readl(&regs->ExtIo);
writel(0, &regs->ExtIo);
misc = readl(&regs->LocalCtrl);
writel(0, &regs->LocalCtrl);
host = readl(&regs->HostCtrl);
writel(host | HALT_NIC, &regs->HostCtrl);
mb();
for (i = 0; i < length; i++){
writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
mb();
buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
mb();
}
writel(host, &regs->HostCtrl);
writel(misc, &regs->LocalCtrl);
writel(io, &regs->ExtIo);
mb();
return i;
}
/*
* Shortcut to read one word (4 bytes) out of the EEPROM and convert
* it to our CPU byte-order.
*/
static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
size_t offset)
{
__be32 word;
if ((rr_read_eeprom(rrpriv, offset,
(unsigned char *)&word, 4) == 4))
return be32_to_cpu(word);
return 0;
}
/*
* Write a string to the EEPROM.
*
* This is only called when the firmware is not running.
*/
static unsigned int write_eeprom(struct rr_private *rrpriv,
unsigned long offset,
unsigned char *buf,
unsigned long length)
{
struct rr_regs __iomem *regs = rrpriv->regs;
u32 misc, io, data, i, j, ready, error = 0;
io = readl(&regs->ExtIo);
writel(0, &regs->ExtIo);
misc = readl(&regs->LocalCtrl);
writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
mb();
for (i = 0; i < length; i++){
writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
mb();
data = buf[i] << 24;
/*
* Only try to write the data if it is not the same
* value already.
*/
if ((readl(&regs->WinData) & 0xff000000) != data){
writel(data, &regs->WinData);
ready = 0;
j = 0;
mb();
while(!ready){
udelay(20);
if ((readl(&regs->WinData) & 0xff000000) ==
data)
ready = 1;
mb();
if (j++ > 5000){
printk("data mismatch: %08x, "
"WinData %08x\n", data,
readl(&regs->WinData));
ready = 1;
error = 1;
}
}
}
}
writel(misc, &regs->LocalCtrl);
writel(io, &regs->ExtIo);
mb();
return error;
}
static int __devinit rr_init(struct net_device *dev)
{
struct rr_private *rrpriv;
struct rr_regs __iomem *regs;
u32 sram_size, rev;
rrpriv = netdev_priv(dev);
regs = rrpriv->regs;
rev = readl(&regs->FwRev);
rrpriv->fw_rev = rev;
if (rev > 0x00020024)
printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
((rev >> 8) & 0xff), (rev & 0xff));
else if (rev >= 0x00020000) {
printk(" Firmware revision: %i.%i.%i (2.0.37 or "
"later is recommended)\n", (rev >> 16),
((rev >> 8) & 0xff), (rev & 0xff));
}else{
printk(" Firmware revision too old: %i.%i.%i, please "
"upgrade to 2.0.37 or later.\n",
(rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
}
#if (DEBUG > 2)
printk(" Maximum receive rings %i\n", readl(&regs->MaxRxRng));
#endif
/*
* Read the hardware address from the eeprom. The HW address
* is not really necessary for HIPPI but awfully convenient.
