2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 04:34:11 +08:00
linux-next/drivers/mmc/host/atmel-mci.c
Ulf Hansson bc94440d4e mmc: atmel-mci: Remove redundant runtime PM calls
Commit 9250aea76b ("mmc: core: Enable runtime PM management of host
devices"), made some calls to the runtime PM API from the driver
redundant. Especially those which deals with runtime PM reference
counting, so let's remove them.

Cc: Ludovic Desroches <ludovic.desroches@atmel.com>
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
Acked-by: Ludovic Desroches <ludovic.desroches@atmel.com>
Tested-by: Ludovic Desroches <ludovic.desroches@atmel.com>
2016-05-02 10:33:20 +02:00

2746 lines
75 KiB
C

/*
* Atmel MultiMedia Card Interface driver
*
* Copyright (C) 2004-2008 Atmel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/blkdev.h>
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/gpio.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/stat.h>
#include <linux/types.h>
#include <linux/mmc/host.h>
#include <linux/mmc/sdio.h>
#include <linux/atmel-mci.h>
#include <linux/atmel_pdc.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/pinctrl/consumer.h>
#include <asm/cacheflush.h>
#include <asm/io.h>
#include <asm/unaligned.h>
/*
* Superset of MCI IP registers integrated in Atmel AVR32 and AT91 Processors
* Registers and bitfields marked with [2] are only available in MCI2
*/
/* MCI Register Definitions */
#define ATMCI_CR 0x0000 /* Control */
#define ATMCI_CR_MCIEN BIT(0) /* MCI Enable */
#define ATMCI_CR_MCIDIS BIT(1) /* MCI Disable */
#define ATMCI_CR_PWSEN BIT(2) /* Power Save Enable */
#define ATMCI_CR_PWSDIS BIT(3) /* Power Save Disable */
#define ATMCI_CR_SWRST BIT(7) /* Software Reset */
#define ATMCI_MR 0x0004 /* Mode */
#define ATMCI_MR_CLKDIV(x) ((x) << 0) /* Clock Divider */
#define ATMCI_MR_PWSDIV(x) ((x) << 8) /* Power Saving Divider */
#define ATMCI_MR_RDPROOF BIT(11) /* Read Proof */
#define ATMCI_MR_WRPROOF BIT(12) /* Write Proof */
#define ATMCI_MR_PDCFBYTE BIT(13) /* Force Byte Transfer */
#define ATMCI_MR_PDCPADV BIT(14) /* Padding Value */
#define ATMCI_MR_PDCMODE BIT(15) /* PDC-oriented Mode */
#define ATMCI_MR_CLKODD(x) ((x) << 16) /* LSB of Clock Divider */
#define ATMCI_DTOR 0x0008 /* Data Timeout */
#define ATMCI_DTOCYC(x) ((x) << 0) /* Data Timeout Cycles */
#define ATMCI_DTOMUL(x) ((x) << 4) /* Data Timeout Multiplier */
#define ATMCI_SDCR 0x000c /* SD Card / SDIO */
#define ATMCI_SDCSEL_SLOT_A (0 << 0) /* Select SD slot A */
#define ATMCI_SDCSEL_SLOT_B (1 << 0) /* Select SD slot A */
#define ATMCI_SDCSEL_MASK (3 << 0)
#define ATMCI_SDCBUS_1BIT (0 << 6) /* 1-bit data bus */
#define ATMCI_SDCBUS_4BIT (2 << 6) /* 4-bit data bus */
#define ATMCI_SDCBUS_8BIT (3 << 6) /* 8-bit data bus[2] */
#define ATMCI_SDCBUS_MASK (3 << 6)
#define ATMCI_ARGR 0x0010 /* Command Argument */
#define ATMCI_CMDR 0x0014 /* Command */
#define ATMCI_CMDR_CMDNB(x) ((x) << 0) /* Command Opcode */
#define ATMCI_CMDR_RSPTYP_NONE (0 << 6) /* No response */
#define ATMCI_CMDR_RSPTYP_48BIT (1 << 6) /* 48-bit response */
#define ATMCI_CMDR_RSPTYP_136BIT (2 << 6) /* 136-bit response */
#define ATMCI_CMDR_SPCMD_INIT (1 << 8) /* Initialization command */
#define ATMCI_CMDR_SPCMD_SYNC (2 << 8) /* Synchronized command */
#define ATMCI_CMDR_SPCMD_INT (4 << 8) /* Interrupt command */
#define ATMCI_CMDR_SPCMD_INTRESP (5 << 8) /* Interrupt response */
#define ATMCI_CMDR_OPDCMD (1 << 11) /* Open Drain */
#define ATMCI_CMDR_MAXLAT_5CYC (0 << 12) /* Max latency 5 cycles */
#define ATMCI_CMDR_MAXLAT_64CYC (1 << 12) /* Max latency 64 cycles */
#define ATMCI_CMDR_START_XFER (1 << 16) /* Start data transfer */
#define ATMCI_CMDR_STOP_XFER (2 << 16) /* Stop data transfer */
#define ATMCI_CMDR_TRDIR_WRITE (0 << 18) /* Write data */
#define ATMCI_CMDR_TRDIR_READ (1 << 18) /* Read data */
#define ATMCI_CMDR_BLOCK (0 << 19) /* Single-block transfer */
#define ATMCI_CMDR_MULTI_BLOCK (1 << 19) /* Multi-block transfer */
#define ATMCI_CMDR_STREAM (2 << 19) /* MMC Stream transfer */
#define ATMCI_CMDR_SDIO_BYTE (4 << 19) /* SDIO Byte transfer */
#define ATMCI_CMDR_SDIO_BLOCK (5 << 19) /* SDIO Block transfer */
#define ATMCI_CMDR_SDIO_SUSPEND (1 << 24) /* SDIO Suspend Command */
#define ATMCI_CMDR_SDIO_RESUME (2 << 24) /* SDIO Resume Command */
#define ATMCI_BLKR 0x0018 /* Block */
#define ATMCI_BCNT(x) ((x) << 0) /* Data Block Count */
#define ATMCI_BLKLEN(x) ((x) << 16) /* Data Block Length */
#define ATMCI_CSTOR 0x001c /* Completion Signal Timeout[2] */
#define ATMCI_CSTOCYC(x) ((x) << 0) /* CST cycles */
#define ATMCI_CSTOMUL(x) ((x) << 4) /* CST multiplier */
#define ATMCI_RSPR 0x0020 /* Response 0 */
#define ATMCI_RSPR1 0x0024 /* Response 1 */
#define ATMCI_RSPR2 0x0028 /* Response 2 */
#define ATMCI_RSPR3 0x002c /* Response 3 */
#define ATMCI_RDR 0x0030 /* Receive Data */
#define ATMCI_TDR 0x0034 /* Transmit Data */
#define ATMCI_SR 0x0040 /* Status */
#define ATMCI_IER 0x0044 /* Interrupt Enable */
#define ATMCI_IDR 0x0048 /* Interrupt Disable */
#define ATMCI_IMR 0x004c /* Interrupt Mask */
#define ATMCI_CMDRDY BIT(0) /* Command Ready */
#define ATMCI_RXRDY BIT(1) /* Receiver Ready */
#define ATMCI_TXRDY BIT(2) /* Transmitter Ready */
#define ATMCI_BLKE BIT(3) /* Data Block Ended */
#define ATMCI_DTIP BIT(4) /* Data Transfer In Progress */
#define ATMCI_NOTBUSY BIT(5) /* Data Not Busy */
#define ATMCI_ENDRX BIT(6) /* End of RX Buffer */
#define ATMCI_ENDTX BIT(7) /* End of TX Buffer */
#define ATMCI_SDIOIRQA BIT(8) /* SDIO IRQ in slot A */
#define ATMCI_SDIOIRQB BIT(9) /* SDIO IRQ in slot B */
#define ATMCI_SDIOWAIT BIT(12) /* SDIO Read Wait Operation Status */
#define ATMCI_CSRCV BIT(13) /* CE-ATA Completion Signal Received */
#define ATMCI_RXBUFF BIT(14) /* RX Buffer Full */
#define ATMCI_TXBUFE BIT(15) /* TX Buffer Empty */
#define ATMCI_RINDE BIT(16) /* Response Index Error */
#define ATMCI_RDIRE BIT(17) /* Response Direction Error */
#define ATMCI_RCRCE BIT(18) /* Response CRC Error */
#define ATMCI_RENDE BIT(19) /* Response End Bit Error */
#define ATMCI_RTOE BIT(20) /* Response Time-Out Error */
#define ATMCI_DCRCE BIT(21) /* Data CRC Error */
#define ATMCI_DTOE BIT(22) /* Data Time-Out Error */
#define ATMCI_CSTOE BIT(23) /* Completion Signal Time-out Error */
#define ATMCI_BLKOVRE BIT(24) /* DMA Block Overrun Error */
#define ATMCI_DMADONE BIT(25) /* DMA Transfer Done */
#define ATMCI_FIFOEMPTY BIT(26) /* FIFO Empty Flag */
#define ATMCI_XFRDONE BIT(27) /* Transfer Done Flag */
#define ATMCI_ACKRCV BIT(28) /* Boot Operation Acknowledge Received */
#define ATMCI_ACKRCVE BIT(29) /* Boot Operation Acknowledge Error */
#define ATMCI_OVRE BIT(30) /* RX Overrun Error */
#define ATMCI_UNRE BIT(31) /* TX Underrun Error */
#define ATMCI_DMA 0x0050 /* DMA Configuration[2] */
#define ATMCI_DMA_OFFSET(x) ((x) << 0) /* DMA Write Buffer Offset */
#define ATMCI_DMA_CHKSIZE(x) ((x) << 4) /* DMA Channel Read and Write Chunk Size */
#define ATMCI_DMAEN BIT(8) /* DMA Hardware Handshaking Enable */
#define ATMCI_CFG 0x0054 /* Configuration[2] */
#define ATMCI_CFG_FIFOMODE_1DATA BIT(0) /* MCI Internal FIFO control mode */
#define ATMCI_CFG_FERRCTRL_COR BIT(4) /* Flow Error flag reset control mode */
#define ATMCI_CFG_HSMODE BIT(8) /* High Speed Mode */
#define ATMCI_CFG_LSYNC BIT(12) /* Synchronize on the last block */
#define ATMCI_WPMR 0x00e4 /* Write Protection Mode[2] */
#define ATMCI_WP_EN BIT(0) /* WP Enable */
#define ATMCI_WP_KEY (0x4d4349 << 8) /* WP Key */
#define ATMCI_WPSR 0x00e8 /* Write Protection Status[2] */
#define ATMCI_GET_WP_VS(x) ((x) & 0x0f)
#define ATMCI_GET_WP_VSRC(x) (((x) >> 8) & 0xffff)
#define ATMCI_VERSION 0x00FC /* Version */
#define ATMCI_FIFO_APERTURE 0x0200 /* FIFO Aperture[2] */
/* This is not including the FIFO Aperture on MCI2 */
#define ATMCI_REGS_SIZE 0x100
/* Register access macros */
#define atmci_readl(port, reg) \
__raw_readl((port)->regs + reg)
#define atmci_writel(port, reg, value) \
__raw_writel((value), (port)->regs + reg)
/* On AVR chips the Peripheral DMA Controller is not connected to MCI. */
#ifdef CONFIG_AVR32
# define ATMCI_PDC_CONNECTED 0
#else
# define ATMCI_PDC_CONNECTED 1
#endif
#define AUTOSUSPEND_DELAY 50
#define ATMCI_DATA_ERROR_FLAGS (ATMCI_DCRCE | ATMCI_DTOE | ATMCI_OVRE | ATMCI_UNRE)
#define ATMCI_DMA_THRESHOLD 16
enum {
EVENT_CMD_RDY = 0,
EVENT_XFER_COMPLETE,
EVENT_NOTBUSY,
EVENT_DATA_ERROR,
};
enum atmel_mci_state {
STATE_IDLE = 0,
STATE_SENDING_CMD,
STATE_DATA_XFER,
STATE_WAITING_NOTBUSY,
STATE_SENDING_STOP,
STATE_END_REQUEST,
};
enum atmci_xfer_dir {
XFER_RECEIVE = 0,
XFER_TRANSMIT,
};
enum atmci_pdc_buf {
PDC_FIRST_BUF = 0,
PDC_SECOND_BUF,
};
struct atmel_mci_caps {
bool has_dma_conf_reg;
bool has_pdc;
bool has_cfg_reg;
bool has_cstor_reg;
bool has_highspeed;
bool has_rwproof;
bool has_odd_clk_div;
bool has_bad_data_ordering;
bool need_reset_after_xfer;
bool need_blksz_mul_4;
bool need_notbusy_for_read_ops;
};
struct atmel_mci_dma {
struct dma_chan *chan;
struct dma_async_tx_descriptor *data_desc;
};
/**
* struct atmel_mci - MMC controller state shared between all slots
* @lock: Spinlock protecting the queue and associated data.
