mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-13 07:44:00 +08:00
e21d2170f3
The driver core clears the driver data to NULL after device_release
or on probe failure, since commit 0998d06310
(device-core: Ensure drvdata = NULL when no driver is bound).
Thus, it is not needed to manually clear the device driver data to NULL.
Signed-off-by: Jingoo Han <jg1.han@samsung.com>
Cc: Sylwester Nawrocki <sylvester.nawrocki@gmail.com>
Acked-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Acked-by: Shawn Guo <shawn.guo@linaro.org>
Reviewed-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
2333 lines
61 KiB
C
2333 lines
61 KiB
C
/*
|
|
* linux/drivers/video/pxafb.c
|
|
*
|
|
* Copyright (C) 1999 Eric A. Thomas.
|
|
* Copyright (C) 2004 Jean-Frederic Clere.
|
|
* Copyright (C) 2004 Ian Campbell.
|
|
* Copyright (C) 2004 Jeff Lackey.
|
|
* Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
|
|
* which in turn is
|
|
* Based on acornfb.c Copyright (C) Russell King.
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file COPYING in the main directory of this archive for
|
|
* more details.
|
|
*
|
|
* Intel PXA250/210 LCD Controller Frame Buffer Driver
|
|
*
|
|
* Please direct your questions and comments on this driver to the following
|
|
* email address:
|
|
*
|
|
* linux-arm-kernel@lists.arm.linux.org.uk
|
|
*
|
|
* Add support for overlay1 and overlay2 based on pxafb_overlay.c:
|
|
*
|
|
* Copyright (C) 2004, Intel Corporation
|
|
*
|
|
* 2003/08/27: <yu.tang@intel.com>
|
|
* 2004/03/10: <stanley.cai@intel.com>
|
|
* 2004/10/28: <yan.yin@intel.com>
|
|
*
|
|
* Copyright (C) 2006-2008 Marvell International Ltd.
|
|
* All Rights Reserved
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/fb.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/err.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/console.h>
|
|
|
|
#include <mach/hardware.h>
|
|
#include <asm/io.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/div64.h>
|
|
#include <mach/bitfield.h>
|
|
#include <linux/platform_data/video-pxafb.h>
|
|
|
|
/*
|
|
* Complain if VAR is out of range.
|
|
*/
|
|
#define DEBUG_VAR 1
|
|
|
|
#include "pxafb.h"
|
|
|
|
/* Bits which should not be set in machine configuration structures */
|
|
#define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
|
|
LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
|
|
LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
|
|
|
|
#define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\
|
|
LCCR3_PCD | LCCR3_BPP(0xf))
|
|
|
|
static int pxafb_activate_var(struct fb_var_screeninfo *var,
|
|
struct pxafb_info *);
|
|
static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
|
|
static void setup_base_frame(struct pxafb_info *fbi,
|
|
struct fb_var_screeninfo *var, int branch);
|
|
static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
|
|
unsigned long offset, size_t size);
|
|
|
|
static unsigned long video_mem_size = 0;
|
|
|
|
static inline unsigned long
|
|
lcd_readl(struct pxafb_info *fbi, unsigned int off)
|
|
{
|
|
return __raw_readl(fbi->mmio_base + off);
|
|
}
|
|
|
|
static inline void
|
|
lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val)
|
|
{
|
|
__raw_writel(val, fbi->mmio_base + off);
|
|
}
|
|
|
|
static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
/*
|
|
* We need to handle two requests being made at the same time.
|
|
* There are two important cases:
|
|
* 1. When we are changing VT (C_REENABLE) while unblanking
|
|
* (C_ENABLE) We must perform the unblanking, which will
|
|
* do our REENABLE for us.
|
|
* 2. When we are blanking, but immediately unblank before
|
|
* we have blanked. We do the "REENABLE" thing here as
|
|
* well, just to be sure.
|
|
*/
|
|
if (fbi->task_state == C_ENABLE && state == C_REENABLE)
|
|
state = (u_int) -1;
|
|
if (fbi->task_state == C_DISABLE && state == C_ENABLE)
|
|
state = C_REENABLE;
|
|
|
|
if (state != (u_int)-1) {
|
|
fbi->task_state = state;
|
|
schedule_work(&fbi->task);
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
|
|
{
|
|
chan &= 0xffff;
|
|
chan >>= 16 - bf->length;
|
|
return chan << bf->offset;
|
|
}
|
|
|
|
static int
|
|
pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
|
|
u_int trans, struct fb_info *info)
|
|
{
|
|
struct pxafb_info *fbi = (struct pxafb_info *)info;
|
|
u_int val;
|
|
|
|
if (regno >= fbi->palette_size)
|
|
return 1;
|
|
|
|
if (fbi->fb.var.grayscale) {
|
|
fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff);
|
|
return 0;
|
|
}
|
|
|
|
switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) {
|
|
case LCCR4_PAL_FOR_0:
|
|
val = ((red >> 0) & 0xf800);
|
|
val |= ((green >> 5) & 0x07e0);
|
|
val |= ((blue >> 11) & 0x001f);
|
|
fbi->palette_cpu[regno] = val;
|
|
break;
|
|
case LCCR4_PAL_FOR_1:
|
|
val = ((red << 8) & 0x00f80000);
|
|
val |= ((green >> 0) & 0x0000fc00);
|
|
val |= ((blue >> 8) & 0x000000f8);
|
|
((u32 *)(fbi->palette_cpu))[regno] = val;
|
|
break;
|
|
case LCCR4_PAL_FOR_2:
|
|
val = ((red << 8) & 0x00fc0000);
|
|
val |= ((green >> 0) & 0x0000fc00);
|
|
val |= ((blue >> 8) & 0x000000fc);
|
|
((u32 *)(fbi->palette_cpu))[regno] = val;
|
|
break;
|
|
case LCCR4_PAL_FOR_3:
|
|
val = ((red << 8) & 0x00ff0000);
|
|
val |= ((green >> 0) & 0x0000ff00);
|
|
val |= ((blue >> 8) & 0x000000ff);
|
|
((u32 *)(fbi->palette_cpu))[regno] = val;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
|
|
u_int trans, struct fb_info *info)
|
|
{
|
|
struct pxafb_info *fbi = (struct pxafb_info *)info;
|
|
unsigned int val;
|
|
int ret = 1;
|
|
|
|
/*
|
|
* If inverse mode was selected, invert all the colours
|
|
* rather than the register number. The register number
|
|
* is what you poke into the framebuffer to produce the
|
|
* colour you requested.
|
|
*/
|
|
if (fbi->cmap_inverse) {
|
|
red = 0xffff - red;
|
|
green = 0xffff - green;
|
|
blue = 0xffff - blue;
|
|
}
|
|
|
|
/*
|
|
* If greyscale is true, then we convert the RGB value
|
|
* to greyscale no matter what visual we are using.
|
|
*/
|
|
if (fbi->fb.var.grayscale)
|
|
red = green = blue = (19595 * red + 38470 * green +
|
|
7471 * blue) >> 16;
|
|
|
|
switch (fbi->fb.fix.visual) {
|
|
case FB_VISUAL_TRUECOLOR:
|
|
/*
|
|
* 16-bit True Colour. We encode the RGB value
|
|
* according to the RGB bitfield information.
|
|
*/
|
|
if (regno < 16) {
|
|
u32 *pal = fbi->fb.pseudo_palette;
|
|
|
|
val = chan_to_field(red, &fbi->fb.var.red);
|
|
val |= chan_to_field(green, &fbi->fb.var.green);
|
|
val |= chan_to_field(blue, &fbi->fb.var.blue);
|
|
|
|
pal[regno] = val;
|
|
ret = 0;
|
|
}
|
|
break;
|
|
|
|
case FB_VISUAL_STATIC_PSEUDOCOLOR:
|
|
case FB_VISUAL_PSEUDOCOLOR:
|
|
ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */
|
|
static inline int var_to_depth(struct fb_var_screeninfo *var)
|
|
{
|
|
return var->red.length + var->green.length +
|
|
var->blue.length + var->transp.length;
|
|
}
|
|
|
|
/* calculate 4-bit BPP value for LCCR3 and OVLxC1 */
|
|
static int pxafb_var_to_bpp(struct fb_var_screeninfo *var)
|
|
{
|
|
int bpp = -EINVAL;
|
|
|
|
switch (var->bits_per_pixel) {
|
|
case 1: bpp = 0; break;
|
|
case 2: bpp = 1; break;
|
|
case 4: bpp = 2; break;
|
|
case 8: bpp = 3; break;
|
|
case 16: bpp = 4; break;
|
|
case 24:
|
|
switch (var_to_depth(var)) {
|
|
case 18: bpp = 6; break; /* 18-bits/pixel packed */
|
|
case 19: bpp = 8; break; /* 19-bits/pixel packed */
|
|
case 24: bpp = 9; break;
|
|
}
|
|
break;
|
|
case 32:
|
|
switch (var_to_depth(var)) {
|
|
case 18: bpp = 5; break; /* 18-bits/pixel unpacked */
|
|
case 19: bpp = 7; break; /* 19-bits/pixel unpacked */
|
|
case 25: bpp = 10; break;
|
|
}
|
|
break;
|
|
}
|
|
return bpp;
|
|
}
|
|
|
|
/*
|
|
* pxafb_var_to_lccr3():
|
|
* Convert a bits per pixel value to the correct bit pattern for LCCR3
|
|
*
|
|
* NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an
|
|
* implication of the acutal use of transparency bit, which we handle it
|
|
* here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel
|
|
* Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP.
|
|
*
|
|
* Transparency for palette pixel formats is not supported at the moment.
|
|
*/
|
|
static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo *var)
|
|
{
|
|
int bpp = pxafb_var_to_bpp(var);
|
|
uint32_t lccr3;
|
|
|
|
if (bpp < 0)
|
|
return 0;
|
|
|
|
lccr3 = LCCR3_BPP(bpp);
|
|
|
|
switch (var_to_depth(var)) {
|
|
case 16: lccr3 |= var->transp.length ? LCCR3_PDFOR_3 : 0; break;
|
|
case 18: lccr3 |= LCCR3_PDFOR_3; break;
|
|
case 24: lccr3 |= var->transp.length ? LCCR3_PDFOR_2 : LCCR3_PDFOR_3;
|
|
break;
|
|
case 19:
|
|
case 25: lccr3 |= LCCR3_PDFOR_0; break;
|
|
}
|
|
return lccr3;
|
|
}
|
|
|
|
#define SET_PIXFMT(v, r, g, b, t) \
|
|
({ \
|
|
(v)->transp.offset = (t) ? (r) + (g) + (b) : 0; \
|
|
(v)->transp.length = (t) ? (t) : 0; \
|
|
(v)->blue.length = (b); (v)->blue.offset = 0; \
|
|
(v)->green.length = (g); (v)->green.offset = (b); \
|
|
(v)->red.length = (r); (v)->red.offset = (b) + (g); \
|
|
})
|
|
|
|
/* set the RGBT bitfields of fb_var_screeninf according to
|
|
* var->bits_per_pixel and given depth
|
|
*/
|
|
static void pxafb_set_pixfmt(struct fb_var_screeninfo *var, int depth)
|
|
{
|
|
if (depth == 0)
|
|
depth = var->bits_per_pixel;
|
|
|
|
if (var->bits_per_pixel < 16) {
|
|
/* indexed pixel formats */
|
|
var->red.offset = 0; var->red.length = 8;
|
|
var->green.offset = 0; var->green.length = 8;
|
|
var->blue.offset = 0; var->blue.length = 8;
|
|
var->transp.offset = 0; var->transp.length = 8;
|
|
}
|
|
|
|
switch (depth) {
|
|
case 16: var->transp.length ?
