mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-01 10:13:58 +08:00
1da177e4c3
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
127 lines
4.3 KiB
ArmAsm
127 lines
4.3 KiB
ArmAsm
/*
|
|
* arch/alpha/lib/ev6-csum_ipv6_magic.S
|
|
* 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com>
|
|
*
|
|
* unsigned short csum_ipv6_magic(struct in6_addr *saddr,
|
|
* struct in6_addr *daddr,
|
|
* __u32 len,
|
|
* unsigned short proto,
|
|
* unsigned int csum);
|
|
*
|
|
* Much of the information about 21264 scheduling/coding comes from:
|
|
* Compiler Writer's Guide for the Alpha 21264
|
|
* abbreviated as 'CWG' in other comments here
|
|
* ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
|
|
* Scheduling notation:
|
|
* E - either cluster
|
|
* U - upper subcluster; U0 - subcluster U0; U1 - subcluster U1
|
|
* L - lower subcluster; L0 - subcluster L0; L1 - subcluster L1
|
|
* Try not to change the actual algorithm if possible for consistency.
|
|
* Determining actual stalls (other than slotting) doesn't appear to be easy to do.
|
|
*
|
|
* unsigned short csum_ipv6_magic(struct in6_addr *saddr,
|
|
* struct in6_addr *daddr,
|
|
* __u32 len,
|
|
* unsigned short proto,
|
|
* unsigned int csum);
|
|
*
|
|
* Swap <proto> (takes form 0xaabb)
|
|
* Then shift it left by 48, so result is:
|
|
* 0xbbaa0000 00000000
|
|
* Then turn it back into a sign extended 32-bit item
|
|
* 0xbbaa0000
|
|
*
|
|
* Swap <len> (an unsigned int) using Mike Burrows' 7-instruction sequence
|
|
* (we can't hide the 3-cycle latency of the unpkbw in the 6-instruction sequence)
|
|
* Assume input takes form 0xAABBCCDD
|
|
*
|
|
* Finally, original 'folding' approach is to split the long into 4 unsigned shorts
|
|
* add 4 ushorts, resulting in ushort/carry
|
|
* add carry bits + ushort --> ushort
|
|
* add carry bits + ushort --> ushort (in case the carry results in an overflow)
|
|
* Truncate to a ushort. (took 13 instructions)
|
|
* From doing some testing, using the approach in checksum.c:from64to16()
|
|
* results in the same outcome:
|
|
* split into 2 uints, add those, generating a ulong
|
|
* add the 3 low ushorts together, generating a uint
|
|
* a final add of the 2 lower ushorts
|
|
* truncating the result.
|
|
*/
|
|
|
|
.globl csum_ipv6_magic
|
|
.align 4
|
|
.ent csum_ipv6_magic
|
|
.frame $30,0,$26,0
|
|
csum_ipv6_magic:
|
|
.prologue 0
|
|
|
|
ldq $0,0($16) # L : Latency: 3
|
|
inslh $18,7,$4 # U : 0000000000AABBCC
|
|
ldq $1,8($16) # L : Latency: 3
|
|
sll $19,8,$7 # U : U L U L : 0x00000000 00aabb00
|
|
|
|
zapnot $20,15,$20 # U : zero extend incoming csum
|
|
ldq $2,0($17) # L : Latency: 3
|
|
sll $19,24,$19 # U : U L L U : 0x000000aa bb000000
|
|
inswl $18,3,$18 # U : 000000CCDD000000
|
|
|
|
ldq $3,8($17) # L : Latency: 3
|
|
bis $18,$4,$18 # E : 000000CCDDAABBCC
|
|
addl $19,$7,$19 # E : <sign bits>bbaabb00
|
|
nop # E : U L U L
|
|
|
|
addq $20,$0,$20 # E : begin summing the words
|
|
srl $18,16,$4 # U : 0000000000CCDDAA
|
|
zap $19,0x3,$19 # U : <sign bits>bbaa0000
|
|
nop # E : L U U L
|
|
|
|
cmpult $20,$0,$0 # E :
|
|
addq $20,$1,$20 # E :
|
|
zapnot $18,0xa,$18 # U : 00000000DD00BB00
|
|
zap $4,0xa,$4 # U : U U L L : 0000000000CC00AA
|
|
|
|
or $18,$4,$18 # E : 00000000DDCCBBAA
|
|
nop # E :
|
|
cmpult $20,$1,$1 # E :
|
|
addq $20,$2,$20 # E : U L U L
|
|
|
|
cmpult $20,$2,$2 # E :
|
|
addq $20,$3,$20 # E :
|
|
cmpult $20,$3,$3 # E : (1 cycle stall on $20)
|
|
addq $20,$18,$20 # E : U L U L (1 cycle stall on $20)
|
|
|
|
cmpult $20,$18,$18 # E :
|
|
addq $20,$19,$20 # E : (1 cycle stall on $20)
|
|
addq $0,$1,$0 # E : merge the carries back into the csum
|
|
addq $2,$3,$2 # E :
|
|
|
|
cmpult $20,$19,$19 # E :
|
|
addq $18,$19,$18 # E : (1 cycle stall on $19)
|
|
addq $0,$2,$0 # E :
|
|
addq $20,$18,$20 # E : U L U L :
|
|
/* (1 cycle stall on $18, 2 cycles on $20) */
|
|
|
|
addq $0,$20,$0 # E :
|
|
zapnot $0,15,$1 # U : Start folding output (1 cycle stall on $0)
|
|
nop # E :
|
|
srl $0,32,$0 # U : U L U L : (1 cycle stall on $0)
|
|
|
|
addq $1,$0,$1 # E : Finished generating ulong
|
|
extwl $1,2,$2 # U : ushort[1] (1 cycle stall on $1)
|
|
zapnot $1,3,$0 # U : ushort[0] (1 cycle stall on $1)
|
|
extwl $1,4,$1 # U : ushort[2] (1 cycle stall on $1)
|
|
|
|
addq $0,$2,$0 # E
|
|
addq $0,$1,$3 # E : Finished generating uint
|
|
/* (1 cycle stall on $0) */
|
|
extwl $3,2,$1 # U : ushort[1] (1 cycle stall on $3)
|
|
nop # E : L U L U
|
|
|
|
addq $1,$3,$0 # E : Final carry
|
|
not $0,$4 # E : complement (1 cycle stall on $0)
|
|
zapnot $4,3,$0 # U : clear upper garbage bits
|
|
/* (1 cycle stall on $4) */
|
|
ret # L0 : L U L U
|
|
|
|
.end csum_ipv6_magic
|