* @regs: Pointer to MMIO registers.
* @sg: Scatterlist entry currently being processed by PIO or PDC code.
* @pio_offset: Offset into the current scatterlist entry.
* @buffer: Buffer used if we don't have the r/w proof capability. We
* don't have the time to switch pdc buffers so we have to use only
* one buffer for the full transaction.
* @buf_size: size of the buffer.
* @phys_buf_addr: buffer address needed for pdc.
* @cur_slot: The slot which is currently using the controller.
* @mrq: The request currently being processed on @cur_slot,
* or NULL if the controller is idle.
* @cmd: The command currently being sent to the card, or NULL.
* @data: The data currently being transferred, or NULL if no data
* transfer is in progress.
* @data_size: just data->blocks * data->blksz.
* @dma: DMA client state.
* @data_chan: DMA channel being used for the current data transfer.
* @cmd_status: Snapshot of SR taken upon completion of the current
* command. Only valid when EVENT_CMD_COMPLETE is pending.
* @data_status: Snapshot of SR taken upon completion of the current
* data transfer. Only valid when EVENT_DATA_COMPLETE or
* EVENT_DATA_ERROR is pending.
* @stop_cmdr: Value to be loaded into CMDR when the stop command is
* to be sent.
* @tasklet: Tasklet running the request state machine.
* @pending_events: Bitmask of events flagged by the interrupt handler
* to be processed by the tasklet.
* @completed_events: Bitmask of events which the state machine has
* processed.
* @state: Tasklet state.
* @queue: List of slots waiting for access to the controller.
* @need_clock_update: Update the clock rate before the next request.
* @need_reset: Reset controller before next request.
* @timer: Timer to balance the data timeout error flag which cannot rise.
* @mode_reg: Value of the MR register.
* @cfg_reg: Value of the CFG register.
* @bus_hz: The rate of @mck in Hz. This forms the basis for MMC bus
* rate and timeout calculations.
* @mapbase: Physical address of the MMIO registers.
* @mck: The peripheral bus clock hooked up to the MMC controller.
* @pdev: Platform device associated with the MMC controller.
* @slot: Slots sharing this MMC controller.
* @caps: MCI capabilities depending on MCI version.
* @prepare_data: function to setup MCI before data transfer which
* depends on MCI capabilities.
* @submit_data: function to start data transfer which depends on MCI
* capabilities.
* @stop_transfer: function to stop data transfer which depends on MCI
* capabilities.
*
* Locking
* =======
*
* @lock is a softirq-safe spinlock protecting @queue as well as
* @cur_slot, @mrq and @state. These must always be updated
* at the same time while holding @lock.
*
* @lock also protects mode_reg and need_clock_update since these are
* used to synchronize mode register updates with the queue
* processing.
*
* The @mrq field of struct atmel_mci_slot is also protected by @lock,
* and must always be written at the same time as the slot is added to
* @queue.
*
* @pending_events and @completed_events are accessed using atomic bit
* operations, so they don't need any locking.
*
* None of the fields touched by the interrupt handler need any
* locking. However, ordering is important: Before EVENT_DATA_ERROR or
* EVENT_DATA_COMPLETE is set in @pending_events, all data-related
* interrupts must be disabled and @data_status updated with a
* snapshot of SR. Similarly, before EVENT_CMD_COMPLETE is set, the
* CMDRDY interrupt must be disabled and @cmd_status updated with a
* snapshot of SR, and before EVENT_XFER_COMPLETE can be set, the
* bytes_xfered field of @data must be written. This is ensured by
* using barriers.
*/
struct atmel_mci {
spinlock_t lock;
void __iomem *regs;
struct scatterlist *sg;
unsigned int sg_len;
unsigned int pio_offset;
unsigned int *buffer;
unsigned int buf_size;
dma_addr_t buf_phys_addr;
struct atmel_mci_slot *cur_slot;
struct mmc_request *mrq;
struct mmc_command *cmd;
struct mmc_data *data;
unsigned int data_size;
struct atmel_mci_dma dma;
struct dma_chan *data_chan;
struct dma_slave_config dma_conf;
u32 cmd_status;
u32 data_status;
u32 stop_cmdr;
struct tasklet_struct tasklet;
unsigned long pending_events;
unsigned long completed_events;
enum atmel_mci_state state;
struct list_head queue;
bool need_clock_update;
bool need_reset;
struct timer_list timer;
u32 mode_reg;
u32 cfg_reg;
unsigned long bus_hz;
unsigned long mapbase;
struct clk *mck;
struct platform_device *pdev;
struct atmel_mci_slot *slot[ATMCI_MAX_NR_SLOTS];
struct atmel_mci_caps caps;
u32 (*prepare_data)(struct atmel_mci *host, struct mmc_data *data);
void (*submit_data)(struct atmel_mci *host, struct mmc_data *data);
void (*stop_transfer)(struct atmel_mci *host);
};
/**
* struct atmel_mci_slot - MMC slot state
* @mmc: The mmc_host representing this slot.
* @host: The MMC controller this slot is using.
* @sdc_reg: Value of SDCR to be written before using this slot.
* @sdio_irq: SDIO irq mask for this slot.
* @mrq: mmc_request currently being processed or waiting to be
* processed, or NULL when the slot is idle.
* @queue_node: List node for placing this node in the @queue list of
* &struct atmel_mci.
* @clock: Clock rate configured by set_ios(). Protected by host->lock.
* @flags: Random state bits associated with the slot.
* @detect_pin: GPIO pin used for card detection, or negative if not
* available.
* @wp_pin: GPIO pin used for card write protect sending, or negative
* if not available.
* @detect_is_active_high: The state of the detect pin when it is active.
* @detect_timer: Timer used for debouncing @detect_pin interrupts.
*/
struct atmel_mci_slot {
struct mmc_host *mmc;
struct atmel_mci *host;
u32 sdc_reg;
u32 sdio_irq;
struct mmc_request *mrq;
struct list_head queue_node;
unsigned int clock;
unsigned long flags;
#define ATMCI_CARD_PRESENT 0
#define ATMCI_CARD_NEED_INIT 1
#define ATMCI_SHUTDOWN 2
int detect_pin;
int wp_pin;
bool detect_is_active_high;
struct timer_list detect_timer;
};
#define atmci_test_and_clear_pending(host, event) \
test_and_clear_bit(event, &host->pending_events)
#define atmci_set_completed(host, event) \
set_bit(event, &host->completed_events)
#define atmci_set_pending(host, event) \
set_bit(event, &host->pending_events)
/*
* The debugfs stuff below is mostly optimized away when
* CONFIG_DEBUG_FS is not set.
*/
static int atmci_req_show(struct seq_file *s, void *v)
{
struct atmel_mci_slot *slot = s->private;
struct mmc_request *mrq;
struct mmc_command *cmd;
struct mmc_command *stop;
struct mmc_data *data;
/* Make sure we get a consistent snapshot */
spin_lock_bh(&slot->host->lock);
mrq = slot->mrq;
if (mrq) {
cmd = mrq->cmd;
data = mrq->data;
stop = mrq->stop;
if (cmd)
seq_printf(s,
"CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
cmd->opcode, cmd->arg, cmd->flags,
cmd->resp[0], cmd->resp[1], cmd->resp[2],
cmd->resp[3], cmd->error);
if (data)
seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
data->bytes_xfered, data->blocks,
data->blksz, data->flags, data->error);
if (stop)
seq_printf(s,
"CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
stop->opcode, stop->arg, stop->flags,
stop->resp[0], stop->resp[1], stop->resp[2],
stop->resp[3], stop->error);
}
spin_unlock_bh(&slot->host->lock);
return 0;
}
static int atmci_req_open(struct inode *inode, struct file *file)
{
return single_open(file, atmci_req_show, inode->i_private);
}
static const struct file_operations atmci_req_fops = {
.owner = THIS_MODULE,
.open = atmci_req_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void atmci_show_status_reg(struct seq_file *s,
const char *regname, u32 value)
{
static const char *sr_bit[] = {
[0] = "CMDRDY",
[1] = "RXRDY",
[2] = "TXRDY",
[3] = "BLKE",
[4] = "DTIP",
[5] = "NOTBUSY",
[6] = "ENDRX",
[7] = "ENDTX",
[8] = "SDIOIRQA",
[9] = "SDIOIRQB",
[12] = "SDIOWAIT",
[14] = "RXBUFF",
[15] = "TXBUFE",
[16] = "RINDE",
[17] = "RDIRE",
[18] = "RCRCE",
[19] = "RENDE",
[20] = "RTOE",
[21] = "DCRCE",
[22] = "DTOE",
[23] = "CSTOE",
[24] = "BLKOVRE",
[25] = "DMADONE",
[26] = "FIFOEMPTY",
[27] = "XFRDONE",
[30] = "OVRE",
[31] = "UNRE",
};
unsigned int i;
seq_printf(s, "%s:\t0x%08x", regname, value);
for (i = 0; i < ARRAY_SIZE(sr_bit); i++) {
if (value & (1 << i)) {
if (sr_bit[i])
seq_printf(s, " %s", sr_bit[i]);
else
seq_puts(s, " UNKNOWN");
}
}
seq_putc(s, '\n');
}
static int atmci_regs_show(struct seq_file *s, void *v)
{
struct atmel_mci *host = s->private;
u32 *buf;
int ret = 0;
buf = kmalloc(ATMCI_REGS_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
pm_runtime_get_sync(&host->pdev->dev);
/*
* Grab a more or less consistent snapshot. Note that we're
* not disabling interrupts, so IMR and SR may not be
* consistent.
