2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-03 19:24:02 +08:00
linux-next/drivers/dax/super.c
Linus Torvalds f67e3fb489 device-dax for 5.1
* Replace the /sys/class/dax device model with /sys/bus/dax, and include
   a compat driver so distributions can opt-in to the new ABI.
 
 * Allow for an alternative driver for the device-dax address-range
 
 * Introduce the 'kmem' driver to hotplug / assign a device-dax
   address-range to the core-mm.
 
 * Arrange for the device-dax target-node to be onlined so that the newly
   added memory range can be uniquely referenced by numa apis.
 -----BEGIN PGP SIGNATURE-----
 
 iQIcBAABAgAGBQJchWpGAAoJEB7SkWpmfYgCJk8P/0Q1DINszUDO/vKjJ09cDs9P
 Jw3it6GBIL50rDOu9QdcprSpwYDD0h1mLAV/m6oa3bVO+p4uWGvnxaxRx2HN2c/v
 vhZFtUDpHlqR63vzWMNVKRprYixCRJDUr6xQhhCcE3ak/ELN6w7LWfikKVWv15UL
 MfR96IQU38f+xRda/zSXnL9606Dvkvu/inEHj84lRcHIwj3sQAUalrE8bR3O32gZ
 bDg/l5kzT49o8ZXUo/TegvRSSSZpJmOl2DD0RW+ax5q3NI2bOXFrVDUKBKxf/hcQ
 E/V9i57TrqQx0GqRhnU7rN/v53cFZGGs31TEEIB/xs3bzCnADxwXcjL5b5K005J6
 vJjBA2ODBewHFK3uVx46Hy1iV4eCtZWj4QrMnrjdSrjXOfbF5GTbWOhPFgoq7TWf
 S7VqFEf3I2gDPaMq4o8Ej1kLH4HMYeor2NSOZjyvGn87rSZ3ZIQguwbaNIVl+itz
 gdDt0ZOU0BgOBkV+rZIeZDaGdloWCHcDPL15CkZaOZyzdWhfEZ7dod6ad+9udilU
 EUPH62RgzXZtfm5zpebYyjNVLbb9pLZ0nT+UypyGR6zqWx1SqU3mXi63NFXPco+x
 XA9j//edPeI6NHg2CXLEh8DLuCg3dG1zWRJANkiF+niBwyCR8CHtGWAoY6soXbKe
 2UrXGcIfXxyJ8V9v8v4q
 =hfa3
 -----END PGP SIGNATURE-----

Merge tag 'devdax-for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull device-dax updates from Dan Williams:
 "New device-dax infrastructure to allow persistent memory and other
  "reserved" / performance differentiated memories, to be assigned to
  the core-mm as "System RAM".

  Some users want to use persistent memory as additional volatile
  memory. They are willing to cope with potential performance
  differences, for example between DRAM and 3D Xpoint, and want to use
  typical Linux memory management apis rather than a userspace memory
  allocator layered over an mmap() of a dax file. The administration
  model is to decide how much Persistent Memory (pmem) to use as System
  RAM, create a device-dax-mode namespace of that size, and then assign
  it to the core-mm. The rationale for device-dax is that it is a
  generic memory-mapping driver that can be layered over any "special
  purpose" memory, not just pmem. On subsequent boots udev rules can be
  used to restore the memory assignment.

  One implication of using pmem as RAM is that mlock() no longer keeps
  data off persistent media. For this reason it is recommended to enable
  NVDIMM Security (previously merged for 5.0) to encrypt pmem contents
  at rest. We considered making this recommendation an actively enforced
  requirement, but in the end decided to leave it as a distribution /
  administrator policy to allow for emulation and test environments that
  lack security capable NVDIMMs.

  Summary:

   - Replace the /sys/class/dax device model with /sys/bus/dax, and
     include a compat driver so distributions can opt-in to the new ABI.

   - Allow for an alternative driver for the device-dax address-range

   - Introduce the 'kmem' driver to hotplug / assign a device-dax
     address-range to the core-mm.

   - Arrange for the device-dax target-node to be onlined so that the
     newly added memory range can be uniquely referenced by numa apis"

NOTE! I'm not entirely happy with the whole "PMEM as RAM" model because
we currently have special - and very annoying rules in the kernel about
accessing PMEM only with the "MC safe" accessors, because machine checks
inside the regular repeat string copy functions can be fatal in some
(not described) circumstances.