* The pointer arithmetic to put it in dev_addr is ugly, but
* Donald Becker does it this way for the GigE version of this
* card and it's shorter and more portable than any
* other method I've seen. -VAL
*/
*(__be16 *)(dev->dev_addr) =
htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
*(__be32 *)(dev->dev_addr+2) =
htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
printk(" MAC: %pM\n", dev->dev_addr);
sram_size = rr_read_eeprom_word(rrpriv, 8);
printk(" SRAM size 0x%06x\n", sram_size);
return 0;
}
static int rr_init1(struct net_device *dev)
{
struct rr_private *rrpriv;
struct rr_regs __iomem *regs;
unsigned long myjif, flags;
struct cmd cmd;
u32 hostctrl;
int ecode = 0;
short i;
rrpriv = netdev_priv(dev);
regs = rrpriv->regs;
spin_lock_irqsave(&rrpriv->lock, flags);
hostctrl = readl(&regs->HostCtrl);
writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
wmb();
if (hostctrl & PARITY_ERR){
printk("%s: Parity error halting NIC - this is serious!\n",
dev->name);
spin_unlock_irqrestore(&rrpriv->lock, flags);
ecode = -EFAULT;
goto error;
}
set_rxaddr(regs, rrpriv->rx_ctrl_dma);
set_infoaddr(regs, rrpriv->info_dma);
rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
rrpriv->info->evt_ctrl.mode = 0;
rrpriv->info->evt_ctrl.pi = 0;
set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
rrpriv->info->cmd_ctrl.mode = 0;
rrpriv->info->cmd_ctrl.pi = 15;
for (i = 0; i < CMD_RING_ENTRIES; i++) {
writel(0, &regs->CmdRing[i]);
}
for (i = 0; i < TX_RING_ENTRIES; i++) {
rrpriv->tx_ring[i].size = 0;
set_rraddr(&rrpriv->tx_ring[i].addr, 0);
rrpriv->tx_skbuff[i] = NULL;
}
rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
rrpriv->info->tx_ctrl.mode = 0;
rrpriv->info->tx_ctrl.pi = 0;
set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
/*
* Set dirty_tx before we start receiving interrupts, otherwise
* the interrupt handler might think it is supposed to process
* tx ints before we are up and running, which may cause a null
* pointer access in the int handler.
*/
rrpriv->tx_full = 0;
rrpriv->cur_rx = 0;
rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
rr_reset(dev);
/* Tuning values */
writel(0x5000, &regs->ConRetry);
writel(0x100, &regs->ConRetryTmr);
writel(0x500000, &regs->ConTmout);
writel(0x60, &regs->IntrTmr);
writel(0x500000, &regs->TxDataMvTimeout);
writel(0x200000, &regs->RxDataMvTimeout);
writel(0x80, &regs->WriteDmaThresh);
writel(0x80, &regs->ReadDmaThresh);
rrpriv->fw_running = 0;
wmb();
hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
writel(hostctrl, &regs->HostCtrl);
wmb();
spin_unlock_irqrestore(&rrpriv->lock, flags);
for (i = 0; i < RX_RING_ENTRIES; i++) {
struct sk_buff *skb;
dma_addr_t addr;
rrpriv->rx_ring[i].mode = 0;
skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
if (!skb) {
printk(KERN_WARNING "%s: Unable to allocate memory "
"for receive ring - halting NIC\n", dev->name);
ecode = -ENOMEM;
goto error;
}
rrpriv->rx_skbuff[i] = skb;
addr = pci_map_single(rrpriv->pci_dev, skb->data,
dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
/*
* Sanity test to see if we conflict with the DMA
* limitations of the Roadrunner.
*/
if ((((unsigned long)skb->data) & 0xfff) > ~65320)
printk("skb alloc error\n");
set_rraddr(&rrpriv->rx_ring[i].addr, addr);
rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
}
rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
rrpriv->rx_ctrl[4].mode = 8;
rrpriv->rx_ctrl[4].pi = 0;
wmb();
set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
udelay(1000);
/*
* Now start the FirmWare.
*/
cmd.code = C_START_FW;
cmd.ring = 0;
cmd.index = 0;
rr_issue_cmd(rrpriv, &cmd);
/*
* Give the FirmWare time to chew on the `get running' command.
*/
myjif = jiffies + 5 * HZ;
while (time_before(jiffies, myjif) && !rrpriv->fw_running)
cpu_relax();
netif_start_queue(dev);
return ecode;
error:
/*
* We might have gotten here because we are out of memory,
* make sure we release everything we allocated before failing
*/
for (i = 0; i < RX_RING_ENTRIES; i++) {
struct sk_buff *skb = rrpriv->rx_skbuff[i];
if (skb) {
pci_unmap_single(rrpriv->pci_dev,
rrpriv->rx_ring[i].addr.addrlo,
dev->mtu + HIPPI_HLEN,
PCI_DMA_FROMDEVICE);
rrpriv->rx_ring[i].size = 0;
set_rraddr(&rrpriv->rx_ring[i].addr, 0);
dev_kfree_skb(skb);
rrpriv->rx_skbuff[i] = NULL;
}
}
return ecode;
}
/*
* All events are considered to be slow (RX/TX ints do not generate
* events) and are handled here, outside the main interrupt handler,
* to reduce the size of the handler.