*/
spin_lock_bh(&host->lock);
memcpy_fromio(buf, host->regs, ATMCI_REGS_SIZE);
spin_unlock_bh(&host->lock);
pm_runtime_mark_last_busy(&host->pdev->dev);
pm_runtime_put_autosuspend(&host->pdev->dev);
seq_printf(s, "MR:\t0x%08x%s%s ",
buf[ATMCI_MR / 4],
buf[ATMCI_MR / 4] & ATMCI_MR_RDPROOF ? " RDPROOF" : "",
buf[ATMCI_MR / 4] & ATMCI_MR_WRPROOF ? " WRPROOF" : "");
if (host->caps.has_odd_clk_div)
seq_printf(s, "{CLKDIV,CLKODD}=%u\n",
((buf[ATMCI_MR / 4] & 0xff) << 1)
| ((buf[ATMCI_MR / 4] >> 16) & 1));
else
seq_printf(s, "CLKDIV=%u\n",
(buf[ATMCI_MR / 4] & 0xff));
seq_printf(s, "DTOR:\t0x%08x\n", buf[ATMCI_DTOR / 4]);
seq_printf(s, "SDCR:\t0x%08x\n", buf[ATMCI_SDCR / 4]);
seq_printf(s, "ARGR:\t0x%08x\n", buf[ATMCI_ARGR / 4]);
seq_printf(s, "BLKR:\t0x%08x BCNT=%u BLKLEN=%u\n",
buf[ATMCI_BLKR / 4],
buf[ATMCI_BLKR / 4] & 0xffff,
(buf[ATMCI_BLKR / 4] >> 16) & 0xffff);
if (host->caps.has_cstor_reg)
seq_printf(s, "CSTOR:\t0x%08x\n", buf[ATMCI_CSTOR / 4]);
/* Don't read RSPR and RDR; it will consume the data there */
atmci_show_status_reg(s, "SR", buf[ATMCI_SR / 4]);
atmci_show_status_reg(s, "IMR", buf[ATMCI_IMR / 4]);
if (host->caps.has_dma_conf_reg) {
u32 val;
val = buf[ATMCI_DMA / 4];
seq_printf(s, "DMA:\t0x%08x OFFSET=%u CHKSIZE=%u%s\n",
val, val & 3,
((val >> 4) & 3) ?
1 << (((val >> 4) & 3) + 1) : 1,
val & ATMCI_DMAEN ? " DMAEN" : "");
}
if (host->caps.has_cfg_reg) {
u32 val;
val = buf[ATMCI_CFG / 4];
seq_printf(s, "CFG:\t0x%08x%s%s%s%s\n",
val,
val & ATMCI_CFG_FIFOMODE_1DATA ? " FIFOMODE_ONE_DATA" : "",
val & ATMCI_CFG_FERRCTRL_COR ? " FERRCTRL_CLEAR_ON_READ" : "",
val & ATMCI_CFG_HSMODE ? " HSMODE" : "",
val & ATMCI_CFG_LSYNC ? " LSYNC" : "");
}
kfree(buf);
return ret;
}
static int atmci_regs_open(struct inode *inode, struct file *file)
{
return single_open(file, atmci_regs_show, inode->i_private);
}
static const struct file_operations atmci_regs_fops = {
.owner = THIS_MODULE,
.open = atmci_regs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void atmci_init_debugfs(struct atmel_mci_slot *slot)
{
struct mmc_host *mmc = slot->mmc;
struct atmel_mci *host = slot->host;
struct dentry *root;
struct dentry *node;
root = mmc->debugfs_root;
if (!root)
return;
node = debugfs_create_file("regs", S_IRUSR, root, host,
&atmci_regs_fops);
if (IS_ERR(node))
return;
if (!node)
goto err;
node = debugfs_create_file("req", S_IRUSR, root, slot, &atmci_req_fops);
if (!node)
goto err;
node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
if (!node)
goto err;
node = debugfs_create_x32("pending_events", S_IRUSR, root,
(u32 *)&host->pending_events);
if (!node)
goto err;
node = debugfs_create_x32("completed_events", S_IRUSR, root,
(u32 *)&host->completed_events);
if (!node)
goto err;
return;
err:
dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
}
#if defined(CONFIG_OF)
static const struct of_device_id atmci_dt_ids[] = {
{ .compatible = "atmel,hsmci" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, atmci_dt_ids);
static struct mci_platform_data*
atmci_of_init(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct device_node *cnp;
struct mci_platform_data *pdata;
u32 slot_id;
if (!np) {
dev_err(&pdev->dev, "device node not found\n");
return ERR_PTR(-EINVAL);
}
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
dev_err(&pdev->dev, "could not allocate memory for pdata\n");
return ERR_PTR(-ENOMEM);
}
for_each_child_of_node(np, cnp) {
if (of_property_read_u32(cnp, "reg", &slot_id)) {
dev_warn(&pdev->dev, "reg property is missing for %s\n",
cnp->full_name);
continue;
}
if (slot_id >= ATMCI_MAX_NR_SLOTS) {
dev_warn(&pdev->dev, "can't have more than %d slots\n",
ATMCI_MAX_NR_SLOTS);
break;
}
if (of_property_read_u32(cnp, "bus-width",
&pdata->slot[slot_id].bus_width))
pdata->slot[slot_id].bus_width = 1;
pdata->slot[slot_id].detect_pin =
of_get_named_gpio(cnp, "cd-gpios", 0);
pdata->slot[slot_id].detect_is_active_high =
of_property_read_bool(cnp, "cd-inverted");
pdata->slot[slot_id].non_removable =
of_property_read_bool(cnp, "non-removable");
pdata->slot[slot_id].wp_pin =
of_get_named_gpio(cnp, "wp-gpios", 0);
}
return pdata;
}
#else /* CONFIG_OF */
static inline struct mci_platform_data*
atmci_of_init(struct platform_device *dev)
{
return ERR_PTR(-EINVAL);
}
#endif
static inline unsigned int atmci_get_version(struct atmel_mci *host)
{
return atmci_readl(host, ATMCI_VERSION) & 0x00000fff;
}
/*
* Fix sconfig's burst size according to atmel MCI. We need to convert them as:
* 1 -> 0, 4 -> 1, 8 -> 2, 16 -> 3.
* With version 0x600, we need to convert them as: 1 -> 0, 2 -> 1, 4 -> 2,
* 8 -> 3, 16 -> 4.
*
* This can be done by finding most significant bit set.
*/
static inline unsigned int atmci_convert_chksize(struct atmel_mci *host,
unsigned int maxburst)
{
unsigned int version = atmci_get_version(host);
unsigned int offset = 2;
if (version >= 0x600)
offset = 1;
if (maxburst > 1)
return fls(maxburst) - offset;
else
return 0;
}
static void atmci_timeout_timer(unsigned long data)
{
struct atmel_mci *host;
host = (struct atmel_mci *)data;
dev_dbg(&host->pdev->dev, "software timeout\n");
if (host->mrq->cmd->data) {
host->mrq->cmd->data->error = -ETIMEDOUT;
host->data = NULL;
/*
* With some SDIO modules, sometimes DMA transfer hangs. If
* stop_transfer() is not called then the DMA request is not
* removed, following ones are queued and never computed.
*/
if (host->state == STATE_DATA_XFER)
host->stop_transfer(host);
} else {
host->mrq->cmd->error = -ETIMEDOUT;
host->cmd = NULL;
}
host->need_reset = 1;
host->state = STATE_END_REQUEST;
smp_wmb();
tasklet_schedule(&host->tasklet);
}
static inline unsigned int atmci_ns_to_clocks(struct atmel_mci *host,
unsigned int ns)
{
/*
* It is easier here to use us instead of ns for the timeout,
* it prevents from overflows during calculation.
*/
unsigned int us = DIV_ROUND_UP(ns, 1000);
/* Maximum clock frequency is host->bus_hz/2 */
return us * (DIV_ROUND_UP(host->bus_hz, 2000000));
}
static void atmci_set_timeout(struct atmel_mci *host,
struct atmel_mci_slot *slot, struct mmc_data *data)
{
static unsigned dtomul_to_shift[] = {
0, 4, 7, 8, 10, 12, 16, 20
};
unsigned timeout;
unsigned dtocyc;
unsigned dtomul;
timeout = atmci_ns_to_clocks(host, data->timeout_ns)
+ data->timeout_clks;
for (dtomul = 0; dtomul < 8; dtomul++) {
unsigned shift = dtomul_to_shift[dtomul];
dtocyc = (timeout + (1 << shift) - 1) >> shift;
if (dtocyc < 15)
break;
}
if (dtomul >= 8) {
dtomul = 7;
dtocyc = 15;
}
dev_vdbg(&slot->mmc->class_dev, "setting timeout to %u cycles\n",
dtocyc << dtomul_to_shift[dtomul]);
atmci_writel(host, ATMCI_DTOR, (ATMCI_DTOMUL(dtomul) | ATMCI_DTOCYC(dtocyc)));
}
/*
* Return mask with command flags to be enabled for this command.
*/
static u32 atmci_prepare_command(struct mmc_host *mmc,
struct mmc_command *cmd)
{
struct mmc_data *data;
u32 cmdr;
cmd->error = -EINPROGRESS;
cmdr = ATMCI_CMDR_CMDNB(cmd->opcode);
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136)
cmdr |= ATMCI_CMDR_RSPTYP_136BIT;
else
cmdr |= ATMCI_CMDR_RSPTYP_48BIT;
}
/*
* This should really be MAXLAT_5 for CMD2 and ACMD41, but
* it's too difficult to determine whether this is an ACMD or
* not. Better make it 64.
*/
cmdr |= ATMCI_CMDR_MAXLAT_64CYC;
if (mmc->ios.bus_mode == MMC_BUSMODE_OPENDRAIN)
cmdr |= ATMCI_CMDR_OPDCMD;
data = cmd->data;
if (data) {
cmdr |= ATMCI_CMDR_START_XFER;
if (cmd->opcode == SD_IO_RW_EXTENDED) {
cmdr |= ATMCI_CMDR_SDIO_BLOCK;
} else {
if (data->blocks > 1)
cmdr |= ATMCI_CMDR_MULTI_BLOCK;
else
cmdr |= ATMCI_CMDR_BLOCK;
}
if (data->flags & MMC_DATA_READ)
cmdr |= ATMCI_CMDR_TRDIR_READ;
}
return cmdr;
}
static void atmci_send_command(struct atmel_mci *host,
struct mmc_command *cmd, u32 cmd_flags)
{
WARN_ON(host->cmd);
host->cmd = cmd;
dev_vdbg(&host->pdev->dev,
"start command: ARGR=0x%08x CMDR=0x%08x\n",
cmd->arg, cmd_flags);
atmci_writel(host, ATMCI_ARGR, cmd->arg);
atmci_writel(host, ATMCI_CMDR, cmd_flags);
}
static void atmci_send_stop_cmd(struct atmel_mci *host, struct mmc_data *data)
{
dev_dbg(&host->pdev->dev, "send stop command\n");
atmci_send_command(host, data->stop, host->stop_cmdr);
atmci_writel(host, ATMCI_IER, ATMCI_CMDRDY);
}
/*
* Configure given PDC buffer taking care of alignement issues.
* Update host->data_size and host->sg.
*/
static void atmci_pdc_set_single_buf(struct atmel_mci *host,
enum atmci_xfer_dir dir, enum atmci_pdc_buf buf_nb)
{
u32 pointer_reg, counter_reg;
unsigned int buf_size;
if (dir == XFER_RECEIVE) {
pointer_reg = ATMEL_PDC_RPR;
counter_reg = ATMEL_PDC_RCR;
} else {
pointer_reg = ATMEL_PDC_TPR;
counter_reg = ATMEL_PDC_TCR;
}
if (buf_nb == PDC_SECOND_BUF) {
pointer_reg += ATMEL_PDC_SCND_BUF_OFF;
counter_reg += ATMEL_PDC_SCND_BUF_OFF;
}
if (!host->caps.has_rwproof) {
buf_size = host->buf_size;
atmci_writel(host, pointer_reg, host->buf_phys_addr);
} else {
buf_size = sg_dma_len(host->sg);
atmci_writel(host, pointer_reg, sg_dma_address(host->sg));
}
if (host->data_size <= buf_size) {
if (host->data_size & 0x3) {
/* If size is different from modulo 4, transfer bytes */
atmci_writel(host, counter_reg, host->data_size);
atmci_writel(host, ATMCI_MR, host->mode_reg | ATMCI_MR_PDCFBYTE);
} else {
/* Else transfer 32-bits words */
atmci_writel(host, counter_reg, host->data_size / 4);
}
host->data_size = 0;
} else {
/* We assume the size of a page is 32-bits aligned */
atmci_writel(host, counter_reg, sg_dma_len(host->sg) / 4);
host->data_size -= sg_dma_len(host->sg);
if (host->data_size)
host->sg = sg_next(host->sg);
}
}
/*
* Configure PDC buffer according to the data size ie configuring one or two
* buffers. Don't use this function if you want to configure only the second
* buffer. In this case, use atmci_pdc_set_single_buf.