|
|
SET_PIXFMT(var, 5, 5, 5, 1) : /* RGBT555 */
|
|
SET_PIXFMT(var, 5, 6, 5, 0); break; /* RGB565 */
|
|
case 18: SET_PIXFMT(var, 6, 6, 6, 0); break; /* RGB666 */
|
|
case 19: SET_PIXFMT(var, 6, 6, 6, 1); break; /* RGBT666 */
|
|
case 24: var->transp.length ?
|
|
SET_PIXFMT(var, 8, 8, 7, 1) : /* RGBT887 */
|
|
SET_PIXFMT(var, 8, 8, 8, 0); break; /* RGB888 */
|
|
case 25: SET_PIXFMT(var, 8, 8, 8, 1); break; /* RGBT888 */
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_FREQ
|
|
/*
|
|
* pxafb_display_dma_period()
|
|
* Calculate the minimum period (in picoseconds) between two DMA
|
|
* requests for the LCD controller. If we hit this, it means we're
|
|
* doing nothing but LCD DMA.
|
|
*/
|
|
static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
|
|
{
|
|
/*
|
|
* Period = pixclock * bits_per_byte * bytes_per_transfer
|
|
* / memory_bits_per_pixel;
|
|
*/
|
|
return var->pixclock * 8 * 16 / var->bits_per_pixel;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Select the smallest mode that allows the desired resolution to be
|
|
* displayed. If desired parameters can be rounded up.
|
|
*/
|
|
static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach,
|
|
struct fb_var_screeninfo *var)
|
|
{
|
|
struct pxafb_mode_info *mode = NULL;
|
|
struct pxafb_mode_info *modelist = mach->modes;
|
|
unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < mach->num_modes; i++) {
|
|
if (modelist[i].xres >= var->xres &&
|
|
modelist[i].yres >= var->yres &&
|
|
modelist[i].xres < best_x &&
|
|
modelist[i].yres < best_y &&
|
|
modelist[i].bpp >= var->bits_per_pixel) {
|
|
best_x = modelist[i].xres;
|
|
best_y = modelist[i].yres;
|
|
mode = &modelist[i];
|
|
}
|
|
}
|
|
|
|
return mode;
|
|
}
|
|
|
|
static void pxafb_setmode(struct fb_var_screeninfo *var,
|
|
struct pxafb_mode_info *mode)
|
|
{
|
|
var->xres = mode->xres;
|
|
var->yres = mode->yres;
|
|
var->bits_per_pixel = mode->bpp;
|
|
var->pixclock = mode->pixclock;
|
|
var->hsync_len = mode->hsync_len;
|
|
var->left_margin = mode->left_margin;
|
|
var->right_margin = mode->right_margin;
|
|
var->vsync_len = mode->vsync_len;
|
|
var->upper_margin = mode->upper_margin;
|
|
var->lower_margin = mode->lower_margin;
|
|
var->sync = mode->sync;
|
|
var->grayscale = mode->cmap_greyscale;
|
|
var->transp.length = mode->transparency;
|
|
|
|
/* set the initial RGBA bitfields */
|
|
pxafb_set_pixfmt(var, mode->depth);
|
|
}
|
|
|
|
static int pxafb_adjust_timing(struct pxafb_info *fbi,
|
|
struct fb_var_screeninfo *var)
|
|
{
|
|
int line_length;
|
|
|
|
var->xres = max_t(int, var->xres, MIN_XRES);
|
|
var->yres = max_t(int, var->yres, MIN_YRES);
|
|
|
|
if (!(fbi->lccr0 & LCCR0_LCDT)) {
|
|
clamp_val(var->hsync_len, 1, 64);
|
|
clamp_val(var->vsync_len, 1, 64);
|
|
clamp_val(var->left_margin, 1, 255);
|
|
clamp_val(var->right_margin, 1, 255);
|
|
clamp_val(var->upper_margin, 1, 255);
|
|
clamp_val(var->lower_margin, 1, 255);
|
|
}
|
|
|
|
/* make sure each line is aligned on word boundary */
|
|
line_length = var->xres * var->bits_per_pixel / 8;
|
|
line_length = ALIGN(line_length, 4);
|
|
var->xres = line_length * 8 / var->bits_per_pixel;
|
|
|
|
/* we don't support xpan, force xres_virtual to be equal to xres */
|
|
var->xres_virtual = var->xres;
|
|
|
|
if (var->accel_flags & FB_ACCELF_TEXT)
|
|
var->yres_virtual = fbi->fb.fix.smem_len / line_length;
|
|
else
|
|
var->yres_virtual = max(var->yres_virtual, var->yres);
|
|
|
|
/* check for limits */
|
|
if (var->xres > MAX_XRES || var->yres > MAX_YRES)
|
|
return -EINVAL;
|
|
|
|
if (var->yres > var->yres_virtual)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* pxafb_check_var():
|
|
* Get the video params out of 'var'. If a value doesn't fit, round it up,
|
|
* if it's too big, return -EINVAL.
|
|
*
|
|
* Round up in the following order: bits_per_pixel, xres,
|
|
* yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
|
|
* bitfields, horizontal timing, vertical timing.
|
|
*/
|
|
static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
|
|
{
|
|
struct pxafb_info *fbi = (struct pxafb_info *)info;
|
|
struct pxafb_mach_info *inf = fbi->dev->platform_data;
|
|
int err;
|
|
|
|
if (inf->fixed_modes) {
|
|
struct pxafb_mode_info *mode;
|
|
|
|
mode = pxafb_getmode(inf, var);
|
|
if (!mode)
|
|
return -EINVAL;
|
|
pxafb_setmode(var, mode);
|
|
}
|
|
|
|
/* do a test conversion to BPP fields to check the color formats */
|
|
err = pxafb_var_to_bpp(var);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
pxafb_set_pixfmt(var, var_to_depth(var));
|
|
|
|
err = pxafb_adjust_timing(fbi, var);
|
|
if (err)
|
|
return err;
|
|
|
|
#ifdef CONFIG_CPU_FREQ
|
|
pr_debug("pxafb: dma period = %d ps\n",
|
|
pxafb_display_dma_period(var));
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* pxafb_set_par():
|
|
* Set the user defined part of the display for the specified console
|
|
*/
|
|
static int pxafb_set_par(struct fb_info *info)
|
|
{
|
|
struct pxafb_info *fbi = (struct pxafb_info *)info;
|
|
struct fb_var_screeninfo *var = &info->var;
|
|
|
|
if (var->bits_per_pixel >= 16)
|
|
fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
|
|
else if (!fbi->cmap_static)
|
|
fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
|
|
else {
|
|
/*
|
|
* Some people have weird ideas about wanting static
|
|
* pseudocolor maps. I suspect their user space
|
|
* applications are broken.
|
|
*/
|
|
fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
|
|
}
|
|
|
|
fbi->fb.fix.line_length = var->xres_virtual *
|
|
var->bits_per_pixel / 8;
|
|
if (var->bits_per_pixel >= 16)
|
|
fbi->palette_size = 0;
|
|
else
|
|
fbi->palette_size = var->bits_per_pixel == 1 ?
|
|
4 : 1 << var->bits_per_pixel;
|
|
|
|
fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0];
|
|
|
|
if (fbi->fb.var.bits_per_pixel >= 16)
|
|
fb_dealloc_cmap(&fbi->fb.cmap);
|
|
else
|
|
fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
|
|
|
|
pxafb_activate_var(var, fbi);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pxafb_pan_display(struct fb_var_screeninfo *var,
|
|
struct fb_info *info)
|
|
{
|
|
struct pxafb_info *fbi = (struct pxafb_info *)info;
|
|
struct fb_var_screeninfo newvar;
|
|
int dma = DMA_MAX + DMA_BASE;
|
|
|
|
if (fbi->state != C_ENABLE)
|
|
return 0;
|
|
|
|
/* Only take .xoffset, .yoffset and .vmode & FB_VMODE_YWRAP from what
|
|
* was passed in and copy the rest from the old screeninfo.
|
|
*/
|
|
memcpy(&newvar, &fbi->fb.var, sizeof(newvar));
|
|
newvar.xoffset = var->xoffset;
|
|
newvar.yoffset = var->yoffset;
|
|
newvar.vmode &= ~FB_VMODE_YWRAP;
|
|
newvar.vmode |= var->vmode & FB_VMODE_YWRAP;
|
|
|
|
setup_base_frame(fbi, &newvar, 1);
|
|
|
|
if (fbi->lccr0 & LCCR0_SDS)
|
|
lcd_writel(fbi, FBR1, fbi->fdadr[dma + 1] | 0x1);
|
|
|
|
lcd_writel(fbi, FBR0, fbi->fdadr[dma] | 0x1);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* pxafb_blank():
|
|
* Blank the display by setting all palette values to zero. Note, the
|
|
* 16 bpp mode does not really use the palette, so this will not
|
|
* blank the display in all modes.