*/
static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
{
struct rr_private *rrpriv;
struct rr_regs __iomem *regs;
u32 tmp;
rrpriv = netdev_priv(dev);
regs = rrpriv->regs;
while (prodidx != eidx){
switch (rrpriv->evt_ring[eidx].code){
case E_NIC_UP:
tmp = readl(&regs->FwRev);
printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
"up and running\n", dev->name,
(tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
rrpriv->fw_running = 1;
writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
wmb();
break;
case E_LINK_ON:
printk(KERN_INFO "%s: Optical link ON\n", dev->name);
break;
case E_LINK_OFF:
printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
break;
case E_RX_IDLE:
printk(KERN_WARNING "%s: RX data not moving\n",
dev->name);
goto drop;
case E_WATCHDOG:
printk(KERN_INFO "%s: The watchdog is here to see "
"us\n", dev->name);
break;
case E_INTERN_ERR:
printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
dev->name);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
&regs->HostCtrl);
wmb();
break;
case E_HOST_ERR:
printk(KERN_ERR "%s: Host software error\n",
dev->name);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
&regs->HostCtrl);
wmb();
break;
/*
* TX events.
*/
case E_CON_REJ:
printk(KERN_WARNING "%s: Connection rejected\n",
dev->name);
dev->stats.tx_aborted_errors++;
break;
case E_CON_TMOUT:
printk(KERN_WARNING "%s: Connection timeout\n",
dev->name);
break;
case E_DISC_ERR:
printk(KERN_WARNING "%s: HIPPI disconnect error\n",
dev->name);
dev->stats.tx_aborted_errors++;
break;
case E_INT_PRTY:
printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
dev->name);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
&regs->HostCtrl);
wmb();
break;
case E_TX_IDLE:
printk(KERN_WARNING "%s: Transmitter idle\n",
dev->name);
break;
case E_TX_LINK_DROP:
printk(KERN_WARNING "%s: Link lost during transmit\n",
dev->name);
dev->stats.tx_aborted_errors++;
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
&regs->HostCtrl);
wmb();
break;
case E_TX_INV_RNG:
printk(KERN_ERR "%s: Invalid send ring block\n",
dev->name);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
&regs->HostCtrl);
wmb();
break;
case E_TX_INV_BUF:
printk(KERN_ERR "%s: Invalid send buffer address\n",
dev->name);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
&regs->HostCtrl);
wmb();
break;
case E_TX_INV_DSC:
printk(KERN_ERR "%s: Invalid descriptor address\n",
dev->name);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
&regs->HostCtrl);
wmb();
break;
/*
* RX events.
*/
case E_RX_RNG_OUT:
printk(KERN_INFO "%s: Receive ring full\n", dev->name);
break;
case E_RX_PAR_ERR:
printk(KERN_WARNING "%s: Receive parity error\n",
dev->name);
goto drop;
case E_RX_LLRC_ERR:
printk(KERN_WARNING "%s: Receive LLRC error\n",
dev->name);
goto drop;
case E_PKT_LN_ERR:
printk(KERN_WARNING "%s: Receive packet length "
"error\n", dev->name);
goto drop;
case E_DTA_CKSM_ERR:
printk(KERN_WARNING "%s: Data checksum error\n",
dev->name);
goto drop;
case E_SHT_BST:
printk(KERN_WARNING "%s: Unexpected short burst "
"error\n", dev->name);
goto drop;
case E_STATE_ERR:
printk(KERN_WARNING "%s: Recv. state transition"
" error\n", dev->name);
goto drop;
case E_UNEXP_DATA:
printk(KERN_WARNING "%s: Unexpected data error\n",
dev->name);
goto drop;
case E_LST_LNK_ERR:
printk(KERN_WARNING "%s: Link lost error\n",
dev->name);
goto drop;
case E_FRM_ERR:
printk(KERN_WARNING "%s: Framming Error\n",
dev->name);
goto drop;
case E_FLG_SYN_ERR:
printk(KERN_WARNING "%s: Flag sync. lost during "
"packet\n", dev->name);
goto drop;
case E_RX_INV_BUF:
printk(KERN_ERR "%s: Invalid receive buffer "
"address\n", dev->name);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
&regs->HostCtrl);
wmb();
break;
case E_RX_INV_DSC:
printk(KERN_ERR "%s: Invalid receive descriptor "
"address\n", dev->name);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
&regs->HostCtrl);
wmb();
break;
case E_RNG_BLK:
printk(KERN_ERR "%s: Invalid ring block\n",
dev->name);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
&regs->HostCtrl);
wmb();
break;
drop:
/* Label packet to be dropped.