*/
static void atmci_pdc_set_both_buf(struct atmel_mci *host, int dir)
{
atmci_pdc_set_single_buf(host, dir, PDC_FIRST_BUF);
if (host->data_size)
atmci_pdc_set_single_buf(host, dir, PDC_SECOND_BUF);
}
/*
* Unmap sg lists, called when transfer is finished.
*/
static void atmci_pdc_cleanup(struct atmel_mci *host)
{
struct mmc_data *data = host->data;
if (data)
dma_unmap_sg(&host->pdev->dev,
data->sg, data->sg_len,
((data->flags & MMC_DATA_WRITE)
? DMA_TO_DEVICE : DMA_FROM_DEVICE));
}
/*
* Disable PDC transfers. Update pending flags to EVENT_XFER_COMPLETE after
* having received ATMCI_TXBUFE or ATMCI_RXBUFF interrupt. Enable ATMCI_NOTBUSY
* interrupt needed for both transfer directions.
*/
static void atmci_pdc_complete(struct atmel_mci *host)
{
int transfer_size = host->data->blocks * host->data->blksz;
int i;
atmci_writel(host, ATMEL_PDC_PTCR, ATMEL_PDC_RXTDIS | ATMEL_PDC_TXTDIS);
if ((!host->caps.has_rwproof)
&& (host->data->flags & MMC_DATA_READ)) {
if (host->caps.has_bad_data_ordering)
for (i = 0; i < transfer_size; i++)
host->buffer[i] = swab32(host->buffer[i]);
sg_copy_from_buffer(host->data->sg, host->data->sg_len,
host->buffer, transfer_size);
}
atmci_pdc_cleanup(host);
dev_dbg(&host->pdev->dev, "(%s) set pending xfer complete\n", __func__);
atmci_set_pending(host, EVENT_XFER_COMPLETE);
tasklet_schedule(&host->tasklet);
}
static void atmci_dma_cleanup(struct atmel_mci *host)
{
struct mmc_data *data = host->data;
if (data)
dma_unmap_sg(host->dma.chan->device->dev,
data->sg, data->sg_len,
((data->flags & MMC_DATA_WRITE)
? DMA_TO_DEVICE : DMA_FROM_DEVICE));
}
/*
* This function is called by the DMA driver from tasklet context.
*/
static void atmci_dma_complete(void *arg)
{
struct atmel_mci *host = arg;
struct mmc_data *data = host->data;
dev_vdbg(&host->pdev->dev, "DMA complete\n");
if (host->caps.has_dma_conf_reg)
/* Disable DMA hardware handshaking on MCI */
atmci_writel(host, ATMCI_DMA, atmci_readl(host, ATMCI_DMA) & ~ATMCI_DMAEN);
atmci_dma_cleanup(host);
/*
* If the card was removed, data will be NULL. No point trying
* to send the stop command or waiting for NBUSY in this case.
*/
if (data) {
dev_dbg(&host->pdev->dev,
"(%s) set pending xfer complete\n", __func__);
atmci_set_pending(host, EVENT_XFER_COMPLETE);
tasklet_schedule(&host->tasklet);
/*
* Regardless of what the documentation says, we have
* to wait for NOTBUSY even after block read
* operations.
*
* When the DMA transfer is complete, the controller
* may still be reading the CRC from the card, i.e.
* the data transfer is still in progress and we
* haven't seen all the potential error bits yet.
*
* The interrupt handler will schedule a different
* tasklet to finish things up when the data transfer
* is completely done.
*
* We may not complete the mmc request here anyway
* because the mmc layer may call back and cause us to
* violate the "don't submit new operations from the
* completion callback" rule of the dma engine
* framework.
*/
atmci_writel(host, ATMCI_IER, ATMCI_NOTBUSY);
}
}
/*
* Returns a mask of interrupt flags to be enabled after the whole
* request has been prepared.
*/
static u32 atmci_prepare_data(struct atmel_mci *host, struct mmc_data *data)
{
u32 iflags;
data->error = -EINPROGRESS;
host->sg = data->sg;
host->sg_len = data->sg_len;
host->data = data;
host->data_chan = NULL;
iflags = ATMCI_DATA_ERROR_FLAGS;
/*
* Errata: MMC data write operation with less than 12
* bytes is impossible.
*
* Errata: MCI Transmit Data Register (TDR) FIFO
* corruption when length is not multiple of 4.
*/
if (data->blocks * data->blksz < 12
|| (data->blocks * data->blksz) & 3)
host->need_reset = true;
host->pio_offset = 0;
if (data->flags & MMC_DATA_READ)
iflags |= ATMCI_RXRDY;
else
iflags |= ATMCI_TXRDY;
return iflags;
}
/*
* Set interrupt flags and set block length into the MCI mode register even
* if this value is also accessible in the MCI block register. It seems to be
* necessary before the High Speed MCI version. It also map sg and configure
* PDC registers.
*/
static u32
atmci_prepare_data_pdc(struct atmel_mci *host, struct mmc_data *data)
{
u32 iflags, tmp;
unsigned int sg_len;
enum dma_data_direction dir;
int i;
data->error = -EINPROGRESS;
host->data = data;
host->sg = data->sg;
iflags = ATMCI_DATA_ERROR_FLAGS;
/* Enable pdc mode */
atmci_writel(host, ATMCI_MR, host->mode_reg | ATMCI_MR_PDCMODE);
if (data->flags & MMC_DATA_READ) {
dir = DMA_FROM_DEVICE;
iflags |= ATMCI_ENDRX | ATMCI_RXBUFF;
} else {
dir = DMA_TO_DEVICE;
iflags |= ATMCI_ENDTX | ATMCI_TXBUFE | ATMCI_BLKE;
}
/* Set BLKLEN */
tmp = atmci_readl(host, ATMCI_MR);
tmp &= 0x0000ffff;
tmp |= ATMCI_BLKLEN(data->blksz);
atmci_writel(host, ATMCI_MR, tmp);
/* Configure PDC */
host->data_size = data->blocks * data->blksz;
sg_len = dma_map_sg(&host->pdev->dev, data->sg, data->sg_len, dir);
if ((!host->caps.has_rwproof)
&& (host->data->flags & MMC_DATA_WRITE)) {
sg_copy_to_buffer(host->data->sg, host->data->sg_len,
host->buffer, host->data_size);
if (host->caps.has_bad_data_ordering)
for (i = 0; i < host->data_size; i++)
host->buffer[i] = swab32(host->buffer[i]);
}
if (host->data_size)
atmci_pdc_set_both_buf(host,
((dir == DMA_FROM_DEVICE) ? XFER_RECEIVE : XFER_TRANSMIT));
return iflags;
}
static u32
atmci_prepare_data_dma(struct atmel_mci *host, struct mmc_data *data)
{
struct dma_chan *chan;
struct dma_async_tx_descriptor *desc;
struct scatterlist *sg;
unsigned int i;
enum dma_data_direction direction;
enum dma_transfer_direction slave_dirn;
unsigned int sglen;
u32 maxburst;
u32 iflags;
data->error = -EINPROGRESS;
WARN_ON(host->data);
host->sg = NULL;
host->data = data;
iflags = ATMCI_DATA_ERROR_FLAGS;
/*
* We don't do DMA on "complex" transfers, i.e. with
* non-word-aligned buffers or lengths. Also, we don't bother
* with all the DMA setup overhead for short transfers.
*/
if (data->blocks * data->blksz < ATMCI_DMA_THRESHOLD)
return atmci_prepare_data(host, data);
if (data->blksz & 3)
return atmci_prepare_data(host, data);
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->offset & 3 || sg->length & 3)
return atmci_prepare_data(host, data);
}
/* If we don't have a channel, we can't do DMA */
chan = host->dma.chan;
if (chan)
host->data_chan = chan;
if (!chan)
return -ENODEV;
if (data->flags & MMC_DATA_READ) {
direction = DMA_FROM_DEVICE;
host->dma_conf.direction = slave_dirn = DMA_DEV_TO_MEM;
maxburst = atmci_convert_chksize(host,
host->dma_conf.src_maxburst);
} else {
direction = DMA_TO_DEVICE;
host->dma_conf.direction = slave_dirn = DMA_MEM_TO_DEV;
maxburst = atmci_convert_chksize(host,
host->dma_conf.dst_maxburst);
}
if (host->caps.has_dma_conf_reg)
atmci_writel(host, ATMCI_DMA, ATMCI_DMA_CHKSIZE(maxburst) |
ATMCI_DMAEN);
sglen = dma_map_sg(chan->device->dev, data->sg,
data->sg_len, direction);
dmaengine_slave_config(chan, &host->dma_conf);
desc = dmaengine_prep_slave_sg(chan,
data->sg, sglen, slave_dirn,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc)
goto unmap_exit;
host->dma.data_desc = desc;
desc->callback = atmci_dma_complete;
desc->callback_param = host;
return iflags;
unmap_exit:
dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, direction);
return -ENOMEM;
}
static void
atmci_submit_data(struct atmel_mci *host, struct mmc_data *data)
{
return;
}
/*
* Start PDC according to transfer direction.
*/
static void
atmci_submit_data_pdc(struct atmel_mci *host, struct mmc_data *data)
{
if (data->flags & MMC_DATA_READ)
atmci_writel(host, ATMEL_PDC_PTCR, ATMEL_PDC_RXTEN);
else
atmci_writel(host, ATMEL_PDC_PTCR, ATMEL_PDC_TXTEN);
}
static void
atmci_submit_data_dma(struct atmel_mci *host, struct mmc_data *data)
{
struct dma_chan *chan = host->data_chan;
struct dma_async_tx_descriptor *desc = host->dma.data_desc;
if (chan) {
dmaengine_submit(desc);
dma_async_issue_pending(chan);
}
}
static void atmci_stop_transfer(struct atmel_mci *host)
{
dev_dbg(&host->pdev->dev,
"(%s) set pending xfer complete\n", __func__);
atmci_set_pending(host, EVENT_XFER_COMPLETE);
atmci_writel(host, ATMCI_IER, ATMCI_NOTBUSY);
}
/*
* Stop data transfer because error(s) occurred.
*/
static void atmci_stop_transfer_pdc(struct atmel_mci *host)
{
atmci_writel(host, ATMEL_PDC_PTCR, ATMEL_PDC_RXTDIS | ATMEL_PDC_TXTDIS);
}
static void atmci_stop_transfer_dma(struct atmel_mci *host)
{
struct dma_chan *chan = host->data_chan;
if (chan) {
dmaengine_terminate_all(chan);
atmci_dma_cleanup(host);
} else {
/* Data transfer was stopped by the interrupt handler */
dev_dbg(&host->pdev->dev,
"(%s) set pending xfer complete\n", __func__);
atmci_set_pending(host, EVENT_XFER_COMPLETE);
atmci_writel(host, ATMCI_IER, ATMCI_NOTBUSY);
}
}
/*
* Start a request: prepare data if needed, prepare the command and activate
* interrupts.