And apparently the PMEM modules can cause that a lot more than regular
RAM.  The argument is that this happens because PMEM doesn't necessarily
get scrubbed at boot like RAM does, but that is planned to be added for
the user space tooling.

Quoting Dan from another email:
 "The exposure can be reduced in the volatile-RAM case by scanning for
  and clearing errors before it is onlined as RAM. The userspace tooling
  for that can be in place before v5.1-final. There's also runtime
  notifications of errors via acpi_nfit_uc_error_notify() from
  background scrubbers on the DIMM devices. With that mechanism the
  kernel could proactively clear newly discovered poison in the volatile
  case, but that would be additional development more suitable for v5.2.

  I understand the concern, and the need to highlight this issue by
  tapping the brakes on feature development, but I don't see PMEM as RAM
  making the situation worse when the exposure is also there via DAX in
  the PMEM case. Volatile-RAM is arguably a safer use case since it's
  possible to repair pages where the persistent case needs active
  application coordination"

* tag 'devdax-for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
  device-dax: "Hotplug" persistent memory for use like normal RAM
  mm/resource: Let walk_system_ram_range() search child resources
  mm/memory-hotplug: Allow memory resources to be children
  mm/resource: Move HMM pr_debug() deeper into resource code
  mm/resource: Return real error codes from walk failures
  device-dax: Add a 'modalias' attribute to DAX 'bus' devices
  device-dax: Add a 'target_node' attribute
  device-dax: Auto-bind device after successful new_id
  acpi/nfit, device-dax: Identify differentiated memory with a unique numa-node
  device-dax: Add /sys/class/dax backwards compatibility
  device-dax: Add support for a dax override driver
  device-dax: Move resource pinning+mapping into the common driver
  device-dax: Introduce bus + driver model
  device-dax: Start defining a dax bus model
  device-dax: Remove multi-resource infrastructure
  device-dax: Kill dax_region base
  device-dax: Kill dax_region ida
2019-03-16 13:05:32 -07:00