* Actual dropping occurs in rx
* handling.
*
* The index of packet we get to drop is
* the index of the packet following
* the bad packet. -kbf
*/
{
u16 index = rrpriv->evt_ring[eidx].index;
index = (index + (RX_RING_ENTRIES - 1)) %
RX_RING_ENTRIES;
rrpriv->rx_ring[index].mode |=
(PACKET_BAD | PACKET_END);
}
break;
default:
printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
dev->name, rrpriv->evt_ring[eidx].code);
}
eidx = (eidx + 1) % EVT_RING_ENTRIES;
}
rrpriv->info->evt_ctrl.pi = eidx;
wmb();
return eidx;
}
static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
{
struct rr_private *rrpriv = netdev_priv(dev);
struct rr_regs __iomem *regs = rrpriv->regs;
do {
struct rx_desc *desc;
u32 pkt_len;
desc = &(rrpriv->rx_ring[index]);
pkt_len = desc->size;
#if (DEBUG > 2)
printk("index %i, rxlimit %i\n", index, rxlimit);
printk("len %x, mode %x\n", pkt_len, desc->mode);
#endif
if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
dev->stats.rx_dropped++;
goto defer;
}
if (pkt_len > 0){
struct sk_buff *skb, *rx_skb;
rx_skb = rrpriv->rx_skbuff[index];
if (pkt_len < PKT_COPY_THRESHOLD) {
skb = alloc_skb(pkt_len, GFP_ATOMIC);
if (skb == NULL){
printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
dev->stats.rx_dropped++;
goto defer;
} else {
pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
desc->addr.addrlo,
pkt_len,
PCI_DMA_FROMDEVICE);
memcpy(skb_put(skb, pkt_len),
rx_skb->data, pkt_len);
pci_dma_sync_single_for_device(rrpriv->pci_dev,
desc->addr.addrlo,
pkt_len,
PCI_DMA_FROMDEVICE);
}
}else{
struct sk_buff *newskb;
newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
GFP_ATOMIC);
if (newskb){
dma_addr_t addr;
pci_unmap_single(rrpriv->pci_dev,
desc->addr.addrlo, dev->mtu +
HIPPI_HLEN, PCI_DMA_FROMDEVICE);
skb = rx_skb;
skb_put(skb, pkt_len);
rrpriv->rx_skbuff[index] = newskb;
addr = pci_map_single(rrpriv->pci_dev,
newskb->data,
dev->mtu + HIPPI_HLEN,
PCI_DMA_FROMDEVICE);
set_rraddr(&desc->addr, addr);
} else {
printk("%s: Out of memory, deferring "
"packet\n", dev->name);
dev->stats.rx_dropped++;
goto defer;
}
}
skb->protocol = hippi_type_trans(skb, dev);
netif_rx(skb); /* send it up */
dev->stats.rx_packets++;
dev->stats.rx_bytes += pkt_len;
}
defer:
desc->mode = 0;
desc->size = dev->mtu + HIPPI_HLEN;
if ((index & 7) == 7)
writel(index, &regs->IpRxPi);
index = (index + 1) % RX_RING_ENTRIES;
} while(index != rxlimit);
rrpriv->cur_rx = index;
wmb();
}
static irqreturn_t rr_interrupt(int irq, void *dev_id)
{
struct rr_private *rrpriv;
struct rr_regs __iomem *regs;
struct net_device *dev = (struct net_device *)dev_id;
u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
rrpriv = netdev_priv(dev);
regs = rrpriv->regs;
if (!(readl(&regs->HostCtrl) & RR_INT))
return IRQ_NONE;
spin_lock(&rrpriv->lock);
prodidx = readl(&regs->EvtPrd);
txcsmr = (prodidx >> 8) & 0xff;
rxlimit = (prodidx >> 16) & 0xff;
prodidx &= 0xff;
#if (DEBUG > 2)
printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
prodidx, rrpriv->info->evt_ctrl.pi);
#endif
/*
* Order here is important. We must handle events
* before doing anything else in order to catch
* such things as LLRC errors, etc -kbf
*/
eidx = rrpriv->info->evt_ctrl.pi;