*/
static void atmci_start_request(struct atmel_mci *host,
struct atmel_mci_slot *slot)
{
struct mmc_request *mrq;
struct mmc_command *cmd;
struct mmc_data *data;
u32 iflags;
u32 cmdflags;
mrq = slot->mrq;
host->cur_slot = slot;
host->mrq = mrq;
host->pending_events = 0;
host->completed_events = 0;
host->cmd_status = 0;
host->data_status = 0;
dev_dbg(&host->pdev->dev, "start request: cmd %u\n", mrq->cmd->opcode);
if (host->need_reset || host->caps.need_reset_after_xfer) {
iflags = atmci_readl(host, ATMCI_IMR);
iflags &= (ATMCI_SDIOIRQA | ATMCI_SDIOIRQB);
atmci_writel(host, ATMCI_CR, ATMCI_CR_SWRST);
atmci_writel(host, ATMCI_CR, ATMCI_CR_MCIEN);
atmci_writel(host, ATMCI_MR, host->mode_reg);
if (host->caps.has_cfg_reg)
atmci_writel(host, ATMCI_CFG, host->cfg_reg);
atmci_writel(host, ATMCI_IER, iflags);
host->need_reset = false;
}
atmci_writel(host, ATMCI_SDCR, slot->sdc_reg);
iflags = atmci_readl(host, ATMCI_IMR);
if (iflags & ~(ATMCI_SDIOIRQA | ATMCI_SDIOIRQB))
dev_dbg(&slot->mmc->class_dev, "WARNING: IMR=0x%08x\n",
iflags);
if (unlikely(test_and_clear_bit(ATMCI_CARD_NEED_INIT, &slot->flags))) {
/* Send init sequence (74 clock cycles) */
atmci_writel(host, ATMCI_CMDR, ATMCI_CMDR_SPCMD_INIT);
while (!(atmci_readl(host, ATMCI_SR) & ATMCI_CMDRDY))
cpu_relax();
}
iflags = 0;
data = mrq->data;
if (data) {
atmci_set_timeout(host, slot, data);
/* Must set block count/size before sending command */
atmci_writel(host, ATMCI_BLKR, ATMCI_BCNT(data->blocks)
| ATMCI_BLKLEN(data->blksz));
dev_vdbg(&slot->mmc->class_dev, "BLKR=0x%08x\n",
ATMCI_BCNT(data->blocks) | ATMCI_BLKLEN(data->blksz));
iflags |= host->prepare_data(host, data);
}
iflags |= ATMCI_CMDRDY;
cmd = mrq->cmd;
cmdflags = atmci_prepare_command(slot->mmc, cmd);
/*
* DMA transfer should be started before sending the command to avoid
* unexpected errors especially for read operations in SDIO mode.
* Unfortunately, in PDC mode, command has to be sent before starting
* the transfer.
*/
if (host->submit_data != &atmci_submit_data_dma)
atmci_send_command(host, cmd, cmdflags);
if (data)
host->submit_data(host, data);
if (host->submit_data == &atmci_submit_data_dma)
atmci_send_command(host, cmd, cmdflags);
if (mrq->stop) {
host->stop_cmdr = atmci_prepare_command(slot->mmc, mrq->stop);
host->stop_cmdr |= ATMCI_CMDR_STOP_XFER;
if (!(data->flags & MMC_DATA_WRITE))
host->stop_cmdr |= ATMCI_CMDR_TRDIR_READ;
host->stop_cmdr |= ATMCI_CMDR_MULTI_BLOCK;
}
/*
* We could have enabled interrupts earlier, but I suspect
* that would open up a nice can of interesting race
* conditions (e.g. command and data complete, but stop not
* prepared yet.)
*/
atmci_writel(host, ATMCI_IER, iflags);
mod_timer(&host->timer, jiffies + msecs_to_jiffies(2000));
}
static void atmci_queue_request(struct atmel_mci *host,
struct atmel_mci_slot *slot, struct mmc_request *mrq)
{
dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
host->state);
spin_lock_bh(&host->lock);
slot->mrq = mrq;
if (host->state == STATE_IDLE) {
host->state = STATE_SENDING_CMD;
atmci_start_request(host, slot);
} else {
dev_dbg(&host->pdev->dev, "queue request\n");
list_add_tail(&slot->queue_node, &host->queue);
}
spin_unlock_bh(&host->lock);
}
static void atmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct atmel_mci_slot *slot = mmc_priv(mmc);
struct atmel_mci *host = slot->host;
struct mmc_data *data;
WARN_ON(slot->mrq);
dev_dbg(&host->pdev->dev, "MRQ: cmd %u\n", mrq->cmd->opcode);
/*
* We may "know" the card is gone even though there's still an
* electrical connection. If so, we really need to communicate
* this to the MMC core since there won't be any more
* interrupts as the card is completely removed. Otherwise,
* the MMC core might believe the card is still there even
* though the card was just removed very slowly.
*/
if (!test_bit(ATMCI_CARD_PRESENT, &slot->flags)) {
mrq->cmd->error = -ENOMEDIUM;
mmc_request_done(mmc, mrq);
return;
}
/* We don't support multiple blocks of weird lengths. */
data = mrq->data;
if (data && data->blocks > 1 && data->blksz & 3) {
mrq->cmd->error = -EINVAL;
mmc_request_done(mmc, mrq);
}
atmci_queue_request(host, slot, mrq);
}
static void atmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct atmel_mci_slot *slot = mmc_priv(mmc);
struct atmel_mci *host = slot->host;
unsigned int i;
slot->sdc_reg &= ~ATMCI_SDCBUS_MASK;
switch (ios->bus_width) {
case MMC_BUS_WIDTH_1:
slot->sdc_reg |= ATMCI_SDCBUS_1BIT;
break;
case MMC_BUS_WIDTH_4:
slot->sdc_reg |= ATMCI_SDCBUS_4BIT;
break;
}
if (ios->clock) {
unsigned int clock_min = ~0U;
int clkdiv;
spin_lock_bh(&host->lock);
if (!host->mode_reg) {
atmci_writel(host, ATMCI_CR, ATMCI_CR_SWRST);
atmci_writel(host, ATMCI_CR, ATMCI_CR_MCIEN);
if (host->caps.has_cfg_reg)
atmci_writel(host, ATMCI_CFG, host->cfg_reg);
}
/*
* Use mirror of ios->clock to prevent race with mmc
* core ios update when finding the minimum.
*/
slot->clock = ios->clock;
for (i = 0; i < ATMCI_MAX_NR_SLOTS; i++) {
if (host->slot[i] && host->slot[i]->clock
&& host->slot[i]->clock < clock_min)
clock_min = host->slot[i]->clock;
}
/* Calculate clock divider */
if (host->caps.has_odd_clk_div) {
clkdiv = DIV_ROUND_UP(host->bus_hz, clock_min) - 2;
if (clkdiv < 0) {
dev_warn(&mmc->class_dev,
"clock %u too fast; using %lu\n",
clock_min, host->bus_hz / 2);
clkdiv = 0;
} else if (clkdiv > 511) {
dev_warn(&mmc->class_dev,
"clock %u too slow; using %lu\n",
clock_min, host->bus_hz / (511 + 2));
clkdiv = 511;
}
host->mode_reg = ATMCI_MR_CLKDIV(clkdiv >> 1)
| ATMCI_MR_CLKODD(clkdiv & 1);
} else {
clkdiv = DIV_ROUND_UP(host->bus_hz, 2 * clock_min) - 1;
if (clkdiv > 255) {
dev_warn(&mmc->class_dev,
"clock %u too slow; using %lu\n",
clock_min, host->bus_hz / (2 * 256));
clkdiv = 255;
}
host->mode_reg = ATMCI_MR_CLKDIV(clkdiv);
}
/*
* WRPROOF and RDPROOF prevent overruns/underruns by
* stopping the clock when the FIFO is full/empty.
* This state is not expected to last for long.
*/
if (host->caps.has_rwproof)
host->mode_reg |= (ATMCI_MR_WRPROOF | ATMCI_MR_RDPROOF);
if (host->caps.has_cfg_reg) {
/* setup High Speed mode in relation with card capacity */
if (ios->timing == MMC_TIMING_SD_HS)
host->cfg_reg |= ATMCI_CFG_HSMODE;
else
host->cfg_reg &= ~ATMCI_CFG_HSMODE;
}
if (list_empty(&host->queue)) {
atmci_writel(host, ATMCI_MR, host->mode_reg);
if (host->caps.has_cfg_reg)
atmci_writel(host, ATMCI_CFG, host->cfg_reg);
} else {
host->need_clock_update = true;
}
spin_unlock_bh(&host->lock);
} else {
bool any_slot_active = false;
spin_lock_bh(&host->lock);
slot->clock = 0;
for (i = 0; i < ATMCI_MAX_NR_SLOTS; i++) {
if (host->slot[i] && host->slot[i]->clock) {
any_slot_active = true;
break;
}
}
if (!any_slot_active) {
atmci_writel(host, ATMCI_CR, ATMCI_CR_MCIDIS);
if (host->mode_reg) {
atmci_readl(host, ATMCI_MR);
}
host->mode_reg = 0;
}
spin_unlock_bh(&host->lock);
}
switch (ios->power_mode) {
case MMC_POWER_OFF:
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
break;
case MMC_POWER_UP:
set_bit(ATMCI_CARD_NEED_INIT, &slot->flags);
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
break;
default:
/*
* TODO: None of the currently available AVR32-based
* boards allow MMC power to be turned off. Implement
* power control when this can be tested properly.
*
* We also need to hook this into the clock management
* somehow so that newly inserted cards aren't
* subjected to a fast clock before we have a chance
* to figure out what the maximum rate is. Currently,
* there's no way to avoid this, and there never will
* be for boards that don't support power control.
*/
break;
}
}
static int atmci_get_ro(struct mmc_host *mmc)
{
int read_only = -ENOSYS;
struct atmel_mci_slot *slot = mmc_priv(mmc);
if (gpio_is_valid(slot->wp_pin)) {
read_only = gpio_get_value(slot->wp_pin);
dev_dbg(&mmc->class_dev, "card is %s\n",
read_only ? "read-only" : "read-write");
}
return read_only;
}
static int atmci_get_cd(struct mmc_host *mmc)
{
int present = -ENOSYS;
struct atmel_mci_slot *slot = mmc_priv(mmc);
if (gpio_is_valid(slot->detect_pin)) {
present = !(gpio_get_value(slot->detect_pin) ^
slot->detect_is_active_high);
dev_dbg(&mmc->class_dev, "card is %spresent\n",
present ? "" : "not ");
}
return present;
}
static void atmci_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct atmel_mci_slot *slot = mmc_priv(mmc);
struct atmel_mci *host = slot->host;
if (enable)
atmci_writel(host, ATMCI_IER, slot->sdio_irq);
else
atmci_writel(host, ATMCI_IDR, slot->sdio_irq);
}
static const struct mmc_host_ops atmci_ops = {
.request = atmci_request,
.set_ios = atmci_set_ios,
.get_ro = atmci_get_ro,
.get_cd = atmci_get_cd,
.enable_sdio_irq = atmci_enable_sdio_irq,
};
/* Called with host->lock held */
static void atmci_request_end(struct atmel_mci *host, struct mmc_request *mrq)
__releases(&host->lock)
__acquires(&host->lock)
{
struct atmel_mci_slot *slot = NULL;
struct mmc_host *prev_mmc = host->cur_slot->mmc;
WARN_ON(host->cmd || host->data);
/*
* Update the MMC clock rate if necessary. This may be
* necessary if set_ios() is called when a different slot is
* busy transferring data.