699 lines
16 KiB
C

/*
* Copyright(c) 2017 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/pagemap.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/magic.h>
#include <linux/genhd.h>
#include <linux/pfn_t.h>
#include <linux/cdev.h>
#include <linux/hash.h>
#include <linux/slab.h>
#include <linux/uio.h>
#include <linux/dax.h>
#include <linux/fs.h>
#include "dax-private.h"
static dev_t dax_devt;
DEFINE_STATIC_SRCU(dax_srcu);
static struct vfsmount *dax_mnt;
static DEFINE_IDA(dax_minor_ida);
static struct kmem_cache *dax_cache __read_mostly;
static struct super_block *dax_superblock __read_mostly;
#define DAX_HASH_SIZE (PAGE_SIZE / sizeof(struct hlist_head))
static struct hlist_head dax_host_list[DAX_HASH_SIZE];
static DEFINE_SPINLOCK(dax_host_lock);
int dax_read_lock(void)
{
return srcu_read_lock(&dax_srcu);
}
EXPORT_SYMBOL_GPL(dax_read_lock);
void dax_read_unlock(int id)
{
srcu_read_unlock(&dax_srcu, id);
}
EXPORT_SYMBOL_GPL(dax_read_unlock);
#ifdef CONFIG_BLOCK
#include <linux/blkdev.h>
int bdev_dax_pgoff(struct block_device *bdev, sector_t sector, size_t size,
pgoff_t *pgoff)
{
phys_addr_t phys_off = (get_start_sect(bdev) + sector) * 512;
if (pgoff)
*pgoff = PHYS_PFN(phys_off);
if (phys_off % PAGE_SIZE || size % PAGE_SIZE)
return -EINVAL;
return 0;
}
EXPORT_SYMBOL(bdev_dax_pgoff);
#if IS_ENABLED(CONFIG_FS_DAX)
struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev)
{
if (!blk_queue_dax(bdev->bd_queue))
return NULL;
return fs_dax_get_by_host(bdev->bd_disk->disk_name);
}
EXPORT_SYMBOL_GPL(fs_dax_get_by_bdev);
#endif
/**
* __bdev_dax_supported() - Check if the device supports dax for filesystem
* @bdev: block device to check
* @blocksize: The block size of the device
*
* This is a library function for filesystems to check if the block device
* can be mounted with dax option.
*
* Return: true if supported, false if unsupported
*/
bool __bdev_dax_supported(struct block_device *bdev, int blocksize)
{
struct dax_device *dax_dev;
bool dax_enabled = false;
pgoff_t pgoff, pgoff_end;
struct request_queue *q;
char buf[BDEVNAME_SIZE];
void *kaddr, *end_kaddr;
pfn_t pfn, end_pfn;
sector_t last_page;
long len, len2;
int err, id;
if (blocksize != PAGE_SIZE) {
pr_debug("%s: error: unsupported blocksize for dax\n",
bdevname(bdev, buf));
return false;
}
q = bdev_get_queue(bdev);
if (!q || !blk_queue_dax(q)) {
pr_debug("%s: error: request queue doesn't support dax\n",
bdevname(bdev, buf));
return false;
}
err = bdev_dax_pgoff(bdev, 0, PAGE_SIZE, &pgoff);
if (err) {
pr_debug("%s: error: unaligned partition for dax\n",
bdevname(bdev, buf));
return false;
}
last_page = PFN_DOWN(i_size_read(bdev->bd_inode) - 1) * 8;
err = bdev_dax_pgoff(bdev, last_page, PAGE_SIZE, &pgoff_end);
if (err) {
pr_debug("%s: error: unaligned partition for dax\n",
bdevname(bdev, buf));
return false;
}
dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
if (!dax_dev) {
pr_debug("%s: error: device does not support dax\n",
bdevname(bdev, buf));
return false;
}
id = dax_read_lock();
len = dax_direct_access(dax_dev, pgoff, 1, &kaddr, &pfn);
len2 = dax_direct_access(dax_dev, pgoff_end, 1, &end_kaddr, &end_pfn);
dax_read_unlock(id);
put_dax(dax_dev);
if (len < 1 || len2 < 1) {
pr_debug("%s: error: dax access failed (%ld)\n",
bdevname(bdev, buf), len < 1 ? len : len2);
return false;
}
if (IS_ENABLED(CONFIG_FS_DAX_LIMITED) && pfn_t_special(pfn)) {
/*
* An arch that has enabled the pmem api should also
* have its drivers support pfn_t_devmap()
*
* This is a developer warning and should not trigger in
* production. dax_flush() will crash since it depends
* on being able to do (page_address(pfn_to_page())).
*/
WARN_ON(IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API));
dax_enabled = true;
} else if (pfn_t_devmap(pfn) && pfn_t_devmap(end_pfn)) {
struct dev_pagemap *pgmap, *end_pgmap;
pgmap = get_dev_pagemap(pfn_t_to_pfn(pfn), NULL);