|
|
*/
|
|
static int pxafb_blank(int blank, struct fb_info *info)
|
|
{
|
|
struct pxafb_info *fbi = (struct pxafb_info *)info;
|
|
int i;
|
|
|
|
switch (blank) {
|
|
case FB_BLANK_POWERDOWN:
|
|
case FB_BLANK_VSYNC_SUSPEND:
|
|
case FB_BLANK_HSYNC_SUSPEND:
|
|
case FB_BLANK_NORMAL:
|
|
if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
|
|
fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
|
|
for (i = 0; i < fbi->palette_size; i++)
|
|
pxafb_setpalettereg(i, 0, 0, 0, 0, info);
|
|
|
|
pxafb_schedule_work(fbi, C_DISABLE);
|
|
/* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
|
|
break;
|
|
|
|
case FB_BLANK_UNBLANK:
|
|
/* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
|
|
if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
|
|
fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
|
|
fb_set_cmap(&fbi->fb.cmap, info);
|
|
pxafb_schedule_work(fbi, C_ENABLE);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct fb_ops pxafb_ops = {
|
|
.owner = THIS_MODULE,
|
|
.fb_check_var = pxafb_check_var,
|
|
.fb_set_par = pxafb_set_par,
|
|
.fb_pan_display = pxafb_pan_display,
|
|
.fb_setcolreg = pxafb_setcolreg,
|
|
.fb_fillrect = cfb_fillrect,
|
|
.fb_copyarea = cfb_copyarea,
|
|
.fb_imageblit = cfb_imageblit,
|
|
.fb_blank = pxafb_blank,
|
|
};
|
|
|
|
#ifdef CONFIG_FB_PXA_OVERLAY
|
|
static void overlay1fb_setup(struct pxafb_layer *ofb)
|
|
{
|
|
int size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
|
|
unsigned long start = ofb->video_mem_phys;
|
|
setup_frame_dma(ofb->fbi, DMA_OV1, PAL_NONE, start, size);
|
|
}
|
|
|
|
/* Depending on the enable status of overlay1/2, the DMA should be
|
|
* updated from FDADRx (when disabled) or FBRx (when enabled).
|
|
*/
|
|
static void overlay1fb_enable(struct pxafb_layer *ofb)
|
|
{
|
|
int enabled = lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN;
|
|
uint32_t fdadr1 = ofb->fbi->fdadr[DMA_OV1] | (enabled ? 0x1 : 0);
|
|
|
|
lcd_writel(ofb->fbi, enabled ? FBR1 : FDADR1, fdadr1);
|
|
lcd_writel(ofb->fbi, OVL1C2, ofb->control[1]);
|
|
lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] | OVLxC1_OEN);
|
|
}
|
|
|
|
static void overlay1fb_disable(struct pxafb_layer *ofb)
|
|
{
|
|
uint32_t lccr5;
|
|
|
|
if (!(lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN))
|
|
return;
|
|
|
|
lccr5 = lcd_readl(ofb->fbi, LCCR5);
|
|
|
|
lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] & ~OVLxC1_OEN);
|
|
|
|
lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(1));
|
|
lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(1));
|
|
lcd_writel(ofb->fbi, FBR1, ofb->fbi->fdadr[DMA_OV1] | 0x3);
|
|
|
|
if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
|
|
pr_warning("%s: timeout disabling overlay1\n", __func__);
|
|
|
|
lcd_writel(ofb->fbi, LCCR5, lccr5);
|
|
}
|
|
|
|
static void overlay2fb_setup(struct pxafb_layer *ofb)
|
|
{
|
|
int size, div = 1, pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
|
|
unsigned long start[3] = { ofb->video_mem_phys, 0, 0 };
|
|
|
|
if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) {
|
|
size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
|
|
setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
|
|
} else {
|
|
size = ofb->fb.var.xres_virtual * ofb->fb.var.yres_virtual;
|
|
switch (pfor) {
|
|
case OVERLAY_FORMAT_YUV444_PLANAR: div = 1; break;
|
|
case OVERLAY_FORMAT_YUV422_PLANAR: div = 2; break;
|
|
case OVERLAY_FORMAT_YUV420_PLANAR: div = 4; break;
|
|
}
|
|
start[1] = start[0] + size;
|
|
start[2] = start[1] + size / div;
|
|
setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
|
|
setup_frame_dma(ofb->fbi, DMA_OV2_Cb, -1, start[1], size / div);
|
|
setup_frame_dma(ofb->fbi, DMA_OV2_Cr, -1, start[2], size / div);
|
|
}
|
|
}
|
|
|
|
static void overlay2fb_enable(struct pxafb_layer *ofb)
|
|
{
|
|
int pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
|
|
int enabled = lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN;
|
|
uint32_t fdadr2 = ofb->fbi->fdadr[DMA_OV2_Y] | (enabled ? 0x1 : 0);
|
|
uint32_t fdadr3 = ofb->fbi->fdadr[DMA_OV2_Cb] | (enabled ? 0x1 : 0);
|
|
uint32_t fdadr4 = ofb->fbi->fdadr[DMA_OV2_Cr] | (enabled ? 0x1 : 0);
|
|
|
|
if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED)
|
|
lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
|
|
else {
|
|
lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
|
|
lcd_writel(ofb->fbi, enabled ? FBR3 : FDADR3, fdadr3);
|
|
lcd_writel(ofb->fbi, enabled ? FBR4 : FDADR4, fdadr4);
|
|
}
|
|
lcd_writel(ofb->fbi, OVL2C2, ofb->control[1]);
|
|
lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] | OVLxC1_OEN);
|
|
}
|
|
|
|
static void overlay2fb_disable(struct pxafb_layer *ofb)
|
|
{
|
|
uint32_t lccr5;
|
|
|
|
if (!(lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN))
|
|
return;
|
|
|
|
lccr5 = lcd_readl(ofb->fbi, LCCR5);
|
|
|
|
lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] & ~OVLxC1_OEN);
|
|
|
|
lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(2));
|
|
lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(2));
|
|
lcd_writel(ofb->fbi, FBR2, ofb->fbi->fdadr[DMA_OV2_Y] | 0x3);
|
|
lcd_writel(ofb->fbi, FBR3, ofb->fbi->fdadr[DMA_OV2_Cb] | 0x3);
|
|
lcd_writel(ofb->fbi, FBR4, ofb->fbi->fdadr[DMA_OV2_Cr] | 0x3);
|
|
|
|
if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
|
|
pr_warning("%s: timeout disabling overlay2\n", __func__);
|
|
}
|
|
|
|
static struct pxafb_layer_ops ofb_ops[] = {
|
|
[0] = {
|
|
.enable = overlay1fb_enable,
|
|
.disable = overlay1fb_disable,
|
|
.setup = overlay1fb_setup,
|
|
},
|
|
[1] = {
|
|
.enable = overlay2fb_enable,
|
|
.disable = overlay2fb_disable,
|
|
.setup = overlay2fb_setup,
|
|
},
|
|
};
|
|
|
|
static int overlayfb_open(struct fb_info *info, int user)
|
|
{
|
|
struct pxafb_layer *ofb = (struct pxafb_layer *)info;
|
|
|
|
/* no support for framebuffer console on overlay */
|
|
if (user == 0)
|
|
return -ENODEV;
|
|
|
|
if (ofb->usage++ == 0) {
|
|
/* unblank the base framebuffer */
|
|
console_lock();
|
|
fb_blank(&ofb->fbi->fb, FB_BLANK_UNBLANK);
|
|
console_unlock();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int overlayfb_release(struct fb_info *info, int user)
|
|
{
|
|
struct pxafb_layer *ofb = (struct pxafb_layer*) info;
|
|
|
|
if (ofb->usage == 1) {
|
|
ofb->ops->disable(ofb);
|
|
ofb->fb.var.height = -1;
|
|
ofb->fb.var.width = -1;
|
|
ofb->fb.var.xres = ofb->fb.var.xres_virtual = 0;
|
|
ofb->fb.var.yres = ofb->fb.var.yres_virtual = 0;
|
|
|
|
ofb->usage--;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int overlayfb_check_var(struct fb_var_screeninfo *var,
|
|
struct fb_info *info)
|
|
{
|
|
struct pxafb_layer *ofb = (struct pxafb_layer *)info;
|
|
struct fb_var_screeninfo *base_var = &ofb->fbi->fb.var;
|
|
int xpos, ypos, pfor, bpp;
|
|
|
|
xpos = NONSTD_TO_XPOS(var->nonstd);
|
|
ypos = NONSTD_TO_YPOS(var->nonstd);
|
|
pfor = NONSTD_TO_PFOR(var->nonstd);
|
|
|
|
bpp = pxafb_var_to_bpp(var);
|
|
if (bpp < 0)
|
|
return -EINVAL;
|
|
|
|
/* no support for YUV format on overlay1 */
|
|
if (ofb->id == OVERLAY1 && pfor != 0)
|
|
return -EINVAL;
|
|
|
|
/* for YUV packed formats, bpp = 'minimum bpp of YUV components' */
|
|
switch (pfor) {
|
|
case OVERLAY_FORMAT_RGB:
|
|
bpp = pxafb_var_to_bpp(var);
|
|
if (bpp < 0)
|
|
return -EINVAL;
|
|
|
|
pxafb_set_pixfmt(var, var_to_depth(var));
|
|
break;
|
|
case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
|
|
case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 8; break;
|
|
case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 4; break;
|
|
case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 2; break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* each line must start at a 32-bit word boundary */
|
|
if ((xpos * bpp) % 32)
|
|
return -EINVAL;
|
|
|
|
/* xres must align on 32-bit word boundary */
|
|
var->xres = roundup(var->xres * bpp, 32) / bpp;
|
|
|
|
if ((xpos + var->xres > base_var->xres) ||
|
|
(ypos + var->yres > base_var->yres))
|
|
return -EINVAL;
|
|
|
|
var->xres_virtual = var->xres;
|
|
var->yres_virtual = max(var->yres, var->yres_virtual);
|
|
return 0;
|
|
}
|
|
|
|
static int overlayfb_check_video_memory(struct pxafb_layer *ofb)
|
|
{
|
|
struct fb_var_screeninfo *var = &ofb->fb.var;
|
|
int pfor = NONSTD_TO_PFOR(var->nonstd);
|
|
int size, bpp = 0;
|
|
|
|
switch (pfor) {
|
|
case OVERLAY_FORMAT_RGB: bpp = var->bits_per_pixel; break;
|
|
case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
|
|
case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 24; break;
|
|
case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 16; break;
|
|
case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 12; break;
|
|
}
|
|
|
|
ofb->fb.fix.line_length = var->xres_virtual * bpp / 8;
|
|
|
|
size = PAGE_ALIGN(ofb->fb.fix.line_length * var->yres_virtual);
|
|
|
|
if (ofb->video_mem) {
|
|
if (ofb->video_mem_size >= size)
|
|
return 0;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int overlayfb_set_par(struct fb_info *info)
|
|
{
|
|
struct pxafb_layer *ofb = (struct pxafb_layer *)info;
|
|
struct fb_var_screeninfo *var = &info->var;
|
|
int xpos, ypos, pfor, bpp, ret;
|
|
|
|
ret = overlayfb_check_video_memory(ofb);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bpp = pxafb_var_to_bpp(var);
|
|
xpos = NONSTD_TO_XPOS(var->nonstd);
|
|
ypos = NONSTD_TO_YPOS(var->nonstd);
|
|
pfor = NONSTD_TO_PFOR(var->nonstd);
|
|
|
|
ofb->control[0] = OVLxC1_PPL(var->xres) | OVLxC1_LPO(var->yres) |