*/
if (host->need_clock_update) {
atmci_writel(host, ATMCI_MR, host->mode_reg);
if (host->caps.has_cfg_reg)
atmci_writel(host, ATMCI_CFG, host->cfg_reg);
}
host->cur_slot->mrq = NULL;
host->mrq = NULL;
if (!list_empty(&host->queue)) {
slot = list_entry(host->queue.next,
struct atmel_mci_slot, queue_node);
list_del(&slot->queue_node);
dev_vdbg(&host->pdev->dev, "list not empty: %s is next\n",
mmc_hostname(slot->mmc));
host->state = STATE_SENDING_CMD;
atmci_start_request(host, slot);
} else {
dev_vdbg(&host->pdev->dev, "list empty\n");
host->state = STATE_IDLE;
}
del_timer(&host->timer);
spin_unlock(&host->lock);
mmc_request_done(prev_mmc, mrq);
spin_lock(&host->lock);
}
static void atmci_command_complete(struct atmel_mci *host,
struct mmc_command *cmd)
{
u32 status = host->cmd_status;
/* Read the response from the card (up to 16 bytes) */
cmd->resp[0] = atmci_readl(host, ATMCI_RSPR);
cmd->resp[1] = atmci_readl(host, ATMCI_RSPR);
cmd->resp[2] = atmci_readl(host, ATMCI_RSPR);
cmd->resp[3] = atmci_readl(host, ATMCI_RSPR);
if (status & ATMCI_RTOE)
cmd->error = -ETIMEDOUT;
else if ((cmd->flags & MMC_RSP_CRC) && (status & ATMCI_RCRCE))
cmd->error = -EILSEQ;
else if (status & (ATMCI_RINDE | ATMCI_RDIRE | ATMCI_RENDE))
cmd->error = -EIO;
else if (host->mrq->data && (host->mrq->data->blksz & 3)) {
if (host->caps.need_blksz_mul_4) {
cmd->error = -EINVAL;
host->need_reset = 1;
}
} else
cmd->error = 0;
}
static void atmci_detect_change(unsigned long data)
{
struct atmel_mci_slot *slot = (struct atmel_mci_slot *)data;
bool present;
bool present_old;
/*
* atmci_cleanup_slot() sets the ATMCI_SHUTDOWN flag before
* freeing the interrupt. We must not re-enable the interrupt
* if it has been freed, and if we're shutting down, it
* doesn't really matter whether the card is present or not.
*/
smp_rmb();
if (test_bit(ATMCI_SHUTDOWN, &slot->flags))
return;
enable_irq(gpio_to_irq(slot->detect_pin));
present = !(gpio_get_value(slot->detect_pin) ^
slot->detect_is_active_high);
present_old = test_bit(ATMCI_CARD_PRESENT, &slot->flags);
dev_vdbg(&slot->mmc->class_dev, "detect change: %d (was %d)\n",
present, present_old);
if (present != present_old) {
struct atmel_mci *host = slot->host;
struct mmc_request *mrq;
dev_dbg(&slot->mmc->class_dev, "card %s\n",
present ? "inserted" : "removed");
spin_lock(&host->lock);
if (!present)
clear_bit(ATMCI_CARD_PRESENT, &slot->flags);
else
set_bit(ATMCI_CARD_PRESENT, &slot->flags);
/* Clean up queue if present */
mrq = slot->mrq;
if (mrq) {
if (mrq == host->mrq) {
/*
* Reset controller to terminate any ongoing
* commands or data transfers.
*/
atmci_writel(host, ATMCI_CR, ATMCI_CR_SWRST);
atmci_writel(host, ATMCI_CR, ATMCI_CR_MCIEN);
atmci_writel(host, ATMCI_MR, host->mode_reg);
if (host->caps.has_cfg_reg)
atmci_writel(host, ATMCI_CFG, host->cfg_reg);
host->data = NULL;
host->cmd = NULL;
switch (host->state) {
case STATE_IDLE:
break;
case STATE_SENDING_CMD:
mrq->cmd->error = -ENOMEDIUM;
if (mrq->data)
host->stop_transfer(host);
break;
case STATE_DATA_XFER:
mrq->data->error = -ENOMEDIUM;
host->stop_transfer(host);
break;
case STATE_WAITING_NOTBUSY:
mrq->data->error = -ENOMEDIUM;
break;
case STATE_SENDING_STOP:
mrq->stop->error = -ENOMEDIUM;
break;
case STATE_END_REQUEST:
break;
}
atmci_request_end(host, mrq);
} else {
list_del(&slot->queue_node);
mrq->cmd->error = -ENOMEDIUM;
if (mrq->data)
mrq->data->error = -ENOMEDIUM;
if (mrq->stop)
mrq->stop->error = -ENOMEDIUM;
spin_unlock(&host->lock);
mmc_request_done(slot->mmc, mrq);
spin_lock(&host->lock);
}
}
spin_unlock(&host->lock);
mmc_detect_change(slot->mmc, 0);
}
}
static void atmci_tasklet_func(unsigned long priv)
{
struct atmel_mci *host = (struct atmel_mci *)priv;
struct mmc_request *mrq = host->mrq;
struct mmc_data *data = host->data;
enum atmel_mci_state state = host->state;
enum atmel_mci_state prev_state;
u32 status;
spin_lock(&host->lock);
state = host->state;
dev_vdbg(&host->pdev->dev,
"tasklet: state %u pending/completed/mask %lx/%lx/%x\n",
state, host->pending_events, host->completed_events,
atmci_readl(host, ATMCI_IMR));
do {
prev_state = state;
dev_dbg(&host->pdev->dev, "FSM: state=%d\n", state);
switch (state) {
case STATE_IDLE:
break;
case STATE_SENDING_CMD:
/*
* Command has been sent, we are waiting for command
* ready. Then we have three next states possible:
* END_REQUEST by default, WAITING_NOTBUSY if it's a
* command needing it or DATA_XFER if there is data.
*/
dev_dbg(&host->pdev->dev, "FSM: cmd ready?\n");
if (!atmci_test_and_clear_pending(host,
EVENT_CMD_RDY))
break;
dev_dbg(&host->pdev->dev, "set completed cmd ready\n");
host->cmd = NULL;
atmci_set_completed(host, EVENT_CMD_RDY);
atmci_command_complete(host, mrq->cmd);
if (mrq->data) {
dev_dbg(&host->pdev->dev,
"command with data transfer");
/*
* If there is a command error don't start
* data transfer.
*/
if (mrq->cmd->error) {
host->stop_transfer(host);
host->data = NULL;
atmci_writel(host, ATMCI_IDR,
ATMCI_TXRDY | ATMCI_RXRDY
| ATMCI_DATA_ERROR_FLAGS);
state = STATE_END_REQUEST;
} else
state = STATE_DATA_XFER;
} else if ((!mrq->data) && (mrq->cmd->flags & MMC_RSP_BUSY)) {
dev_dbg(&host->pdev->dev,
"command response need waiting notbusy");
atmci_writel(host, ATMCI_IER, ATMCI_NOTBUSY);
state = STATE_WAITING_NOTBUSY;
} else
state = STATE_END_REQUEST;
break;
case STATE_DATA_XFER:
if (atmci_test_and_clear_pending(host,
EVENT_DATA_ERROR)) {
dev_dbg(&host->pdev->dev, "set completed data error\n");
atmci_set_completed(host, EVENT_DATA_ERROR);
state = STATE_END_REQUEST;
break;
}
/*
* A data transfer is in progress. The event expected
* to move to the next state depends of data transfer
* type (PDC or DMA). Once transfer done we can move
* to the next step which is WAITING_NOTBUSY in write
* case and directly SENDING_STOP in read case.
*/
dev_dbg(&host->pdev->dev, "FSM: xfer complete?\n");
if (!atmci_test_and_clear_pending(host,
EVENT_XFER_COMPLETE))
break;
dev_dbg(&host->pdev->dev,
"(%s) set completed xfer complete\n",
__func__);
atmci_set_completed(host, EVENT_XFER_COMPLETE);
if (host->caps.need_notbusy_for_read_ops ||
(host->data->flags & MMC_DATA_WRITE)) {
atmci_writel(host, ATMCI_IER, ATMCI_NOTBUSY);
state = STATE_WAITING_NOTBUSY;
} else if (host->mrq->stop) {
atmci_writel(host, ATMCI_IER, ATMCI_CMDRDY);
atmci_send_stop_cmd(host, data);
state = STATE_SENDING_STOP;
} else {
host->data = NULL;
data->bytes_xfered = data->blocks * data->blksz;
data->error = 0;
state = STATE_END_REQUEST;
}
break;
case STATE_WAITING_NOTBUSY:
/*
* We can be in the state for two reasons: a command
* requiring waiting not busy signal (stop command
* included) or a write operation. In the latest case,
* we need to send a stop command.
*/
dev_dbg(&host->pdev->dev, "FSM: not busy?\n");
if (!atmci_test_and_clear_pending(host,
EVENT_NOTBUSY))
break;
dev_dbg(&host->pdev->dev, "set completed not busy\n");
atmci_set_completed(host, EVENT_NOTBUSY);
if (host->data) {
/*
* For some commands such as CMD53, even if
* there is data transfer, there is no stop
* command to send.
*/
if (host->mrq->stop) {
atmci_writel(host, ATMCI_IER,
ATMCI_CMDRDY);
atmci_send_stop_cmd(host, data);
state = STATE_SENDING_STOP;
} else {
host->data = NULL;
data->bytes_xfered = data->blocks
* data->blksz;
data->error = 0;
state = STATE_END_REQUEST;
}
} else
state = STATE_END_REQUEST;
break;
case STATE_SENDING_STOP:
/*
* In this state, it is important to set host->data to
* NULL (which is tested in the waiting notbusy state)
* in order to go to the end request state instead of
* sending stop again.