end_pgmap = get_dev_pagemap(pfn_t_to_pfn(end_pfn), NULL);
if (pgmap && pgmap == end_pgmap && pgmap->type == MEMORY_DEVICE_FS_DAX
&& pfn_t_to_page(pfn)->pgmap == pgmap
&& pfn_t_to_page(end_pfn)->pgmap == pgmap
&& pfn_t_to_pfn(pfn) == PHYS_PFN(__pa(kaddr))
&& pfn_t_to_pfn(end_pfn) == PHYS_PFN(__pa(end_kaddr)))
dax_enabled = true;
put_dev_pagemap(pgmap);
put_dev_pagemap(end_pgmap);
}
if (!dax_enabled) {
pr_debug("%s: error: dax support not enabled\n",
bdevname(bdev, buf));
return false;
}
return true;
}
EXPORT_SYMBOL_GPL(__bdev_dax_supported);
#endif
enum dax_device_flags {
/* !alive + rcu grace period == no new operations / mappings */
DAXDEV_ALIVE,
/* gate whether dax_flush() calls the low level flush routine */
DAXDEV_WRITE_CACHE,
};
/**
* struct dax_device - anchor object for dax services
* @inode: core vfs
* @cdev: optional character interface for "device dax"
* @host: optional name for lookups where the device path is not available
* @private: dax driver private data
* @flags: state and boolean properties
*/
struct dax_device {
struct hlist_node list;
struct inode inode;
struct cdev cdev;
const char *host;
void *private;
unsigned long flags;
const struct dax_operations *ops;
};
static ssize_t write_cache_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct dax_device *dax_dev = dax_get_by_host(dev_name(dev));
ssize_t rc;
WARN_ON_ONCE(!dax_dev);
if (!dax_dev)
return -ENXIO;
rc = sprintf(buf, "%d\n", !!dax_write_cache_enabled(dax_dev));
put_dax(dax_dev);
return rc;
}
static ssize_t write_cache_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
bool write_cache;
int rc = strtobool(buf, &write_cache);
struct dax_device *dax_dev = dax_get_by_host(dev_name(dev));
WARN_ON_ONCE(!dax_dev);
if (!dax_dev)
return -ENXIO;
if (rc)
len = rc;
else
dax_write_cache(dax_dev, write_cache);
put_dax(dax_dev);
return len;
}
static DEVICE_ATTR_RW(write_cache);
static umode_t dax_visible(struct kobject *kobj, struct attribute *a, int n)
{
struct device *dev = container_of(kobj, typeof(*dev), kobj);
struct dax_device *dax_dev = dax_get_by_host(dev_name(dev));
WARN_ON_ONCE(!dax_dev);
if (!dax_dev)
return 0;
#ifndef CONFIG_ARCH_HAS_PMEM_API
if (a == &dev_attr_write_cache.attr)
return 0;
#endif
return a->mode;
}
static struct attribute *dax_attributes[] = {
&dev_attr_write_cache.attr,
NULL,
};
struct attribute_group dax_attribute_group = {
.name = "dax",
.attrs = dax_attributes,
.is_visible = dax_visible,
};
EXPORT_SYMBOL_GPL(dax_attribute_group);
/**
* dax_direct_access() - translate a device pgoff to an absolute pfn
* @dax_dev: a dax_device instance representing the logical memory range
* @pgoff: offset in pages from the start of the device to translate
* @nr_pages: number of consecutive pages caller can handle relative to @pfn
* @kaddr: output parameter that returns a virtual address mapping of pfn
* @pfn: output parameter that returns an absolute pfn translation of @pgoff
*
* Return: negative errno if an error occurs, otherwise the number of
* pages accessible at the device relative @pgoff.
*/
long dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages,
void **kaddr, pfn_t *pfn)
{
long avail;
if (!dax_dev)
return -EOPNOTSUPP;
if (!dax_alive(dax_dev))
return -ENXIO;
if (nr_pages < 0)
return nr_pages;
avail = dax_dev->ops->direct_access(dax_dev, pgoff, nr_pages,
kaddr, pfn);
if (!avail)
return -ERANGE;
return min(avail, nr_pages);
}
EXPORT_SYMBOL_GPL(dax_direct_access);
size_t dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
size_t bytes, struct iov_iter *i)
{
if (!dax_alive(dax_dev))
return 0;
return dax_dev->ops->copy_from_iter(dax_dev, pgoff, addr, bytes, i);
}
EXPORT_SYMBOL_GPL(dax_copy_from_iter);
size_t dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
size_t bytes, struct iov_iter *i)
{
if (!dax_alive(dax_dev))
return 0;
return dax_dev->ops->copy_to_iter(dax_dev, pgoff, addr, bytes, i);
}