if (prodidx != eidx)
eidx = rr_handle_event(dev, prodidx, eidx);
rxindex = rrpriv->cur_rx;
if (rxindex != rxlimit)
rx_int(dev, rxlimit, rxindex);
txcon = rrpriv->dirty_tx;
if (txcsmr != txcon) {
do {
/* Due to occational firmware TX producer/consumer out
* of sync. error need to check entry in ring -kbf
*/
if(rrpriv->tx_skbuff[txcon]){
struct tx_desc *desc;
struct sk_buff *skb;
desc = &(rrpriv->tx_ring[txcon]);
skb = rrpriv->tx_skbuff[txcon];
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
pci_unmap_single(rrpriv->pci_dev,
desc->addr.addrlo, skb->len,
PCI_DMA_TODEVICE);
dev_kfree_skb_irq(skb);
rrpriv->tx_skbuff[txcon] = NULL;
desc->size = 0;
set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
desc->mode = 0;
}
txcon = (txcon + 1) % TX_RING_ENTRIES;
} while (txcsmr != txcon);
wmb();
rrpriv->dirty_tx = txcon;
if (rrpriv->tx_full && rr_if_busy(dev) &&
(((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
!= rrpriv->dirty_tx)){
rrpriv->tx_full = 0;
netif_wake_queue(dev);
}
}
eidx |= ((txcsmr << 8) | (rxlimit << 16));
writel(eidx, &regs->EvtCon);
wmb();
spin_unlock(&rrpriv->lock);
return IRQ_HANDLED;
}
static inline void rr_raz_tx(struct rr_private *rrpriv,
struct net_device *dev)
{
int i;
for (i = 0; i < TX_RING_ENTRIES; i++) {
struct sk_buff *skb = rrpriv->tx_skbuff[i];
if (skb) {
struct tx_desc *desc = &(rrpriv->tx_ring[i]);
pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
skb->len, PCI_DMA_TODEVICE);
desc->size = 0;
set_rraddr(&desc->addr, 0);
dev_kfree_skb(skb);
rrpriv->tx_skbuff[i] = NULL;
}
}
}
static inline void rr_raz_rx(struct rr_private *rrpriv,
struct net_device *dev)
{
int i;
for (i = 0; i < RX_RING_ENTRIES; i++) {
struct sk_buff *skb = rrpriv->rx_skbuff[i];
if (skb) {
struct rx_desc *desc = &(rrpriv->rx_ring[i]);
pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
desc->size = 0;
set_rraddr(&desc->addr, 0);
dev_kfree_skb(skb);
rrpriv->rx_skbuff[i] = NULL;
}
}
}
static void rr_timer(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct rr_private *rrpriv = netdev_priv(dev);
struct rr_regs __iomem *regs = rrpriv->regs;
unsigned long flags;
if (readl(&regs->HostCtrl) & NIC_HALTED){
printk("%s: Restarting nic\n", dev->name);
memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
memset(rrpriv->info, 0, sizeof(struct rr_info));
wmb();
rr_raz_tx(rrpriv, dev);
rr_raz_rx(rrpriv, dev);
if (rr_init1(dev)) {
spin_lock_irqsave(&rrpriv->lock, flags);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
&regs->HostCtrl);
spin_unlock_irqrestore(&rrpriv->lock, flags);
}
}
rrpriv->timer.expires = RUN_AT(5*HZ);
add_timer(&rrpriv->timer);
}
static int rr_open(struct net_device *dev)
{
struct rr_private *rrpriv = netdev_priv(dev);
struct pci_dev *pdev = rrpriv->pci_dev;
struct rr_regs __iomem *regs;
int ecode = 0;
unsigned long flags;
dma_addr_t dma_addr;
regs = rrpriv->regs;
if (rrpriv->fw_rev < 0x00020000) {
printk(KERN_WARNING "%s: trying to configure device with "
"obsolete firmware\n", dev->name);
ecode = -EBUSY;
goto error;
}
rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
256 * sizeof(struct ring_ctrl),
&dma_addr);
if (!rrpriv->rx_ctrl) {
ecode = -ENOMEM;