*/
dev_dbg(&host->pdev->dev, "FSM: cmd ready?\n");
if (!atmci_test_and_clear_pending(host,
EVENT_CMD_RDY))
break;
dev_dbg(&host->pdev->dev, "FSM: cmd ready\n");
host->cmd = NULL;
data->bytes_xfered = data->blocks * data->blksz;
data->error = 0;
atmci_command_complete(host, mrq->stop);
if (mrq->stop->error) {
host->stop_transfer(host);
atmci_writel(host, ATMCI_IDR,
ATMCI_TXRDY | ATMCI_RXRDY
| ATMCI_DATA_ERROR_FLAGS);
state = STATE_END_REQUEST;
} else {
atmci_writel(host, ATMCI_IER, ATMCI_NOTBUSY);
state = STATE_WAITING_NOTBUSY;
}
host->data = NULL;
break;
case STATE_END_REQUEST:
atmci_writel(host, ATMCI_IDR, ATMCI_TXRDY | ATMCI_RXRDY
| ATMCI_DATA_ERROR_FLAGS);
status = host->data_status;
if (unlikely(status)) {
host->stop_transfer(host);
host->data = NULL;
if (data) {
if (status & ATMCI_DTOE) {
data->error = -ETIMEDOUT;
} else if (status & ATMCI_DCRCE) {
data->error = -EILSEQ;
} else {
data->error = -EIO;
}
}
}
atmci_request_end(host, host->mrq);
state = STATE_IDLE;
break;
}
} while (state != prev_state);
host->state = state;
spin_unlock(&host->lock);
}
static void atmci_read_data_pio(struct atmel_mci *host)
{
struct scatterlist *sg = host->sg;
void *buf = sg_virt(sg);
unsigned int offset = host->pio_offset;
struct mmc_data *data = host->data;
u32 value;
u32 status;
unsigned int nbytes = 0;
do {
value = atmci_readl(host, ATMCI_RDR);
if (likely(offset + 4 <= sg->length)) {
put_unaligned(value, (u32 *)(buf + offset));
offset += 4;
nbytes += 4;
if (offset == sg->length) {
flush_dcache_page(sg_page(sg));
host->sg = sg = sg_next(sg);
host->sg_len--;
if (!sg || !host->sg_len)
goto done;
offset = 0;
buf = sg_virt(sg);
}
} else {
unsigned int remaining = sg->length - offset;
memcpy(buf + offset, &value, remaining);
nbytes += remaining;
flush_dcache_page(sg_page(sg));
host->sg = sg = sg_next(sg);
host->sg_len--;
if (!sg || !host->sg_len)
goto done;
offset = 4 - remaining;
buf = sg_virt(sg);
memcpy(buf, (u8 *)&value + remaining, offset);
nbytes += offset;
}
status = atmci_readl(host, ATMCI_SR);
if (status & ATMCI_DATA_ERROR_FLAGS) {
atmci_writel(host, ATMCI_IDR, (ATMCI_NOTBUSY | ATMCI_RXRDY
| ATMCI_DATA_ERROR_FLAGS));
host->data_status = status;
data->bytes_xfered += nbytes;
return;
}
} while (status & ATMCI_RXRDY);
host->pio_offset = offset;
data->bytes_xfered += nbytes;
return;
done:
atmci_writel(host, ATMCI_IDR, ATMCI_RXRDY);
atmci_writel(host, ATMCI_IER, ATMCI_NOTBUSY);
data->bytes_xfered += nbytes;
smp_wmb();
atmci_set_pending(host, EVENT_XFER_COMPLETE);
}
static void atmci_write_data_pio(struct atmel_mci *host)
{
struct scatterlist *sg = host->sg;
void *buf = sg_virt(sg);
unsigned int offset = host->pio_offset;
struct mmc_data *data = host->data;
u32 value;
u32 status;
unsigned int nbytes = 0;
do {
if (likely(offset + 4 <= sg->length)) {
value = get_unaligned((u32 *)(buf + offset));
atmci_writel(host, ATMCI_TDR, value);
offset += 4;
nbytes += 4;
if (offset == sg->length) {
host->sg = sg = sg_next(sg);
host->sg_len--;
if (!sg || !host->sg_len)
goto done;
offset = 0;
buf = sg_virt(sg);
}
} else {
unsigned int remaining = sg->length - offset;
value = 0;
memcpy(&value, buf + offset, remaining);
nbytes += remaining;
host->sg = sg = sg_next(sg);
host->sg_len--;
if (!sg || !host->sg_len) {
atmci_writel(host, ATMCI_TDR, value);
goto done;
}
offset = 4 - remaining;
buf = sg_virt(sg);
memcpy((u8 *)&value + remaining, buf, offset);
atmci_writel(host, ATMCI_TDR, value);
nbytes += offset;
}
status = atmci_readl(host, ATMCI_SR);
if (status & ATMCI_DATA_ERROR_FLAGS) {
atmci_writel(host, ATMCI_IDR, (ATMCI_NOTBUSY | ATMCI_TXRDY
| ATMCI_DATA_ERROR_FLAGS));
host->data_status = status;
data->bytes_xfered += nbytes;
return;
}
} while (status & ATMCI_TXRDY);
host->pio_offset = offset;
data->bytes_xfered += nbytes;
return;
done:
atmci_writel(host, ATMCI_IDR, ATMCI_TXRDY);
atmci_writel(host, ATMCI_IER, ATMCI_NOTBUSY);
data->bytes_xfered += nbytes;
smp_wmb();
atmci_set_pending(host, EVENT_XFER_COMPLETE);
}
static void atmci_sdio_interrupt(struct atmel_mci *host, u32 status)
{
int i;
for (i = 0; i < ATMCI_MAX_NR_SLOTS; i++) {
struct atmel_mci_slot *slot = host->slot[i];
if (slot && (status & slot->sdio_irq)) {
mmc_signal_sdio_irq(slot->mmc);
}
}
}
static irqreturn_t atmci_interrupt(int irq, void *dev_id)
{
struct atmel_mci *host = dev_id;
u32 status, mask, pending;
unsigned int pass_count = 0;
do {
status = atmci_readl(host, ATMCI_SR);
mask = atmci_readl(host, ATMCI_IMR);
pending = status & mask;
if (!pending)
break;
if (pending & ATMCI_DATA_ERROR_FLAGS) {
dev_dbg(&host->pdev->dev, "IRQ: data error\n");
atmci_writel(host, ATMCI_IDR, ATMCI_DATA_ERROR_FLAGS
| ATMCI_RXRDY | ATMCI_TXRDY
| ATMCI_ENDRX | ATMCI_ENDTX
| ATMCI_RXBUFF | ATMCI_TXBUFE);
host->data_status = status;
dev_dbg(&host->pdev->dev, "set pending data error\n");
smp_wmb();
atmci_set_pending(host, EVENT_DATA_ERROR);
tasklet_schedule(&host->tasklet);
}
if (pending & ATMCI_TXBUFE) {
dev_dbg(&host->pdev->dev, "IRQ: tx buffer empty\n");
atmci_writel(host, ATMCI_IDR, ATMCI_TXBUFE);
atmci_writel(host, ATMCI_IDR, ATMCI_ENDTX);
/*
* We can receive this interruption before having configured
* the second pdc buffer, so we need to reconfigure first and
* second buffers again
*/
if (host->data_size) {
atmci_pdc_set_both_buf(host, XFER_TRANSMIT);
atmci_writel(host, ATMCI_IER, ATMCI_ENDTX);
atmci_writel(host, ATMCI_IER, ATMCI_TXBUFE);
} else {
atmci_pdc_complete(host);
}
} else if (pending & ATMCI_ENDTX) {
dev_dbg(&host->pdev->dev, "IRQ: end of tx buffer\n");
atmci_writel(host, ATMCI_IDR, ATMCI_ENDTX);
if (host->data_size) {
atmci_pdc_set_single_buf(host,
XFER_TRANSMIT, PDC_SECOND_BUF);
atmci_writel(host, ATMCI_IER, ATMCI_ENDTX);
}
}
if (pending & ATMCI_RXBUFF) {
dev_dbg(&host->pdev->dev, "IRQ: rx buffer full\n");
atmci_writel(host, ATMCI_IDR, ATMCI_RXBUFF);
atmci_writel(host, ATMCI_IDR, ATMCI_ENDRX);
/*
* We can receive this interruption before having configured
* the second pdc buffer, so we need to reconfigure first and
* second buffers again
*/
if (host->data_size) {
atmci_pdc_set_both_buf(host, XFER_RECEIVE);
atmci_writel(host, ATMCI_IER, ATMCI_ENDRX);
atmci_writel(host, ATMCI_IER, ATMCI_RXBUFF);
} else {
atmci_pdc_complete(host);
}
} else if (pending & ATMCI_ENDRX) {
dev_dbg(&host->pdev->dev, "IRQ: end of rx buffer\n");
atmci_writel(host, ATMCI_IDR, ATMCI_ENDRX);
if (host->data_size) {
atmci_pdc_set_single_buf(host,
XFER_RECEIVE, PDC_SECOND_BUF);
atmci_writel(host, ATMCI_IER, ATMCI_ENDRX);
}
}
/*
* First mci IPs, so mainly the ones having pdc, have some
* issues with the notbusy signal. You can't get it after
* data transmission if you have not sent a stop command.
* The appropriate workaround is to use the BLKE signal.
*/
if (pending & ATMCI_BLKE) {
dev_dbg(&host->pdev->dev, "IRQ: blke\n");
atmci_writel(host, ATMCI_IDR, ATMCI_BLKE);
smp_wmb();
dev_dbg(&host->pdev->dev, "set pending notbusy\n");
atmci_set_pending(host, EVENT_NOTBUSY);
tasklet_schedule(&host->tasklet);
}
if (pending & ATMCI_NOTBUSY) {
dev_dbg(&host->pdev->dev, "IRQ: not_busy\n");
atmci_writel(host, ATMCI_IDR, ATMCI_NOTBUSY);
smp_wmb();
dev_dbg(&host->pdev->dev, "set pending notbusy\n");
atmci_set_pending(host, EVENT_NOTBUSY);
tasklet_schedule(&host->tasklet);
}
if (pending & ATMCI_RXRDY)
atmci_read_data_pio(host);
if (pending & ATMCI_TXRDY)
atmci_write_data_pio(host);
if (pending & ATMCI_CMDRDY) {
dev_dbg(&host->pdev->dev, "IRQ: cmd ready\n");
atmci_writel(host, ATMCI_IDR, ATMCI_CMDRDY);
host->cmd_status = status;
smp_wmb();
dev_dbg(&host->pdev->dev, "set pending cmd rdy\n");
atmci_set_pending(host, EVENT_CMD_RDY);
tasklet_schedule(&host->tasklet);
}
if (pending & (ATMCI_SDIOIRQA | ATMCI_SDIOIRQB))
atmci_sdio_interrupt(host, status);
} while (pass_count++ < 5);
return pass_count ? IRQ_HANDLED : IRQ_NONE;
}
static irqreturn_t atmci_detect_interrupt(int irq, void *dev_id)
{
struct atmel_mci_slot *slot = dev_id;
/*
* Disable interrupts until the pin has stabilized and check
* the state then. Use mod_timer() since we may be in the
* middle of the timer routine when this interrupt triggers.
*/
disable_irq_nosync(irq);
mod_timer(&slot->detect_timer, jiffies + msecs_to_jiffies(20));
return IRQ_HANDLED;
}
static int atmci_init_slot(struct atmel_mci *host,
struct mci_slot_pdata *slot_data, unsigned int id,
u32 sdc_reg, u32 sdio_irq)
{
struct mmc_host *mmc;
struct atmel_mci_slot *slot;
mmc = mmc_alloc_host(sizeof(struct atmel_mci_slot), &host->pdev->dev);
if (!mmc)
return -ENOMEM;
slot = mmc_priv(mmc);
slot->mmc = mmc;
slot->host = host;
slot->detect_pin = slot_data->detect_pin;
slot->wp_pin = slot_data->wp_pin;
slot->detect_is_active_high = slot_data->detect_is_active_high;
slot->sdc_reg = sdc_reg;
slot->sdio_irq = sdio_irq;
dev_dbg(&mmc->class_dev,
"slot[%u]: bus_width=%u, detect_pin=%d, "
"detect_is_active_high=%s, wp_pin=%d\n",
id, slot_data->bus_width, slot_data->detect_pin,
slot_data->detect_is_active_high ? "true" : "false",
slot_data->wp_pin);
mmc->ops = &atmci_ops;
mmc->f_min = DIV_ROUND_UP(host->bus_hz, 512);
mmc->f_max = host->bus_hz / 2;
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
if (sdio_irq)
mmc->caps |= MMC_CAP_SDIO_IRQ;
if (host->caps.has_highspeed)
mmc->caps |= MMC_CAP_SD_HIGHSPEED;
/*
* Without the read/write proof capability, it is strongly suggested to
* use only one bit for data to prevent fifo underruns and overruns
* which will corrupt data.