EXPORT_SYMBOL_GPL(dax_copy_to_iter);
#ifdef CONFIG_ARCH_HAS_PMEM_API
void arch_wb_cache_pmem(void *addr, size_t size);
void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
{
if (unlikely(!dax_write_cache_enabled(dax_dev)))
return;
arch_wb_cache_pmem(addr, size);
}
#else
void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
{
}
#endif
EXPORT_SYMBOL_GPL(dax_flush);
void dax_write_cache(struct dax_device *dax_dev, bool wc)
{
if (wc)
set_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
else
clear_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
}
EXPORT_SYMBOL_GPL(dax_write_cache);
bool dax_write_cache_enabled(struct dax_device *dax_dev)
{
return test_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
}
EXPORT_SYMBOL_GPL(dax_write_cache_enabled);
bool dax_alive(struct dax_device *dax_dev)
{
lockdep_assert_held(&dax_srcu);
return test_bit(DAXDEV_ALIVE, &dax_dev->flags);
}
EXPORT_SYMBOL_GPL(dax_alive);
static int dax_host_hash(const char *host)
{
return hashlen_hash(hashlen_string("DAX", host)) % DAX_HASH_SIZE;
}
/*
* Note, rcu is not protecting the liveness of dax_dev, rcu is ensuring
* that any fault handlers or operations that might have seen
* dax_alive(), have completed. Any operations that start after
* synchronize_srcu() has run will abort upon seeing !dax_alive().
*/
void kill_dax(struct dax_device *dax_dev)
{
if (!dax_dev)
return;
clear_bit(DAXDEV_ALIVE, &dax_dev->flags);
synchronize_srcu(&dax_srcu);
spin_lock(&dax_host_lock);
hlist_del_init(&dax_dev->list);
spin_unlock(&dax_host_lock);
}
EXPORT_SYMBOL_GPL(kill_dax);
void run_dax(struct dax_device *dax_dev)
{
set_bit(DAXDEV_ALIVE, &dax_dev->flags);
}
EXPORT_SYMBOL_GPL(run_dax);
static struct inode *dax_alloc_inode(struct super_block *sb)
{
struct dax_device *dax_dev;
struct inode *inode;
dax_dev = kmem_cache_alloc(dax_cache, GFP_KERNEL);
if (!dax_dev)
return NULL;
inode = &dax_dev->inode;
inode->i_rdev = 0;
return inode;
}
static struct dax_device *to_dax_dev(struct inode *inode)
{
return container_of(inode, struct dax_device, inode);
}
static void dax_i_callback(struct rcu_head *head)
{
struct inode *inode = container_of(head, struct inode, i_rcu);
struct dax_device *dax_dev = to_dax_dev(inode);
kfree(dax_dev->host);
dax_dev->host = NULL;
if (inode->i_rdev)
ida_simple_remove(&dax_minor_ida, MINOR(inode->i_rdev));
kmem_cache_free(dax_cache, dax_dev);
}
static void dax_destroy_inode(struct inode *inode)
{
struct dax_device *dax_dev = to_dax_dev(inode);
WARN_ONCE(test_bit(DAXDEV_ALIVE, &dax_dev->flags),
"kill_dax() must be called before final iput()\n");
call_rcu(&inode->i_rcu, dax_i_callback);
}
static const struct super_operations dax_sops = {
.statfs = simple_statfs,
.alloc_inode = dax_alloc_inode,
.destroy_inode = dax_destroy_inode,
.drop_inode = generic_delete_inode,
};
static struct dentry *dax_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
return mount_pseudo(fs_type, "dax:", &dax_sops, NULL, DAXFS_MAGIC);
}
static struct file_system_type dax_fs_type = {
.name = "dax",
.mount = dax_mount,
.kill_sb = kill_anon_super,
};
static int dax_test(struct inode *inode, void *data)
{
dev_t devt = *(dev_t *) data;
return inode->i_rdev == devt;
}
static int dax_set(struct inode *inode, void *data)
{
dev_t devt = *(dev_t *) data;
inode->i_rdev = devt;
return 0;
}
static struct dax_device *dax_dev_get(dev_t devt)
{
struct dax_device *dax_dev;
struct inode *inode;
inode = iget5_locked(dax_superblock, hash_32(devt + DAXFS_MAGIC, 31),
dax_test, dax_set, &devt);
if (!inode)
return NULL;
dax_dev = to_dax_dev(inode);
if (inode->i_state & I_NEW) {
set_bit(DAXDEV_ALIVE, &dax_dev->flags);
inode->i_cdev = &dax_dev->cdev;
inode->i_mode = S_IFCHR;
inode->i_flags = S_DAX;
mapping_set_gfp_mask(&inode->i_data, GFP_USER);
unlock_new_inode(inode);
}
return dax_dev;
}
static void dax_add_host(struct dax_device *dax_dev, const char *host)
{
int hash;