|
|
OVLxC1_BPP(bpp);
|
|
ofb->control[1] = OVLxC2_XPOS(xpos) | OVLxC2_YPOS(ypos);
|
|
|
|
if (ofb->id == OVERLAY2)
|
|
ofb->control[1] |= OVL2C2_PFOR(pfor);
|
|
|
|
ofb->ops->setup(ofb);
|
|
ofb->ops->enable(ofb);
|
|
return 0;
|
|
}
|
|
|
|
static struct fb_ops overlay_fb_ops = {
|
|
.owner = THIS_MODULE,
|
|
.fb_open = overlayfb_open,
|
|
.fb_release = overlayfb_release,
|
|
.fb_check_var = overlayfb_check_var,
|
|
.fb_set_par = overlayfb_set_par,
|
|
};
|
|
|
|
static void init_pxafb_overlay(struct pxafb_info *fbi, struct pxafb_layer *ofb,
|
|
int id)
|
|
{
|
|
sprintf(ofb->fb.fix.id, "overlay%d", id + 1);
|
|
|
|
ofb->fb.fix.type = FB_TYPE_PACKED_PIXELS;
|
|
ofb->fb.fix.xpanstep = 0;
|
|
ofb->fb.fix.ypanstep = 1;
|
|
|
|
ofb->fb.var.activate = FB_ACTIVATE_NOW;
|
|
ofb->fb.var.height = -1;
|
|
ofb->fb.var.width = -1;
|
|
ofb->fb.var.vmode = FB_VMODE_NONINTERLACED;
|
|
|
|
ofb->fb.fbops = &overlay_fb_ops;
|
|
ofb->fb.flags = FBINFO_FLAG_DEFAULT;
|
|
ofb->fb.node = -1;
|
|
ofb->fb.pseudo_palette = NULL;
|
|
|
|
ofb->id = id;
|
|
ofb->ops = &ofb_ops[id];
|
|
ofb->usage = 0;
|
|
ofb->fbi = fbi;
|
|
init_completion(&ofb->branch_done);
|
|
}
|
|
|
|
static inline int pxafb_overlay_supported(void)
|
|
{
|
|
if (cpu_is_pxa27x() || cpu_is_pxa3xx())
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pxafb_overlay_map_video_memory(struct pxafb_info *pxafb,
|
|
struct pxafb_layer *ofb)
|
|
{
|
|
/* We assume that user will use at most video_mem_size for overlay fb,
|
|
* anyway, it's useless to use 16bpp main plane and 24bpp overlay
|
|
*/
|
|
ofb->video_mem = alloc_pages_exact(PAGE_ALIGN(pxafb->video_mem_size),
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
if (ofb->video_mem == NULL)
|
|
return -ENOMEM;
|
|
|
|
ofb->video_mem_phys = virt_to_phys(ofb->video_mem);
|
|
ofb->video_mem_size = PAGE_ALIGN(pxafb->video_mem_size);
|
|
|
|
mutex_lock(&ofb->fb.mm_lock);
|
|
ofb->fb.fix.smem_start = ofb->video_mem_phys;
|
|
ofb->fb.fix.smem_len = pxafb->video_mem_size;
|
|
mutex_unlock(&ofb->fb.mm_lock);
|
|
|
|
ofb->fb.screen_base = ofb->video_mem;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pxafb_overlay_init(struct pxafb_info *fbi)
|
|
{
|
|
int i, ret;
|
|
|
|
if (!pxafb_overlay_supported())
|
|
return;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
struct pxafb_layer *ofb = &fbi->overlay[i];
|
|
init_pxafb_overlay(fbi, ofb, i);
|
|
ret = register_framebuffer(&ofb->fb);
|
|
if (ret) {
|
|
dev_err(fbi->dev, "failed to register overlay %d\n", i);
|
|
continue;
|
|
}
|
|
ret = pxafb_overlay_map_video_memory(fbi, ofb);
|
|
if (ret) {
|
|
dev_err(fbi->dev,
|
|
"failed to map video memory for overlay %d\n",
|
|
i);
|
|
unregister_framebuffer(&ofb->fb);
|
|
continue;
|
|
}
|
|
ofb->registered = 1;
|
|
}
|
|
|
|
/* mask all IU/BS/EOF/SOF interrupts */
|
|
lcd_writel(fbi, LCCR5, ~0);
|
|
|
|
pr_info("PXA Overlay driver loaded successfully!\n");
|
|
}
|
|
|
|
static void pxafb_overlay_exit(struct pxafb_info *fbi)
|
|
{
|
|
int i;
|
|
|
|
if (!pxafb_overlay_supported())
|
|
return;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
struct pxafb_layer *ofb = &fbi->overlay[i];
|
|
if (ofb->registered) {
|
|
if (ofb->video_mem)
|
|
free_pages_exact(ofb->video_mem,
|
|
ofb->video_mem_size);
|
|
unregister_framebuffer(&ofb->fb);
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
static inline void pxafb_overlay_init(struct pxafb_info *fbi) {}
|
|
static inline void pxafb_overlay_exit(struct pxafb_info *fbi) {}
|
|
#endif /* CONFIG_FB_PXA_OVERLAY */
|
|
|
|
/*
|
|
* Calculate the PCD value from the clock rate (in picoseconds).
|
|
* We take account of the PPCR clock setting.
|
|
* From PXA Developer's Manual:
|
|
*
|
|
* PixelClock = LCLK
|
|
* -------------
|
|
* 2 ( PCD + 1 )
|
|
*
|
|
* PCD = LCLK
|
|
* ------------- - 1
|
|
* 2(PixelClock)
|
|
*
|
|
* Where:
|
|
* LCLK = LCD/Memory Clock
|
|
* PCD = LCCR3[7:0]
|
|
*
|
|
* PixelClock here is in Hz while the pixclock argument given is the
|
|
* period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
|
|
*
|
|
* The function get_lclk_frequency_10khz returns LCLK in units of
|
|
* 10khz. Calling the result of this function lclk gives us the
|
|
* following
|
|
*
|
|
* PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
|
|
* -------------------------------------- - 1
|
|
* 2
|
|
*
|
|
* Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
|
|
*/
|
|
static inline unsigned int get_pcd(struct pxafb_info *fbi,
|
|
unsigned int pixclock)
|
|
{
|
|
unsigned long long pcd;
|
|
|
|
/* FIXME: Need to take into account Double Pixel Clock mode
|
|
* (DPC) bit? or perhaps set it based on the various clock
|
|
* speeds */
|
|
pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000);
|
|
pcd *= pixclock;
|
|
do_div(pcd, 100000000 * 2);
|
|
/* no need for this, since we should subtract 1 anyway. they cancel */
|
|
/* pcd += 1; */ /* make up for integer math truncations */
|
|
return (unsigned int)pcd;
|
|
}
|
|
|
|
/*
|
|
* Some touchscreens need hsync information from the video driver to
|
|
* function correctly. We export it here. Note that 'hsync_time' and
|
|
* the value returned from pxafb_get_hsync_time() is the *reciprocal*
|
|
* of the hsync period in seconds.
|
|
*/
|
|
static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
|
|
{
|
|
unsigned long htime;
|
|
|
|
if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
|
|
fbi->hsync_time = 0;
|
|
return;
|
|
}
|
|
|
|
htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len);
|
|
|
|
fbi->hsync_time = htime;
|
|
}
|
|
|
|
unsigned long pxafb_get_hsync_time(struct device *dev)
|
|
{
|
|
struct pxafb_info *fbi = dev_get_drvdata(dev);
|
|
|
|
/* If display is blanked/suspended, hsync isn't active */
|
|
if (!fbi || (fbi->state != C_ENABLE))
|
|
return 0;
|
|
|
|
return fbi->hsync_time;
|
|
}
|
|
EXPORT_SYMBOL(pxafb_get_hsync_time);
|
|
|
|
static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
|
|
unsigned long start, size_t size)
|
|
{
|
|
struct pxafb_dma_descriptor *dma_desc, *pal_desc;
|
|
unsigned int dma_desc_off, pal_desc_off;
|
|
|
|
if (dma < 0 || dma >= DMA_MAX * 2)
|
|
return -EINVAL;
|
|
|
|
dma_desc = &fbi->dma_buff->dma_desc[dma];
|
|
dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]);
|
|
|
|
dma_desc->fsadr = start;
|
|
dma_desc->fidr = 0;
|
|
dma_desc->ldcmd = size;
|
|
|
|
if (pal < 0 || pal >= PAL_MAX * 2) {
|
|
dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
|
|
fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
|
|
} else {
|
|
pal_desc = &fbi->dma_buff->pal_desc[pal];
|
|
pal_desc_off = offsetof(struct pxafb_dma_buff, pal_desc[pal]);
|
|
|
|
pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE;
|
|
pal_desc->fidr = 0;
|
|
|
|
if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
|
|
pal_desc->ldcmd = fbi->palette_size * sizeof(u16);
|
|
else
|
|
pal_desc->ldcmd = fbi->palette_size * sizeof(u32);
|
|
|
|
pal_desc->ldcmd |= LDCMD_PAL;
|
|
|
|
/* flip back and forth between palette and frame buffer */
|
|
pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
|
|
dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off;
|
|
fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void setup_base_frame(struct pxafb_info *fbi,
|
|
struct fb_var_screeninfo *var,
|
|
int branch)
|
|
{
|
|
struct fb_fix_screeninfo *fix = &fbi->fb.fix;
|
|
int nbytes, dma, pal, bpp = var->bits_per_pixel;
|
|
unsigned long offset;
|
|
|
|
dma = DMA_BASE + (branch ? DMA_MAX : 0);
|
|
pal = (bpp >= 16) ? PAL_NONE : PAL_BASE + (branch ? PAL_MAX : 0);
|
|
|
|
nbytes = fix->line_length * var->yres;
|
|
offset = fix->line_length * var->yoffset + fbi->video_mem_phys;
|
|
|
|
if (fbi->lccr0 & LCCR0_SDS) {
|
|
nbytes = nbytes / 2;
|
|
setup_frame_dma(fbi, dma + 1, PAL_NONE, offset + nbytes, nbytes);
|
|
}
|
|
|
|
setup_frame_dma(fbi, dma, pal, offset, nbytes);
|
|
}
|
|
|
|
#ifdef CONFIG_FB_PXA_SMARTPANEL
|
|
static int setup_smart_dma(struct pxafb_info *fbi)
|
|
{
|
|
struct pxafb_dma_descriptor *dma_desc;
|
|
unsigned long dma_desc_off, cmd_buff_off;
|
|
|
|
dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD];
|
|
dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]);
|
|
cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff);
|
|
|
|
dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
|
|
dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off;
|
|
dma_desc->fidr = 0;
|
|
dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t);
|
|
|
|
fbi->fdadr[DMA_CMD] = dma_desc->fdadr;
|
|
return 0;
|
|
}
|
|
|
|
int pxafb_smart_flush(struct fb_info *info)
|
|
{
|
|
struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
|
|
uint32_t prsr;
|
|
int ret = 0;
|
|
|
|
/* disable controller until all registers are set up */
|
|
lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
|
|
|
|
/* 1. make it an even number of commands to align on 32-bit boundary
|
|
* 2. add the interrupt command to the end of the chain so we can
|
|
* keep track of the end of the transfer
|
|
*/
|
|
|
|
while (fbi->n_smart_cmds & 1)
|
|
fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP;
|
|
|
|
fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT;
|
|
fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC;
|
|
setup_smart_dma(fbi);
|
|
|
|
/* continue to execute next command */
|
|
prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT;
|
|
lcd_writel(fbi, PRSR, prsr);
|
|
|
|
/* stop the processor in case it executed "wait for sync" cmd */
|
|