*/
if ((slot_data->bus_width >= 4) && host->caps.has_rwproof)
mmc->caps |= MMC_CAP_4_BIT_DATA;
if (atmci_get_version(host) < 0x200) {
mmc->max_segs = 256;
mmc->max_blk_size = 4095;
mmc->max_blk_count = 256;
mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
mmc->max_seg_size = mmc->max_blk_size * mmc->max_segs;
} else {
mmc->max_segs = 64;
mmc->max_req_size = 32768 * 512;
mmc->max_blk_size = 32768;
mmc->max_blk_count = 512;
}
/* Assume card is present initially */
set_bit(ATMCI_CARD_PRESENT, &slot->flags);
if (gpio_is_valid(slot->detect_pin)) {
if (devm_gpio_request(&host->pdev->dev, slot->detect_pin,
"mmc_detect")) {
dev_dbg(&mmc->class_dev, "no detect pin available\n");
slot->detect_pin = -EBUSY;
} else if (gpio_get_value(slot->detect_pin) ^
slot->detect_is_active_high) {
clear_bit(ATMCI_CARD_PRESENT, &slot->flags);
}
}
if (!gpio_is_valid(slot->detect_pin)) {
if (slot_data->non_removable)
mmc->caps |= MMC_CAP_NONREMOVABLE;
else
mmc->caps |= MMC_CAP_NEEDS_POLL;
}
if (gpio_is_valid(slot->wp_pin)) {
if (devm_gpio_request(&host->pdev->dev, slot->wp_pin,
"mmc_wp")) {
dev_dbg(&mmc->class_dev, "no WP pin available\n");
slot->wp_pin = -EBUSY;
}
}
host->slot[id] = slot;
mmc_regulator_get_supply(mmc);
mmc_add_host(mmc);
if (gpio_is_valid(slot->detect_pin)) {
int ret;
setup_timer(&slot->detect_timer, atmci_detect_change,
(unsigned long)slot);
ret = request_irq(gpio_to_irq(slot->detect_pin),
atmci_detect_interrupt,
IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING,
"mmc-detect", slot);
if (ret) {
dev_dbg(&mmc->class_dev,
"could not request IRQ %d for detect pin\n",
gpio_to_irq(slot->detect_pin));
slot->detect_pin = -EBUSY;
}
}
atmci_init_debugfs(slot);
return 0;
}
static void atmci_cleanup_slot(struct atmel_mci_slot *slot,
unsigned int id)
{
/* Debugfs stuff is cleaned up by mmc core */
set_bit(ATMCI_SHUTDOWN, &slot->flags);
smp_wmb();
mmc_remove_host(slot->mmc);
if (gpio_is_valid(slot->detect_pin)) {
int pin = slot->detect_pin;
free_irq(gpio_to_irq(pin), slot);
del_timer_sync(&slot->detect_timer);
}
slot->host->slot[id] = NULL;
mmc_free_host(slot->mmc);
}
static int atmci_configure_dma(struct atmel_mci *host)
{
host->dma.chan = dma_request_slave_channel_reason(&host->pdev->dev,
"rxtx");
if (PTR_ERR(host->dma.chan) == -ENODEV) {
struct mci_platform_data *pdata = host->pdev->dev.platform_data;
dma_cap_mask_t mask;
if (!pdata || !pdata->dma_filter)
return -ENODEV;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
host->dma.chan = dma_request_channel(mask, pdata->dma_filter,
pdata->dma_slave);
if (!host->dma.chan)
host->dma.chan = ERR_PTR(-ENODEV);
}
if (IS_ERR(host->dma.chan))
return PTR_ERR(host->dma.chan);
dev_info(&host->pdev->dev, "using %s for DMA transfers\n",
dma_chan_name(host->dma.chan));
host->dma_conf.src_addr = host->mapbase + ATMCI_RDR;
host->dma_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
host->dma_conf.src_maxburst = 1;
host->dma_conf.dst_addr = host->mapbase + ATMCI_TDR;
host->dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
host->dma_conf.dst_maxburst = 1;
host->dma_conf.device_fc = false;
return 0;
}
/*
* HSMCI (High Speed MCI) module is not fully compatible with MCI module.
* HSMCI provides DMA support and a new config register but no more supports
* PDC.
*/
static void atmci_get_cap(struct atmel_mci *host)
{
unsigned int version;
version = atmci_get_version(host);
dev_info(&host->pdev->dev,
"version: 0x%x\n", version);
host->caps.has_dma_conf_reg = 0;
host->caps.has_pdc = ATMCI_PDC_CONNECTED;
host->caps.has_cfg_reg = 0;
host->caps.has_cstor_reg = 0;
host->caps.has_highspeed = 0;
host->caps.has_rwproof = 0;
host->caps.has_odd_clk_div = 0;
host->caps.has_bad_data_ordering = 1;
host->caps.need_reset_after_xfer = 1;
host->caps.need_blksz_mul_4 = 1;
host->caps.need_notbusy_for_read_ops = 0;
/* keep only major version number */
switch (version & 0xf00) {
case 0x600:
case 0x500:
host->caps.has_odd_clk_div = 1;
case 0x400:
case 0x300:
host->caps.has_dma_conf_reg = 1;
host->caps.has_pdc = 0;
host->caps.has_cfg_reg = 1;
host->caps.has_cstor_reg = 1;
host->caps.has_highspeed = 1;
case 0x200:
host->caps.has_rwproof = 1;
host->caps.need_blksz_mul_4 = 0;
host->caps.need_notbusy_for_read_ops = 1;
case 0x100:
host->caps.has_bad_data_ordering = 0;
host->caps.need_reset_after_xfer = 0;
case 0x0:
break;
default:
host->caps.has_pdc = 0;
dev_warn(&host->pdev->dev,
"Unmanaged mci version, set minimum capabilities\n");
break;
}
}
static int atmci_probe(struct platform_device *pdev)
{
struct mci_platform_data *pdata;
struct atmel_mci *host;
struct resource *regs;
unsigned int nr_slots;
int irq;
int ret, i;
regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!regs)
return -ENXIO;
pdata = pdev->dev.platform_data;
if (!pdata) {
pdata = atmci_of_init(pdev);
if (IS_ERR(pdata)) {
dev_err(&pdev->dev, "platform data not available\n");
return PTR_ERR(pdata);
}
}
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
if (!host)
return -ENOMEM;
host->pdev = pdev;
spin_lock_init(&host->lock);
INIT_LIST_HEAD(&host->queue);
host->mck = devm_clk_get(&pdev->dev, "mci_clk");
if (IS_ERR(host->mck))
return PTR_ERR(host->mck);
host->regs = devm_ioremap(&pdev->dev, regs->start, resource_size(regs));
if (!host->regs)
return -ENOMEM;
ret = clk_prepare_enable(host->mck);
if (ret)
return ret;
atmci_writel(host, ATMCI_CR, ATMCI_CR_SWRST);
host->bus_hz = clk_get_rate(host->mck);
host->mapbase = regs->start;
tasklet_init(&host->tasklet, atmci_tasklet_func, (unsigned long)host);
ret = request_irq(irq, atmci_interrupt, 0, dev_name(&pdev->dev), host);
if (ret) {
clk_disable_unprepare(host->mck);
return ret;
}
/* Get MCI capabilities and set operations according to it */
atmci_get_cap(host);
ret = atmci_configure_dma(host);
if (ret == -EPROBE_DEFER)
goto err_dma_probe_defer;
if (ret == 0) {
host->prepare_data = &atmci_prepare_data_dma;
host->submit_data = &atmci_submit_data_dma;
host->stop_transfer = &atmci_stop_transfer_dma;
} else if (host->caps.has_pdc) {
dev_info(&pdev->dev, "using PDC\n");
host->prepare_data = &atmci_prepare_data_pdc;
host->submit_data = &atmci_submit_data_pdc;
host->stop_transfer = &atmci_stop_transfer_pdc;
} else {
dev_info(&pdev->dev, "using PIO\n");
host->prepare_data = &atmci_prepare_data;
host->submit_data = &atmci_submit_data;
host->stop_transfer = &atmci_stop_transfer;
}
platform_set_drvdata(pdev, host);
setup_timer(&host->timer, atmci_timeout_timer, (unsigned long)host);
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_enable(&pdev->dev);
/* We need at least one slot to succeed */
nr_slots = 0;
ret = -ENODEV;
if (pdata->slot[0].bus_width) {
ret = atmci_init_slot(host, &pdata->slot[0],
0, ATMCI_SDCSEL_SLOT_A, ATMCI_SDIOIRQA);
if (!ret) {
nr_slots++;
host->buf_size = host->slot[0]->mmc->max_req_size;
}
}
if (pdata->slot[1].bus_width) {
ret = atmci_init_slot(host, &pdata->slot[1],
1, ATMCI_SDCSEL_SLOT_B, ATMCI_SDIOIRQB);
if (!ret) {
nr_slots++;
if (host->slot[1]->mmc->max_req_size > host->buf_size)
host->buf_size =
host->slot[1]->mmc->max_req_size;
}
}
if (!nr_slots) {
dev_err(&pdev->dev, "init failed: no slot defined\n");
goto err_init_slot;
}
if (!host->caps.has_rwproof) {
host->buffer = dma_alloc_coherent(&pdev->dev, host->buf_size,
&host->buf_phys_addr,
GFP_KERNEL);
if (!host->buffer) {
ret = -ENOMEM;
dev_err(&pdev->dev, "buffer allocation failed\n");
goto err_dma_alloc;
}
}
dev_info(&pdev->dev,
"Atmel MCI controller at 0x%08lx irq %d, %u slots\n",
host->mapbase, irq, nr_slots);
pm_runtime_mark_last_busy(&host->pdev->dev);
pm_runtime_put_autosuspend(&pdev->dev);
return 0;
err_dma_alloc:
for (i = 0; i < ATMCI_MAX_NR_SLOTS; i++) {
if (host->slot[i])
atmci_cleanup_slot(host->slot[i], i);
}
err_init_slot:
clk_disable_unprepare(host->mck);
pm_runtime_disable(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
del_timer_sync(&host->timer);
if (!IS_ERR(host->dma.chan))
dma_release_channel(host->dma.chan);
err_dma_probe_defer:
free_irq(irq, host);
return ret;
}
static int atmci_remove(struct platform_device *pdev)
{
struct atmel_mci *host = platform_get_drvdata(pdev);
unsigned int i;
pm_runtime_get_sync(&pdev->dev);
if (host->buffer)
dma_free_coherent(&pdev->dev, host->buf_size,
host->buffer, host->buf_phys_addr);
for (i = 0; i < ATMCI_MAX_NR_SLOTS; i++) {
if (host->slot[i])
atmci_cleanup_slot(host->slot[i], i);
}
atmci_writel(host, ATMCI_IDR, ~0UL);
atmci_writel(host, ATMCI_CR, ATMCI_CR_MCIDIS);
atmci_readl(host, ATMCI_SR);
del_timer_sync(&host->timer);
if (!IS_ERR(host->dma.chan))
dma_release_channel(host->dma.chan);
free_irq(platform_get_irq(pdev, 0), host);
clk_disable_unprepare(host->mck);
pm_runtime_disable(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
return 0;
}
#ifdef CONFIG_PM
static int atmci_runtime_suspend(struct device *dev)
{
struct atmel_mci *host = dev_get_drvdata(dev);
clk_disable_unprepare(host->mck);
pinctrl_pm_select_sleep_state(dev);
return 0;
}
static int atmci_runtime_resume(struct device *dev)
{
struct atmel_mci *host = dev_get_drvdata(dev);
pinctrl_pm_select_default_state(dev);
return clk_prepare_enable(host->mck);
}
#endif
static const struct dev_pm_ops atmci_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(atmci_runtime_suspend, atmci_runtime_resume, NULL)
};
static struct platform_driver atmci_driver = {
.probe = atmci_probe,
.remove = atmci_remove,
.driver = {
.name = "atmel_mci",
.of_match_table = of_match_ptr(atmci_dt_ids),
.pm = &atmci_dev_pm_ops,
},
};
module_platform_driver(atmci_driver);
MODULE_DESCRIPTION("Atmel Multimedia Card Interface driver");
MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
MODULE_LICENSE("GPL v2");