goto error;
}
rrpriv->rx_ctrl_dma = dma_addr;
memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
&dma_addr);
if (!rrpriv->info) {
ecode = -ENOMEM;
goto error;
}
rrpriv->info_dma = dma_addr;
memset(rrpriv->info, 0, sizeof(struct rr_info));
wmb();
spin_lock_irqsave(&rrpriv->lock, flags);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
readl(&regs->HostCtrl);
spin_unlock_irqrestore(&rrpriv->lock, flags);
if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
dev->name, dev->irq);
ecode = -EAGAIN;
goto error;
}
if ((ecode = rr_init1(dev)))
goto error;
/* Set the timer to switch to check for link beat and perhaps switch
to an alternate media type. */
init_timer(&rrpriv->timer);
rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
rrpriv->timer.data = (unsigned long)dev;
rrpriv->timer.function = rr_timer; /* timer handler */
add_timer(&rrpriv->timer);
netif_start_queue(dev);
return ecode;
error:
spin_lock_irqsave(&rrpriv->lock, flags);
writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
spin_unlock_irqrestore(&rrpriv->lock, flags);
if (rrpriv->info) {
pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
rrpriv->info_dma);
rrpriv->info = NULL;
}
if (rrpriv->rx_ctrl) {
pci_free_consistent(pdev, sizeof(struct ring_ctrl),
rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
rrpriv->rx_ctrl = NULL;
}
netif_stop_queue(dev);
return ecode;
}
static void rr_dump(struct net_device *dev)
{
struct rr_private *rrpriv;
struct rr_regs __iomem *regs;
u32 index, cons;
short i;
int len;
rrpriv = netdev_priv(dev);
regs = rrpriv->regs;
printk("%s: dumping NIC TX rings\n", dev->name);
printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
readl(&regs->RxPrd), readl(&regs->TxPrd),
readl(&regs->EvtPrd), readl(&regs->TxPi),
rrpriv->info->tx_ctrl.pi);
printk("Error code 0x%x\n", readl(&regs->Fail1));
index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
cons = rrpriv->dirty_tx;
printk("TX ring index %i, TX consumer %i\n",
index, cons);
if (rrpriv->tx_skbuff[index]){
len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
for (i = 0; i < len; i++){
if (!(i & 7))
printk("\n");
printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
}
printk("\n");
}
if (rrpriv->tx_skbuff[cons]){
len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
rrpriv->tx_ring[cons].mode,
rrpriv->tx_ring[cons].size,
(unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
(unsigned long)rrpriv->tx_skbuff[cons]->data,
(unsigned int)rrpriv->tx_skbuff[cons]->truesize);
for (i = 0; i < len; i++){
if (!(i & 7))
printk("\n");
printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
}
printk("\n");
}
printk("dumping TX ring info:\n");
for (i = 0; i < TX_RING_ENTRIES; i++)
printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
rrpriv->tx_ring[i].mode,
rrpriv->tx_ring[i].size,
(unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
}
static int rr_close(struct net_device *dev)
{
struct rr_private *rrpriv;
struct rr_regs __iomem *regs;
unsigned long flags;
u32 tmp;
short i;
netif_stop_queue(dev);
rrpriv = netdev_priv(dev);
regs = rrpriv->regs;
/*
* Lock to make sure we are not cleaning up while another CPU
* is handling interrupts.