lcd_writel(fbi, CMDCR, 0x0001);
|
|
|
|
/* don't send interrupts for fifo underruns on channel 6 */
|
|
lcd_writel(fbi, LCCR5, LCCR5_IUM(6));
|
|
|
|
lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
|
|
lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
|
|
lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
|
|
lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
|
|
lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
|
|
lcd_writel(fbi, FDADR6, fbi->fdadr[6]);
|
|
|
|
/* begin sending */
|
|
lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
|
|
|
|
if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) {
|
|
pr_warning("%s: timeout waiting for command done\n",
|
|
__func__);
|
|
ret = -ETIMEDOUT;
|
|
}
|
|
|
|
/* quick disable */
|
|
prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT);
|
|
lcd_writel(fbi, PRSR, prsr);
|
|
lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
|
|
lcd_writel(fbi, FDADR6, 0);
|
|
fbi->n_smart_cmds = 0;
|
|
return ret;
|
|
}
|
|
|
|
int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
|
|
{
|
|
int i;
|
|
struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
|
|
|
|
for (i = 0; i < n_cmds; i++, cmds++) {
|
|
/* if it is a software delay, flush and delay */
|
|
if ((*cmds & 0xff00) == SMART_CMD_DELAY) {
|
|
pxafb_smart_flush(info);
|
|
mdelay(*cmds & 0xff);
|
|
continue;
|
|
}
|
|
|
|
/* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
|
|
if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8)
|
|
pxafb_smart_flush(info);
|
|
|
|
fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk)
|
|
{
|
|
unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000);
|
|
return (t == 0) ? 1 : t;
|
|
}
|
|
|
|
static void setup_smart_timing(struct pxafb_info *fbi,
|
|
struct fb_var_screeninfo *var)
|
|
{
|
|
struct pxafb_mach_info *inf = fbi->dev->platform_data;
|
|
struct pxafb_mode_info *mode = &inf->modes[0];
|
|
unsigned long lclk = clk_get_rate(fbi->clk);
|
|
unsigned t1, t2, t3, t4;
|
|
|
|
t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld);
|
|
t2 = max(mode->rd_pulse_width, mode->wr_pulse_width);
|
|
t3 = mode->op_hold_time;
|
|
t4 = mode->cmd_inh_time;
|
|
|
|
fbi->reg_lccr1 =
|
|
LCCR1_DisWdth(var->xres) |
|
|
LCCR1_BegLnDel(__smart_timing(t1, lclk)) |
|
|
LCCR1_EndLnDel(__smart_timing(t2, lclk)) |
|
|
LCCR1_HorSnchWdth(__smart_timing(t3, lclk));
|
|
|
|
fbi->reg_lccr2 = LCCR2_DisHght(var->yres);
|
|
fbi->reg_lccr3 = fbi->lccr3 | LCCR3_PixClkDiv(__smart_timing(t4, lclk));
|
|
fbi->reg_lccr3 |= (var->sync & FB_SYNC_HOR_HIGH_ACT) ? LCCR3_HSP : 0;
|
|
fbi->reg_lccr3 |= (var->sync & FB_SYNC_VERT_HIGH_ACT) ? LCCR3_VSP : 0;
|
|
|
|
/* FIXME: make this configurable */
|
|
fbi->reg_cmdcr = 1;
|
|
}
|
|
|
|
static int pxafb_smart_thread(void *arg)
|
|
{
|
|
struct pxafb_info *fbi = arg;
|
|
struct pxafb_mach_info *inf = fbi->dev->platform_data;
|
|
|
|
if (!inf->smart_update) {
|
|
pr_err("%s: not properly initialized, thread terminated\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
inf = fbi->dev->platform_data;
|
|
|
|
pr_debug("%s(): task starting\n", __func__);
|
|
|
|
set_freezable();
|
|
while (!kthread_should_stop()) {
|
|
|
|
if (try_to_freeze())
|
|
continue;
|
|
|
|
mutex_lock(&fbi->ctrlr_lock);
|
|
|
|
if (fbi->state == C_ENABLE) {
|
|
inf->smart_update(&fbi->fb);
|
|
complete(&fbi->refresh_done);
|
|
}
|
|
|
|
mutex_unlock(&fbi->ctrlr_lock);
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule_timeout(30 * HZ / 1000);
|
|
}
|
|
|
|
pr_debug("%s(): task ending\n", __func__);
|
|
return 0;
|
|
}
|
|
|
|
static int pxafb_smart_init(struct pxafb_info *fbi)
|
|
{
|
|
if (!(fbi->lccr0 & LCCR0_LCDT))
|
|
return 0;
|
|
|
|
fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff;
|
|
fbi->n_smart_cmds = 0;
|
|
|
|
init_completion(&fbi->command_done);
|
|
init_completion(&fbi->refresh_done);
|
|
|
|
fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi,
|
|
"lcd_refresh");
|
|
if (IS_ERR(fbi->smart_thread)) {
|
|
pr_err("%s: unable to create kernel thread\n", __func__);
|
|
return PTR_ERR(fbi->smart_thread);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
static inline int pxafb_smart_init(struct pxafb_info *fbi) { return 0; }
|
|
#endif /* CONFIG_FB_PXA_SMARTPANEL */
|
|
|
|
static void setup_parallel_timing(struct pxafb_info *fbi,
|
|
struct fb_var_screeninfo *var)
|
|
{
|
|
unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock);
|
|
|
|
fbi->reg_lccr1 =
|
|
LCCR1_DisWdth(var->xres) +
|
|
LCCR1_HorSnchWdth(var->hsync_len) +
|
|
LCCR1_BegLnDel(var->left_margin) +
|
|
LCCR1_EndLnDel(var->right_margin);
|
|
|
|
/*
|
|
* If we have a dual scan LCD, we need to halve
|
|
* the YRES parameter.
|
|
*/
|
|
lines_per_panel = var->yres;
|
|
if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
|
|
lines_per_panel /= 2;
|
|
|
|
fbi->reg_lccr2 =
|
|
LCCR2_DisHght(lines_per_panel) +
|
|
LCCR2_VrtSnchWdth(var->vsync_len) +
|
|
LCCR2_BegFrmDel(var->upper_margin) +
|
|
LCCR2_EndFrmDel(var->lower_margin);
|
|
|
|
fbi->reg_lccr3 = fbi->lccr3 |
|
|
(var->sync & FB_SYNC_HOR_HIGH_ACT ?
|
|
LCCR3_HorSnchH : LCCR3_HorSnchL) |
|
|
(var->sync & FB_SYNC_VERT_HIGH_ACT ?
|
|
LCCR3_VrtSnchH : LCCR3_VrtSnchL);
|
|
|
|
if (pcd) {
|
|
fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd);
|
|
set_hsync_time(fbi, pcd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* pxafb_activate_var():
|
|
* Configures LCD Controller based on entries in var parameter.
|
|
* Settings are only written to the controller if changes were made.
|
|
*/
|
|
static int pxafb_activate_var(struct fb_var_screeninfo *var,
|
|
struct pxafb_info *fbi)
|
|
{
|
|
u_long flags;
|
|
|
|
/* Update shadow copy atomically */
|
|
local_irq_save(flags);
|
|
|
|
#ifdef CONFIG_FB_PXA_SMARTPANEL
|
|
if (fbi->lccr0 & LCCR0_LCDT)
|
|
setup_smart_timing(fbi, var);
|
|
else
|
|
#endif
|
|
setup_parallel_timing(fbi, var);
|
|
|
|
setup_base_frame(fbi, var, 0);
|
|
|
|
fbi->reg_lccr0 = fbi->lccr0 |
|
|
(LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
|
|
LCCR0_QDM | LCCR0_BM | LCCR0_OUM);
|
|
|
|
fbi->reg_lccr3 |= pxafb_var_to_lccr3(var);
|
|
|
|
fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK;
|
|
fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK);
|
|
local_irq_restore(flags);
|
|
|
|
/*
|
|
* Only update the registers if the controller is enabled
|
|
* and something has changed.
|
|
*/
|
|
if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) ||
|
|
(lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) ||
|
|
(lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) ||
|
|
(lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) ||
|
|
(lcd_readl(fbi, LCCR4) != fbi->reg_lccr4) ||
|
|
(lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) ||
|
|
((fbi->lccr0 & LCCR0_SDS) &&
|
|
(lcd_readl(fbi, FDADR1) != fbi->fdadr[1])))
|
|
pxafb_schedule_work(fbi, C_REENABLE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* NOTE! The following functions are purely helpers for set_ctrlr_state.
|
|
* Do not call them directly; set_ctrlr_state does the correct serialisation
|
|
* to ensure that things happen in the right way 100% of time time.
|
|
* -- rmk
|
|
*/
|
|
static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
|
|
{
|
|
pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
|
|
|
|
if (fbi->backlight_power)
|
|
fbi->backlight_power(on);
|
|
}
|
|
|
|
static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
|
|
{
|
|
pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
|
|
|
|
if (fbi->lcd_power)
|
|
fbi->lcd_power(on, &fbi->fb.var);
|
|
}
|
|
|
|
static void pxafb_enable_controller(struct pxafb_info *fbi)
|
|
{
|
|
pr_debug("pxafb: Enabling LCD controller\n");
|
|
pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]);
|
|
pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]);
|
|
pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
|
|
pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
|
|
pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
|
|
pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
|
|
|
|
/* enable LCD controller clock */
|
|
clk_prepare_enable(fbi->clk);
|
|
|
|
if (fbi->lccr0 & LCCR0_LCDT)
|
|
return;
|
|
|
|
/* Sequence from 11.7.10 */
|
|
lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
|
|
lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
|
|
lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
|
|
lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
|
|
lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
|
|
|
|
lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
|
|
if (fbi->lccr0 & LCCR0_SDS)
|
|
lcd_writel(fbi, FDADR1, fbi->fdadr[1]);
|
|
lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
|
|
}
|
|
|
|
static void pxafb_disable_controller(struct pxafb_info *fbi)
|
|
{
|
|
uint32_t lccr0;
|
|
|
|
#ifdef CONFIG_FB_PXA_SMARTPANEL
|
|
if (fbi->lccr0 & LCCR0_LCDT) {
|
|
wait_for_completion_timeout(&fbi->refresh_done,
|
|
200 * HZ / 1000);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/* Clear LCD Status Register */
|
|
lcd_writel(fbi, LCSR, 0xffffffff);
|
|
|
|
lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM;
|
|
lcd_writel(fbi, LCCR0, lccr0);
|
|
lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS);
|
|
|
|
wait_for_completion_timeout(&fbi->disable_done, 200 * HZ / 1000);
|
|
|
|
/* disable LCD controller clock */
|
|
clk_disable_unprepare(fbi->clk);
|
|
}
|
|
|
|
/*
|
|
* pxafb_handle_irq: Handle 'LCD DONE' interrupts.