/*
* Unconditionally init dax_dev since it's coming from a
* non-zeroed slab cache
*/
INIT_HLIST_NODE(&dax_dev->list);
dax_dev->host = host;
if (!host)
return;
hash = dax_host_hash(host);
spin_lock(&dax_host_lock);
hlist_add_head(&dax_dev->list, &dax_host_list[hash]);
spin_unlock(&dax_host_lock);
}
struct dax_device *alloc_dax(void *private, const char *__host,
const struct dax_operations *ops)
{
struct dax_device *dax_dev;
const char *host;
dev_t devt;
int minor;
host = kstrdup(__host, GFP_KERNEL);
if (__host && !host)
return NULL;
minor = ida_simple_get(&dax_minor_ida, 0, MINORMASK+1, GFP_KERNEL);
if (minor < 0)
goto err_minor;
devt = MKDEV(MAJOR(dax_devt), minor);
dax_dev = dax_dev_get(devt);
if (!dax_dev)
goto err_dev;
dax_add_host(dax_dev, host);
dax_dev->ops = ops;
dax_dev->private = private;
return dax_dev;
err_dev:
ida_simple_remove(&dax_minor_ida, minor);
err_minor:
kfree(host);
return NULL;
}
EXPORT_SYMBOL_GPL(alloc_dax);
void put_dax(struct dax_device *dax_dev)
{
if (!dax_dev)
return;
iput(&dax_dev->inode);
}
EXPORT_SYMBOL_GPL(put_dax);
/**
* dax_get_by_host() - temporary lookup mechanism for filesystem-dax
* @host: alternate name for the device registered by a dax driver
*/
struct dax_device *dax_get_by_host(const char *host)
{
struct dax_device *dax_dev, *found = NULL;
int hash, id;
if (!host)
return NULL;
hash = dax_host_hash(host);
id = dax_read_lock();
spin_lock(&dax_host_lock);
hlist_for_each_entry(dax_dev, &dax_host_list[hash], list) {
if (!dax_alive(dax_dev)
|| strcmp(host, dax_dev->host) != 0)
continue;
if (igrab(&dax_dev->inode))
found = dax_dev;
break;
}
spin_unlock(&dax_host_lock);
dax_read_unlock(id);
return found;
}
EXPORT_SYMBOL_GPL(dax_get_by_host);
/**
* inode_dax: convert a public inode into its dax_dev
* @inode: An inode with i_cdev pointing to a dax_dev
*
* Note this is not equivalent to to_dax_dev() which is for private
* internal use where we know the inode filesystem type == dax_fs_type.
*/
struct dax_device *inode_dax(struct inode *inode)
{
struct cdev *cdev = inode->i_cdev;
return container_of(cdev, struct dax_device, cdev);
}
EXPORT_SYMBOL_GPL(inode_dax);
struct inode *dax_inode(struct dax_device *dax_dev)
{
return &dax_dev->inode;
}
EXPORT_SYMBOL_GPL(dax_inode);
void *dax_get_private(struct dax_device *dax_dev)
{
if (!test_bit(DAXDEV_ALIVE, &dax_dev->flags))
return NULL;
return dax_dev->private;
}
EXPORT_SYMBOL_GPL(dax_get_private);
static void init_once(void *_dax_dev)
{
struct dax_device *dax_dev = _dax_dev;
struct inode *inode = &dax_dev->inode;
memset(dax_dev, 0, sizeof(*dax_dev));
inode_init_once(inode);
}
static int dax_fs_init(void)
{
int rc;
dax_cache = kmem_cache_create("dax_cache", sizeof(struct dax_device), 0,
(SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
SLAB_MEM_SPREAD|SLAB_ACCOUNT),
init_once);
if (!dax_cache)
return -ENOMEM;
rc = register_filesystem(&dax_fs_type);
if (rc)
goto err_register_fs;
dax_mnt = kern_mount(&dax_fs_type);
if (IS_ERR(dax_mnt)) {
rc = PTR_ERR(dax_mnt);
goto err_mount;
}
dax_superblock = dax_mnt->mnt_sb;
return 0;
err_mount:
unregister_filesystem(&dax_fs_type);
err_register_fs:
kmem_cache_destroy(dax_cache);
return rc;
}
static void dax_fs_exit(void)
{
kern_unmount(dax_mnt);
unregister_filesystem(&dax_fs_type);
kmem_cache_destroy(dax_cache);
}
static int __init dax_core_init(void)
{
int rc;
rc = dax_fs_init();
if (rc)
return rc;
rc = alloc_chrdev_region(&dax_devt, 0, MINORMASK+1, "dax");
if (rc)
goto err_chrdev;
rc = dax_bus_init();
if (rc)
goto err_bus;
return 0;
err_bus:
unregister_chrdev_region(dax_devt, MINORMASK+1);
err_chrdev:
dax_fs_exit();
return 0;
}
static void __exit dax_core_exit(void)
{
unregister_chrdev_region(dax_devt, MINORMASK+1);
ida_destroy(&dax_minor_ida);
dax_fs_exit();
}
MODULE_AUTHOR("Intel Corporation");
MODULE_LICENSE("GPL v2");
subsys_initcall(dax_core_init);
module_exit(dax_core_exit);