*/
spin_lock_irqsave(&rrpriv->lock, flags);
tmp = readl(&regs->HostCtrl);
if (tmp & NIC_HALTED){
printk("%s: NIC already halted\n", dev->name);
rr_dump(dev);
}else{
tmp |= HALT_NIC | RR_CLEAR_INT;
writel(tmp, &regs->HostCtrl);
readl(&regs->HostCtrl);
}
rrpriv->fw_running = 0;
del_timer_sync(&rrpriv->timer);
writel(0, &regs->TxPi);
writel(0, &regs->IpRxPi);
writel(0, &regs->EvtCon);
writel(0, &regs->EvtPrd);
for (i = 0; i < CMD_RING_ENTRIES; i++)
writel(0, &regs->CmdRing[i]);
rrpriv->info->tx_ctrl.entries = 0;
rrpriv->info->cmd_ctrl.pi = 0;
rrpriv->info->evt_ctrl.pi = 0;
rrpriv->rx_ctrl[4].entries = 0;
rr_raz_tx(rrpriv, dev);
rr_raz_rx(rrpriv, dev);
pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
rrpriv->rx_ctrl = NULL;
pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
rrpriv->info, rrpriv->info_dma);
rrpriv->info = NULL;
free_irq(dev->irq, dev);
spin_unlock_irqrestore(&rrpriv->lock, flags);
return 0;
}
static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct rr_private *rrpriv = netdev_priv(dev);
struct rr_regs __iomem *regs = rrpriv->regs;
struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
struct ring_ctrl *txctrl;
unsigned long flags;
u32 index, len = skb->len;
u32 *ifield;
struct sk_buff *new_skb;
if (readl(&regs->Mode) & FATAL_ERR)
printk("error codes Fail1 %02x, Fail2 %02x\n",
readl(&regs->Fail1), readl(&regs->Fail2));
/*
* We probably need to deal with tbusy here to prevent overruns.
*/
if (skb_headroom(skb) < 8){
printk("incoming skb too small - reallocating\n");
if (!(new_skb = dev_alloc_skb(len + 8))) {
dev_kfree_skb(skb);
netif_wake_queue(dev);
return NETDEV_TX_OK;
}
skb_reserve(new_skb, 8);
skb_put(new_skb, len);
skb_copy_from_linear_data(skb, new_skb->data, len);
dev_kfree_skb(skb);
skb = new_skb;
}
ifield = (u32 *)skb_push(skb, 8);
ifield[0] = 0;
ifield[1] = hcb->ifield;
/*
* We don't need the lock before we are actually going to start
* fiddling with the control blocks.
*/
spin_lock_irqsave(&rrpriv->lock, flags);
txctrl = &rrpriv->info->tx_ctrl;
index = txctrl->pi;
rrpriv->tx_skbuff[index] = skb;
set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
txctrl->pi = (index + 1) % TX_RING_ENTRIES;
wmb();
writel(txctrl->pi, &regs->TxPi);
if (txctrl->pi == rrpriv->dirty_tx){
rrpriv->tx_full = 1;
netif_stop_queue(dev);
}
spin_unlock_irqrestore(&rrpriv->lock, flags);
return NETDEV_TX_OK;
}
/*
* Read the firmware out of the EEPROM and put it into the SRAM
* (or from user space - later)
*
* This operation requires the NIC to be halted and is performed with
* interrupts disabled and with the spinlock hold.
*/
static int rr_load_firmware(struct net_device *dev)
{
struct rr_private *rrpriv;
struct rr_regs __iomem *regs;
size_t eptr, segptr;
int i, j;
u32 localctrl, sptr, len, tmp;
u32 p2len, p2size, nr_seg, revision, io, sram_size;
rrpriv = netdev_priv(dev);
regs = rrpriv->regs;
if (dev->flags & IFF_UP)
return -EBUSY;
if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
printk("%s: Trying to load firmware to a running NIC.\n",
dev->name);
return -EBUSY;
}
localctrl = readl(&regs->LocalCtrl);
writel(0, &regs->LocalCtrl);
writel(0, &regs->EvtPrd);
writel(0, &regs->RxPrd);
writel(0, &regs->TxPrd);
/*
* First wipe the entire SRAM, otherwise we might run into all
* kinds of trouble ... sigh, this took almost all afternoon
* to track down ;-(
*/
io = readl(&regs->ExtIo);
writel(0, &regs->ExtIo);
sram_size = rr_read_eeprom_word(rrpriv, 8);
for (i = 200; i < sram_size / 4; i++){
writel(i * 4, &regs->WinBase);
mb();
writel(0, &regs->WinData);
mb();
}
writel(io, &regs->ExtIo);
mb();
eptr = rr_read_eeprom_word(rrpriv,
offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
eptr = ((eptr & 0x1fffff) >> 3);
p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
p2len = (p2len << 2);