|
|
*/
|
|
static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
|
|
{
|
|
struct pxafb_info *fbi = dev_id;
|
|
unsigned int lccr0, lcsr;
|
|
|
|
lcsr = lcd_readl(fbi, LCSR);
|
|
if (lcsr & LCSR_LDD) {
|
|
lccr0 = lcd_readl(fbi, LCCR0);
|
|
lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM);
|
|
complete(&fbi->disable_done);
|
|
}
|
|
|
|
#ifdef CONFIG_FB_PXA_SMARTPANEL
|
|
if (lcsr & LCSR_CMD_INT)
|
|
complete(&fbi->command_done);
|
|
#endif
|
|
lcd_writel(fbi, LCSR, lcsr);
|
|
|
|
#ifdef CONFIG_FB_PXA_OVERLAY
|
|
{
|
|
unsigned int lcsr1 = lcd_readl(fbi, LCSR1);
|
|
if (lcsr1 & LCSR1_BS(1))
|
|
complete(&fbi->overlay[0].branch_done);
|
|
|
|
if (lcsr1 & LCSR1_BS(2))
|
|
complete(&fbi->overlay[1].branch_done);
|
|
|
|
lcd_writel(fbi, LCSR1, lcsr1);
|
|
}
|
|
#endif
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* This function must be called from task context only, since it will
|
|
* sleep when disabling the LCD controller, or if we get two contending
|
|
* processes trying to alter state.
|
|
*/
|
|
static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
|
|
{
|
|
u_int old_state;
|
|
|
|
mutex_lock(&fbi->ctrlr_lock);
|
|
|
|
old_state = fbi->state;
|
|
|
|
/*
|
|
* Hack around fbcon initialisation.
|
|
*/
|
|
if (old_state == C_STARTUP && state == C_REENABLE)
|
|
state = C_ENABLE;
|
|
|
|
switch (state) {
|
|
case C_DISABLE_CLKCHANGE:
|
|
/*
|
|
* Disable controller for clock change. If the
|
|
* controller is already disabled, then do nothing.
|
|
*/
|
|
if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
|
|
fbi->state = state;
|
|
/* TODO __pxafb_lcd_power(fbi, 0); */
|
|
pxafb_disable_controller(fbi);
|
|
}
|
|
break;
|
|
|
|
case C_DISABLE_PM:
|
|
case C_DISABLE:
|
|
/*
|
|
* Disable controller
|
|
*/
|
|
if (old_state != C_DISABLE) {
|
|
fbi->state = state;
|
|
__pxafb_backlight_power(fbi, 0);
|
|
__pxafb_lcd_power(fbi, 0);
|
|
if (old_state != C_DISABLE_CLKCHANGE)
|
|
pxafb_disable_controller(fbi);
|
|
}
|
|
break;
|
|
|
|
case C_ENABLE_CLKCHANGE:
|
|
/*
|
|
* Enable the controller after clock change. Only
|
|
* do this if we were disabled for the clock change.
|
|
*/
|
|
if (old_state == C_DISABLE_CLKCHANGE) {
|
|
fbi->state = C_ENABLE;
|
|
pxafb_enable_controller(fbi);
|
|
/* TODO __pxafb_lcd_power(fbi, 1); */
|
|
}
|
|
break;
|
|
|
|
case C_REENABLE:
|
|
/*
|
|
* Re-enable the controller only if it was already
|
|
* enabled. This is so we reprogram the control
|
|
* registers.
|
|
*/
|
|
if (old_state == C_ENABLE) {
|
|
__pxafb_lcd_power(fbi, 0);
|
|
pxafb_disable_controller(fbi);
|
|
pxafb_enable_controller(fbi);
|
|
__pxafb_lcd_power(fbi, 1);
|
|
}
|
|
break;
|
|
|
|
case C_ENABLE_PM:
|
|
/*
|
|
* Re-enable the controller after PM. This is not
|
|
* perfect - think about the case where we were doing
|
|
* a clock change, and we suspended half-way through.
|
|
*/
|
|
if (old_state != C_DISABLE_PM)
|
|
break;
|
|
/* fall through */
|
|
|
|
case C_ENABLE:
|
|
/*
|
|
* Power up the LCD screen, enable controller, and
|
|
* turn on the backlight.
|
|
*/
|
|
if (old_state != C_ENABLE) {
|
|
fbi->state = C_ENABLE;
|
|
pxafb_enable_controller(fbi);
|
|
__pxafb_lcd_power(fbi, 1);
|
|
__pxafb_backlight_power(fbi, 1);
|
|
}
|
|
break;
|
|
}
|
|
mutex_unlock(&fbi->ctrlr_lock);
|
|
}
|
|
|
|
/*
|
|
* Our LCD controller task (which is called when we blank or unblank)
|
|
* via keventd.
|
|
*/
|
|
static void pxafb_task(struct work_struct *work)
|
|
{
|
|
struct pxafb_info *fbi =
|
|
container_of(work, struct pxafb_info, task);
|
|
u_int state = xchg(&fbi->task_state, -1);
|
|
|
|
set_ctrlr_state(fbi, state);
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_FREQ
|
|
/*
|
|
* CPU clock speed change handler. We need to adjust the LCD timing
|
|
* parameters when the CPU clock is adjusted by the power management
|
|
* subsystem.
|
|
*
|
|
* TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
|
|
*/
|
|
static int
|
|
pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
|
|
{
|
|
struct pxafb_info *fbi = TO_INF(nb, freq_transition);
|
|
/* TODO struct cpufreq_freqs *f = data; */
|
|
u_int pcd;
|
|
|
|
switch (val) {
|
|
case CPUFREQ_PRECHANGE:
|
|
#ifdef CONFIG_FB_PXA_OVERLAY
|
|
if (!(fbi->overlay[0].usage || fbi->overlay[1].usage))
|
|
#endif
|
|
set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
|
|
break;
|
|
|
|
case CPUFREQ_POSTCHANGE:
|
|
pcd = get_pcd(fbi, fbi->fb.var.pixclock);
|
|
set_hsync_time(fbi, pcd);
|
|
fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) |
|
|
LCCR3_PixClkDiv(pcd);
|
|
set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
|
|
{
|
|
struct pxafb_info *fbi = TO_INF(nb, freq_policy);
|
|
struct fb_var_screeninfo *var = &fbi->fb.var;
|
|
struct cpufreq_policy *policy = data;
|
|
|
|
switch (val) {
|
|
case CPUFREQ_ADJUST:
|
|
case CPUFREQ_INCOMPATIBLE:
|
|
pr_debug("min dma period: %d ps, "
|
|
"new clock %d kHz\n", pxafb_display_dma_period(var),
|
|
policy->max);
|
|
/* TODO: fill in min/max values */
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_PM
|
|
/*
|
|
* Power management hooks. Note that we won't be called from IRQ context,
|
|
* unlike the blank functions above, so we may sleep.
|
|
*/
|
|
static int pxafb_suspend(struct device *dev)
|
|
{
|
|
struct pxafb_info *fbi = dev_get_drvdata(dev);
|
|
|
|
set_ctrlr_state(fbi, C_DISABLE_PM);
|
|
return 0;
|
|
}
|
|
|
|
static int pxafb_resume(struct device *dev)
|
|
{
|
|
struct pxafb_info *fbi = dev_get_drvdata(dev);
|
|
|
|
set_ctrlr_state(fbi, C_ENABLE_PM);
|
|
return 0;
|
|
}
|
|
|
|
static const struct dev_pm_ops pxafb_pm_ops = {
|
|
.suspend = pxafb_suspend,
|
|
.resume = pxafb_resume,
|
|
};
|
|
#endif
|
|
|
|
static int pxafb_init_video_memory(struct pxafb_info *fbi)
|
|
{
|
|
int size = PAGE_ALIGN(fbi->video_mem_size);
|
|
|
|
fbi->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
|
|
if (fbi->video_mem == NULL)
|
|
return -ENOMEM;
|
|
|
|
fbi->video_mem_phys = virt_to_phys(fbi->video_mem);
|
|
fbi->video_mem_size = size;
|
|
|
|
fbi->fb.fix.smem_start = fbi->video_mem_phys;
|
|
fbi->fb.fix.smem_len = fbi->video_mem_size;
|
|
fbi->fb.screen_base = fbi->video_mem;
|
|
|
|
return fbi->video_mem ? 0 : -ENOMEM;
|
|
}
|
|
|
|
static void pxafb_decode_mach_info(struct pxafb_info *fbi,
|
|
struct pxafb_mach_info *inf)
|
|
{
|
|
unsigned int lcd_conn = inf->lcd_conn;
|
|
struct pxafb_mode_info *m;
|
|
int i;
|
|
|
|
fbi->cmap_inverse = inf->cmap_inverse;
|
|
fbi->cmap_static = inf->cmap_static;
|
|
fbi->lccr4 = inf->lccr4;
|
|
|
|
switch (lcd_conn & LCD_TYPE_MASK) {
|
|
case LCD_TYPE_MONO_STN:
|
|
fbi->lccr0 = LCCR0_CMS;
|
|
break;
|
|
case LCD_TYPE_MONO_DSTN:
|
|
fbi->lccr0 = LCCR0_CMS | LCCR0_SDS;
|
|
break;
|
|
case LCD_TYPE_COLOR_STN:
|
|
fbi->lccr0 = 0;
|
|
break;
|
|
case LCD_TYPE_COLOR_DSTN:
|
|
fbi->lccr0 = LCCR0_SDS;
|
|
break;
|
|
case LCD_TYPE_COLOR_TFT:
|
|
fbi->lccr0 = LCCR0_PAS;
|
|
break;
|
|
case LCD_TYPE_SMART_PANEL:
|
|
fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS;
|
|
break;
|
|
default:
|
|
/* fall back to backward compatibility way */
|
|
fbi->lccr0 = inf->lccr0;
|
|
fbi->lccr3 = inf->lccr3;
|
|
goto decode_mode;
|
|
}
|
|
|
|
if (lcd_conn == LCD_MONO_STN_8BPP)
|
|
fbi->lccr0 |= LCCR0_DPD;
|
|
|
|
fbi->lccr0 |= (lcd_conn & LCD_ALTERNATE_MAPPING) ? LCCR0_LDDALT : 0;
|
|
|
|
fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff);
|
|
fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0;
|
|
fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL) ? LCCR3_PCP : 0;
|
|
|
|
decode_mode:
|
|
pxafb_setmode(&fbi->fb.var, &inf->modes[0]);
|
|
|
|
/* decide video memory size as follows:
|
|
* 1. default to mode of maximum resolution
|
|
* 2. allow platform to override
|
|
* 3. allow module parameter to override
|
|
*/
|
|
for (i = 0, m = &inf->modes[0]; i < inf->num_modes; i++, m++)
|
|
fbi->video_mem_size = max_t(size_t, fbi->video_mem_size,
|
|
m->xres * m->yres * m->bpp / 8);
|
|
|
|
if (inf->video_mem_size > fbi->video_mem_size)
|
|
fbi->video_mem_size = inf->video_mem_size;
|
|
|
|
if (video_mem_size > fbi->video_mem_size)
|
|
fbi->video_mem_size = video_mem_size;
|
|
}
|
|
|
|
static struct pxafb_info *pxafb_init_fbinfo(struct device *dev)
|
|
{
|
|
struct pxafb_info *fbi;
|
|
void *addr;
|
|
struct pxafb_mach_info *inf = dev->platform_data;
|
|
|
|
/* Alloc the pxafb_info and pseudo_palette in one step */
|
|
fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL);
|
|
if (!fbi)
|
|
return NULL;
|
|
|
|
memset(fbi, 0, sizeof(struct pxafb_info));
|
|
fbi->dev = dev;
|
|
|
|
fbi->clk = clk_get(dev, NULL);
|
|
if (IS_ERR(fbi->clk)) {
|
|
kfree(fbi);
|
|
return NULL;
|
|
}
|
|
|
|
strcpy(fbi->fb.fix.id, PXA_NAME);
|
|
|
|
fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
|
|
fbi->fb.fix.type_aux = 0;
|
|
fbi->fb.fix.xpanstep = 0;
|
|
fbi->fb.fix.ypanstep = 1;
|
|
fbi->fb.fix.ywrapstep = 0;
|
|
fbi->fb.fix.accel = FB_ACCEL_NONE;
|
|
|
|
fbi->fb.var.nonstd = 0;
|
|
fbi->fb.var.activate = FB_ACTIVATE_NOW;
|
|
fbi->fb.var.height = -1;
|
|
fbi->fb.var.width = -1;
|
|
fbi->fb.var.accel_flags = FB_ACCELF_TEXT;
|
|
fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
|
|
|
|
fbi->fb.fbops = &pxafb_ops;
|
|
fbi->fb.flags = FBINFO_DEFAULT;
|
|
fbi->fb.node = -1;
|
|
|
|
addr = fbi;
|
|
addr = addr + sizeof(struct pxafb_info);
|
|
fbi->fb.pseudo_palette = addr;
|
|
|
|
fbi->state = C_STARTUP;
|
|
fbi->task_state = (u_char)-1;
|
|
|
|
pxafb_decode_mach_info(fbi, inf);
|
|
|
|
#ifdef CONFIG_FB_PXA_OVERLAY
|
|
/* place overlay(s) on top of base */
|
|
if (pxafb_overlay_supported())
|
|
fbi->lccr0 |= LCCR0_OUC;
|
|
#endif
|
|
|
|
init_waitqueue_head(&fbi->ctrlr_wait);
|
|
INIT_WORK(&fbi->task, pxafb_task);
|
|
mutex_init(&fbi->ctrlr_lock);
|
|
init_completion(&fbi->disable_done);
|
|
|
|
return fbi;
|
|
}
|
|
|
|
#ifdef CONFIG_FB_PXA_PARAMETERS
|
|
static int parse_opt_mode(struct device *dev, const char *this_opt)
|
|
{
|
|
struct pxafb_mach_info *inf = dev->platform_data;
|
|
|
|
const char *name = this_opt+5;
|
|
unsigned int namelen = strlen(name);
|
|
int res_specified = 0, bpp_specified = 0;
|
|
unsigned int xres = 0, yres = 0, bpp = 0;
|
|
int yres_specified = 0;
|
|
int i;
|
|
for (i = namelen-1; i >= 0; i--) {
|
|
switch (name[i]) {
|
|
case '-':
|
|
namelen = i;
|
|
if (!bpp_specified && !yres_specified) {
|
|
bpp = simple_strtoul(&name[i+1], NULL, 0);
|
|
bpp_specified = 1;
|
|
} else
|
|
goto done;
|
|
break;
|
|
case 'x':
|
|
if (!yres_specified) {
|
|
yres = simple_strtoul(&name[i+1], NULL, 0);
|
|
yres_specified = 1;
|
|
} else
|
|
goto done;
|
|
break;
|
|
case '0' ... '9':
|
|
break;
|
|
default:
|
|
goto done;
|
|
}
|
|
}
|
|
if (i < 0 && yres_specified) {
|
|
xres = simple_strtoul(name, NULL, 0);
|
|
res_specified = 1;
|
|
}
|
|
done:
|
|
if (res_specified) {
|
|
dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
|
|
inf->modes[0].xres = xres; inf->modes[0].yres = yres;
|
|
}
|
|
if (bpp_specified)
|
|
switch (bpp) {
|
|
case 1:
|
|
case 2:
|
|
case 4:
|
|
case 8:
|
|
case 16:
|
|
inf->modes[0].bpp = bpp;
|
|
dev_info(dev, "overriding bit depth: %d\n", bpp);
|
|
break;
|
|
default:
|
|
dev_err(dev, "Depth %d is not valid\n", bpp);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int parse_opt(struct device *dev, char *this_opt)
|
|
{
|
|
struct pxafb_mach_info *inf = dev->platform_data;
|
|
struct pxafb_mode_info *mode = &inf->modes[0];
|
|
char s[64];
|
|
|
|
s[0] = '\0';
|
|
|
|
if (!strncmp(this_opt, "vmem:", 5)) {
|
|
video_mem_size = memparse(this_opt + 5, NULL);
|
|
} else if (!strncmp(this_opt, "mode:", 5)) {
|
|
return parse_opt_mode(dev, this_opt);
|
|
} else if (!strncmp(this_opt, "pixclock:", 9)) {
|
|
mode->pixclock = simple_strtoul(this_opt+9, NULL, 0);
|
|
sprintf(s, "pixclock: %ld\n", mode->pixclock);
|
|
} else if (!strncmp(this_opt, "left:", 5)) {
|
|
mode->left_margin = simple_strtoul(this_opt+5, NULL, 0);
|
|
sprintf(s, "left: %u\n", mode->left_margin);
|
|
} else if (!strncmp(this_opt, "right:", 6)) {
|
|
mode->right_margin = simple_strtoul(this_opt+6, NULL, 0);
|
|
sprintf(s, "right: %u\n", mode->right_margin);
|
|
} else if (!strncmp(this_opt, "upper:", 6)) {
|
|
mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0);
|
|
sprintf(s, "upper: %u\n", mode->upper_margin);
|
|
} else if (!strncmp(this_opt, "lower:", 6)) {
|
|
mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0);
|
|
sprintf(s, "lower: %u\n", mode->lower_margin);
|
|
} else if (!strncmp(this_opt, "hsynclen:", 9)) {
|
|
mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0);
|
|
sprintf(s, "hsynclen: %u\n", mode->hsync_len);
|
|
} else if (!strncmp(this_opt, "vsynclen:", 9)) {
|
|
mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0);
|
|
sprintf(s, "vsynclen: %u\n", mode->vsync_len);
|
|
} else if (!strncmp(this_opt, "hsync:", 6)) {
|
|
if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
|
|
sprintf(s, "hsync: Active Low\n");
|
|
mode->sync &= ~FB_SYNC_HOR_HIGH_ACT;
|
|
} else {
|
|
sprintf(s, "hsync: Active High\n");
|
|
mode->sync |= FB_SYNC_HOR_HIGH_ACT;
|
|
}
|
|
} else if (!strncmp(this_opt, "vsync:", 6)) {
|
|
if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
|
|
sprintf(s, "vsync: Active Low\n");
|
|
mode->sync &= ~FB_SYNC_VERT_HIGH_ACT;
|
|
} else {
|
|
sprintf(s, "vsync: Active High\n");
|
|
mode->sync |= FB_SYNC_VERT_HIGH_ACT;
|
|
}
|
|
} else if (!strncmp(this_opt, "dpc:", 4)) {
|
|
if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
|
|
sprintf(s, "double pixel clock: false\n");
|
|
inf->lccr3 &= ~LCCR3_DPC;
|
|
} else {
|
|
sprintf(s, "double pixel clock: true\n");
|
|
inf->lccr3 |= LCCR3_DPC;
|
|
}
|
|
} else if (!strncmp(this_opt, "outputen:", 9)) {
|
|
if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
|
|
sprintf(s, "output enable: active low\n");
|
|
inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
|
|
} else {
|
|
sprintf(s, "output enable: active high\n");
|
|
inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
|
|
}
|
|
} else if (!strncmp(this_opt, "pixclockpol:", 12)) {
|
|
if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
|
|
sprintf(s, "pixel clock polarity: falling edge\n");
|
|
inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
|
|
} else {
|
|
sprintf(s, "pixel clock polarity: rising edge\n");
|
|
inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
|
|
}
|
|
} else if (!strncmp(this_opt, "color", 5)) {
|
|
inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
|
|
} else if (!strncmp(this_opt, "mono", 4)) {
|
|
inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
|
|
} else if (!strncmp(this_opt, "active", 6)) {
|
|
inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
|
|
} else if (!strncmp(this_opt, "passive", 7)) {
|
|
inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
|
|
} else if (!strncmp(this_opt, "single", 6)) {
|
|
inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
|
|
} else if (!strncmp(this_opt, "dual", 4)) {
|
|
inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
|
|
} else if (!strncmp(this_opt, "4pix", 4)) {
|
|
inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
|
|
} else if (!strncmp(this_opt, "8pix", 4)) {
|
|
inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
|
|
} else {
|
|
dev_err(dev, "unknown option: %s\n", this_opt);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (s[0] != '\0')
|
|
dev_info(dev, "override %s", s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pxafb_parse_options(struct device *dev, char *options)
|
|
{
|
|
char *this_opt;
|
|
int ret;
|
|
|
|
if (!options || !*options)
|
|
return 0;
|
|
|
|
dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
|
|
|
|
/* could be made table driven or similar?... */
|
|
while ((this_opt = strsep(&options, ",")) != NULL) {
|
|
ret = parse_opt(dev, this_opt);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static char g_options[256] = "";
|
|
|
|
#ifndef MODULE