p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
p2size = ((p2size & 0x1fffff) >> 3);
if ((eptr < p2size) || (eptr > (p2size + p2len))){
printk("%s: eptr is invalid\n", dev->name);
goto out;
}
revision = rr_read_eeprom_word(rrpriv,
offsetof(struct eeprom, manf.HeaderFmt));
if (revision != 1){
printk("%s: invalid firmware format (%i)\n",
dev->name, revision);
goto out;
}
nr_seg = rr_read_eeprom_word(rrpriv, eptr);
eptr +=4;
#if (DEBUG > 1)
printk("%s: nr_seg %i\n", dev->name, nr_seg);
#endif
for (i = 0; i < nr_seg; i++){
sptr = rr_read_eeprom_word(rrpriv, eptr);
eptr += 4;
len = rr_read_eeprom_word(rrpriv, eptr);
eptr += 4;
segptr = rr_read_eeprom_word(rrpriv, eptr);
segptr = ((segptr & 0x1fffff) >> 3);
eptr += 4;
#if (DEBUG > 1)
printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
dev->name, i, sptr, len, segptr);
#endif
for (j = 0; j < len; j++){
tmp = rr_read_eeprom_word(rrpriv, segptr);
writel(sptr, &regs->WinBase);
mb();
writel(tmp, &regs->WinData);
mb();
segptr += 4;
sptr += 4;
}
}
out:
writel(localctrl, &regs->LocalCtrl);
mb();
return 0;
}
static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct rr_private *rrpriv;
unsigned char *image, *oldimage;
unsigned long flags;
unsigned int i;
int error = -EOPNOTSUPP;
rrpriv = netdev_priv(dev);
switch(cmd){
case SIOCRRGFW:
if (!capable(CAP_SYS_RAWIO)){
return -EPERM;
}
image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
if (!image){
printk(KERN_ERR "%s: Unable to allocate memory "
"for EEPROM image\n", dev->name);
return -ENOMEM;
}
if (rrpriv->fw_running){
printk("%s: Firmware already running\n", dev->name);
error = -EPERM;
goto gf_out;
}
spin_lock_irqsave(&rrpriv->lock, flags);
i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
spin_unlock_irqrestore(&rrpriv->lock, flags);
if (i != EEPROM_BYTES){
printk(KERN_ERR "%s: Error reading EEPROM\n",
dev->name);
error = -EFAULT;
goto gf_out;
}
error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
if (error)
error = -EFAULT;
gf_out:
kfree(image);
return error;
case SIOCRRPFW:
if (!capable(CAP_SYS_RAWIO)){
return -EPERM;
}
image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
if (!image || !oldimage) {
printk(KERN_ERR "%s: Unable to allocate memory "
"for EEPROM image\n", dev->name);
error = -ENOMEM;
goto wf_out;
}
error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
if (error) {
error = -EFAULT;
goto wf_out;
}
if (rrpriv->fw_running){
printk("%s: Firmware already running\n", dev->name);
error = -EPERM;
goto wf_out;
}
printk("%s: Updating EEPROM firmware\n", dev->name);
spin_lock_irqsave(&rrpriv->lock, flags);
error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
if (error)
printk(KERN_ERR "%s: Error writing EEPROM\n",
dev->name);
i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
spin_unlock_irqrestore(&rrpriv->lock, flags);
if (i != EEPROM_BYTES)
printk(KERN_ERR "%s: Error reading back EEPROM "
"image\n", dev->name);
error = memcmp(image, oldimage, EEPROM_BYTES);
if (error){
printk(KERN_ERR "%s: Error verifying EEPROM image\n",
dev->name);
error = -EFAULT;
}
wf_out:
kfree(oldimage);
kfree(image);
return error;
case SIOCRRID:
return put_user(0x52523032, (int __user *)rq->ifr_data);
default:
return error;
}
}
static DEFINE_PCI_DEVICE_TABLE(rr_pci_tbl) = {
{ PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
PCI_ANY_ID, PCI_ANY_ID, },
{ 0,}
};
MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
static struct pci_driver rr_driver = {
.name = "rrunner",
.id_table = rr_pci_tbl,
.probe = rr_init_one,
.remove = __devexit_p(rr_remove_one),
};
static int __init rr_init_module(void)
{
return pci_register_driver(&rr_driver);
}
static void __exit rr_cleanup_module(void)
{
pci_unregister_driver(&rr_driver);
}
module_init(rr_init_module);
module_exit(rr_cleanup_module);