|
|
static int __init pxafb_setup_options(void)
|
|
{
|
|
char *options = NULL;
|
|
|
|
if (fb_get_options("pxafb", &options))
|
|
return -ENODEV;
|
|
|
|
if (options)
|
|
strlcpy(g_options, options, sizeof(g_options));
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
#define pxafb_setup_options() (0)
|
|
|
|
module_param_string(options, g_options, sizeof(g_options), 0);
|
|
MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)");
|
|
#endif
|
|
|
|
#else
|
|
#define pxafb_parse_options(...) (0)
|
|
#define pxafb_setup_options() (0)
|
|
#endif
|
|
|
|
#ifdef DEBUG_VAR
|
|
/* Check for various illegal bit-combinations. Currently only
|
|
* a warning is given. */
|
|
static void pxafb_check_options(struct device *dev, struct pxafb_mach_info *inf)
|
|
{
|
|
if (inf->lcd_conn)
|
|
return;
|
|
|
|
if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
|
|
dev_warn(dev, "machine LCCR0 setting contains "
|
|
"illegal bits: %08x\n",
|
|
inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
|
|
if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
|
|
dev_warn(dev, "machine LCCR3 setting contains "
|
|
"illegal bits: %08x\n",
|
|
inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
|
|
if (inf->lccr0 & LCCR0_DPD &&
|
|
((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
|
|
(inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
|
|
(inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
|
|
dev_warn(dev, "Double Pixel Data (DPD) mode is "
|
|
"only valid in passive mono"
|
|
" single panel mode\n");
|
|
if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
|
|
(inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
|
|
dev_warn(dev, "Dual panel only valid in passive mode\n");
|
|
if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
|
|
(inf->modes->upper_margin || inf->modes->lower_margin))
|
|
dev_warn(dev, "Upper and lower margins must be 0 in "
|
|
"passive mode\n");
|
|
}
|
|
#else
|
|
#define pxafb_check_options(...) do {} while (0)
|
|
#endif
|
|
|
|
static int pxafb_probe(struct platform_device *dev)
|
|
{
|
|
struct pxafb_info *fbi;
|
|
struct pxafb_mach_info *inf;
|
|
struct resource *r;
|
|
int irq, ret;
|
|
|
|
dev_dbg(&dev->dev, "pxafb_probe\n");
|
|
|
|
inf = dev->dev.platform_data;
|
|
ret = -ENOMEM;
|
|
fbi = NULL;
|
|
if (!inf)
|
|
goto failed;
|
|
|
|
ret = pxafb_parse_options(&dev->dev, g_options);
|
|
if (ret < 0)
|
|
goto failed;
|
|
|
|
pxafb_check_options(&dev->dev, inf);
|
|
|
|
dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",
|
|
inf->modes->xres,
|
|
inf->modes->yres,
|
|
inf->modes->bpp);
|
|
if (inf->modes->xres == 0 ||
|
|
inf->modes->yres == 0 ||
|
|
inf->modes->bpp == 0) {
|
|
dev_err(&dev->dev, "Invalid resolution or bit depth\n");
|
|
ret = -EINVAL;
|
|
goto failed;
|
|
}
|
|
|
|
fbi = pxafb_init_fbinfo(&dev->dev);
|
|
if (!fbi) {
|
|
/* only reason for pxafb_init_fbinfo to fail is kmalloc */
|
|
dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
|
|
ret = -ENOMEM;
|
|
goto failed;
|
|
}
|
|
|
|
if (cpu_is_pxa3xx() && inf->acceleration_enabled)
|
|
fbi->fb.fix.accel = FB_ACCEL_PXA3XX;
|
|
|
|
fbi->backlight_power = inf->pxafb_backlight_power;
|
|
fbi->lcd_power = inf->pxafb_lcd_power;
|
|
|
|
r = platform_get_resource(dev, IORESOURCE_MEM, 0);
|
|
if (r == NULL) {
|
|
dev_err(&dev->dev, "no I/O memory resource defined\n");
|
|
ret = -ENODEV;
|
|
goto failed_fbi;
|
|
}
|
|
|
|
r = request_mem_region(r->start, resource_size(r), dev->name);
|
|
if (r == NULL) {
|
|
dev_err(&dev->dev, "failed to request I/O memory\n");
|
|
ret = -EBUSY;
|
|
goto failed_fbi;
|
|
}
|
|
|
|
fbi->mmio_base = ioremap(r->start, resource_size(r));
|
|
if (fbi->mmio_base == NULL) {
|
|
dev_err(&dev->dev, "failed to map I/O memory\n");
|
|
ret = -EBUSY;
|
|
goto failed_free_res;
|
|
}
|
|
|
|
fbi->dma_buff_size = PAGE_ALIGN(sizeof(struct pxafb_dma_buff));
|
|
fbi->dma_buff = dma_alloc_coherent(fbi->dev, fbi->dma_buff_size,
|
|
&fbi->dma_buff_phys, GFP_KERNEL);
|
|
if (fbi->dma_buff == NULL) {
|
|
dev_err(&dev->dev, "failed to allocate memory for DMA\n");
|
|
ret = -ENOMEM;
|
|
goto failed_free_io;
|
|
}
|
|
|
|
ret = pxafb_init_video_memory(fbi);
|
|
if (ret) {
|
|
dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
|
|
ret = -ENOMEM;
|
|
goto failed_free_dma;
|
|
}
|
|
|
|
irq = platform_get_irq(dev, 0);
|
|
if (irq < 0) {
|
|
dev_err(&dev->dev, "no IRQ defined\n");
|
|
ret = -ENODEV;
|
|
goto failed_free_mem;
|
|
}
|
|
|
|
ret = request_irq(irq, pxafb_handle_irq, 0, "LCD", fbi);
|
|
if (ret) {
|
|
dev_err(&dev->dev, "request_irq failed: %d\n", ret);
|
|
ret = -EBUSY;
|
|
goto failed_free_mem;
|
|
}
|
|
|
|
ret = pxafb_smart_init(fbi);
|
|
if (ret) {
|
|
dev_err(&dev->dev, "failed to initialize smartpanel\n");
|
|
goto failed_free_irq;
|
|
}
|
|
|
|
/*
|
|
* This makes sure that our colour bitfield
|
|
* descriptors are correctly initialised.
|
|
*/
|
|
ret = pxafb_check_var(&fbi->fb.var, &fbi->fb);
|
|
if (ret) {
|
|
dev_err(&dev->dev, "failed to get suitable mode\n");
|
|
goto failed_free_irq;
|
|
}
|
|
|
|
ret = pxafb_set_par(&fbi->fb);
|
|
if (ret) {
|
|
dev_err(&dev->dev, "Failed to set parameters\n");
|
|
goto failed_free_irq;
|
|
}
|
|
|
|
platform_set_drvdata(dev, fbi);
|
|
|
|
ret = register_framebuffer(&fbi->fb);
|
|
if (ret < 0) {
|
|
dev_err(&dev->dev,
|
|
"Failed to register framebuffer device: %d\n", ret);
|
|
goto failed_free_cmap;
|
|
}
|
|
|
|
pxafb_overlay_init(fbi);
|
|
|
|
#ifdef CONFIG_CPU_FREQ
|
|
fbi->freq_transition.notifier_call = pxafb_freq_transition;
|
|
fbi->freq_policy.notifier_call = pxafb_freq_policy;
|
|
cpufreq_register_notifier(&fbi->freq_transition,
|
|
CPUFREQ_TRANSITION_NOTIFIER);
|
|
cpufreq_register_notifier(&fbi->freq_policy,
|
|
CPUFREQ_POLICY_NOTIFIER);
|
|
#endif
|
|
|
|
/*
|
|
* Ok, now enable the LCD controller
|
|
*/
|
|
set_ctrlr_state(fbi, C_ENABLE);
|
|
|
|
return 0;
|
|
|
|
failed_free_cmap:
|
|
if (fbi->fb.cmap.len)
|
|
fb_dealloc_cmap(&fbi->fb.cmap);
|
|
failed_free_irq:
|
|
free_irq(irq, fbi);
|
|
failed_free_mem:
|
|
free_pages_exact(fbi->video_mem, fbi->video_mem_size);
|
|
failed_free_dma:
|
|
dma_free_coherent(&dev->dev, fbi->dma_buff_size,
|
|
fbi->dma_buff, fbi->dma_buff_phys);
|
|
failed_free_io:
|
|
iounmap(fbi->mmio_base);
|
|
failed_free_res:
|
|
release_mem_region(r->start, resource_size(r));
|
|
failed_fbi:
|
|
clk_put(fbi->clk);
|
|
kfree(fbi);
|
|
failed:
|
|
return ret;
|
|
}
|
|
|
|
static int pxafb_remove(struct platform_device *dev)
|
|
{
|
|
struct pxafb_info *fbi = platform_get_drvdata(dev);
|
|
struct resource *r;
|
|
int irq;
|
|
struct fb_info *info;
|
|
|
|
if (!fbi)
|
|
return 0;
|
|
|
|
info = &fbi->fb;
|
|
|
|
pxafb_overlay_exit(fbi);
|
|
unregister_framebuffer(info);
|
|
|
|
pxafb_disable_controller(fbi);
|
|
|
|
if (fbi->fb.cmap.len)
|
|
fb_dealloc_cmap(&fbi->fb.cmap);
|
|
|
|
irq = platform_get_irq(dev, 0);
|
|
free_irq(irq, fbi);
|
|
|
|
free_pages_exact(fbi->video_mem, fbi->video_mem_size);
|
|
|
|
dma_free_writecombine(&dev->dev, fbi->dma_buff_size,
|
|
fbi->dma_buff, fbi->dma_buff_phys);
|
|
|
|
iounmap(fbi->mmio_base);
|
|
|
|
r = platform_get_resource(dev, IORESOURCE_MEM, 0);
|
|
release_mem_region(r->start, resource_size(r));
|
|
|
|
clk_put(fbi->clk);
|
|
kfree(fbi);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver pxafb_driver = {
|
|
.probe = pxafb_probe,
|
|
.remove = pxafb_remove,
|
|
.driver = {
|
|
.owner = THIS_MODULE,
|
|
.name = "pxa2xx-fb",
|
|
#ifdef CONFIG_PM
|
|
.pm = &pxafb_pm_ops,
|
|
#endif
|
|
},
|
|
};
|
|
|
|
static int __init pxafb_init(void)
|
|
{
|
|
if (pxafb_setup_options())
|
|
return -EINVAL;
|
|
|
|
return platform_driver_register(&pxafb_driver);
|
|
}
|
|
|
|
static void __exit pxafb_exit(void)
|
|
{
|
|
platform_driver_unregister(&pxafb_driver);
|
|
}
|
|
|
|
module_init(pxafb_init);
|
|
module_exit(pxafb_exit);
|
|
|
|
MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
|
|
MODULE_LICENSE("GPL");
|