mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-15 09:03:59 +08:00
207070f522
Outgoing packets sent by via-rhine have their VLAN PCP field off by one (when hardware acceleration is enabled). The TX descriptor expects only VID and PCP (without a CFI/DEI bit). Peter Boström noticed and reported the bug. Signed-off-by: Roger Luethi <rl@hellgate.ch> Cc: Peter Boström <peter.bostrom@netrounds.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2459 lines
66 KiB
C
2459 lines
66 KiB
C
/* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
|
|
/*
|
|
Written 1998-2001 by Donald Becker.
|
|
|
|
Current Maintainer: Roger Luethi <rl@hellgate.ch>
|
|
|
|
This software may be used and distributed according to the terms of
|
|
the GNU General Public License (GPL), incorporated herein by reference.
|
|
Drivers based on or derived from this code fall under the GPL and must
|
|
retain the authorship, copyright and license notice. This file is not
|
|
a complete program and may only be used when the entire operating
|
|
system is licensed under the GPL.
|
|
|
|
This driver is designed for the VIA VT86C100A Rhine-I.
|
|
It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
|
|
and management NIC 6105M).
|
|
|
|
The author may be reached as becker@scyld.com, or C/O
|
|
Scyld Computing Corporation
|
|
410 Severn Ave., Suite 210
|
|
Annapolis MD 21403
|
|
|
|
|
|
This driver contains some changes from the original Donald Becker
|
|
version. He may or may not be interested in bug reports on this
|
|
code. You can find his versions at:
|
|
http://www.scyld.com/network/via-rhine.html
|
|
[link no longer provides useful info -jgarzik]
|
|
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#define DRV_NAME "via-rhine"
|
|
#define DRV_VERSION "1.5.1"
|
|
#define DRV_RELDATE "2010-10-09"
|
|
|
|
#include <linux/types.h>
|
|
|
|
/* A few user-configurable values.
|
|
These may be modified when a driver module is loaded. */
|
|
static int debug = 0;
|
|
#define RHINE_MSG_DEFAULT \
|
|
(0x0000)
|
|
|
|
/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
|
|
Setting to > 1518 effectively disables this feature. */
|
|
#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
|
|
defined(CONFIG_SPARC) || defined(__ia64__) || \
|
|
defined(__sh__) || defined(__mips__)
|
|
static int rx_copybreak = 1518;
|
|
#else
|
|
static int rx_copybreak;
|
|
#endif
|
|
|
|
/* Work-around for broken BIOSes: they are unable to get the chip back out of
|
|
power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
|
|
static bool avoid_D3;
|
|
|
|
/*
|
|
* In case you are looking for 'options[]' or 'full_duplex[]', they
|
|
* are gone. Use ethtool(8) instead.
|
|
*/
|
|
|
|
/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
|
|
The Rhine has a 64 element 8390-like hash table. */
|
|
static const int multicast_filter_limit = 32;
|
|
|
|
|
|
/* Operational parameters that are set at compile time. */
|
|
|
|
/* Keep the ring sizes a power of two for compile efficiency.
|
|
The compiler will convert <unsigned>'%'<2^N> into a bit mask.
|
|
Making the Tx ring too large decreases the effectiveness of channel
|
|
bonding and packet priority.
|
|
There are no ill effects from too-large receive rings. */
|
|
#define TX_RING_SIZE 16
|
|
#define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
|
|
#define RX_RING_SIZE 64
|
|
|
|
/* Operational parameters that usually are not changed. */
|
|
|
|
/* Time in jiffies before concluding the transmitter is hung. */
|
|
#define TX_TIMEOUT (2*HZ)
|
|
|
|
#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/mii.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/workqueue.h>
|
|
#include <asm/processor.h> /* Processor type for cache alignment. */
|
|
#include <asm/io.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/uaccess.h>
|
|
#include <linux/dmi.h>
|
|
|
|
/* These identify the driver base version and may not be removed. */
|
|
static const char version[] =
|
|
"v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker";
|
|
|
|
/* This driver was written to use PCI memory space. Some early versions
|
|
of the Rhine may only work correctly with I/O space accesses. */
|
|
#ifdef CONFIG_VIA_RHINE_MMIO
|
|
#define USE_MMIO
|
|
#else
|
|
#endif
|
|
|
|
MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
|
|
MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
module_param(debug, int, 0);
|
|
module_param(rx_copybreak, int, 0);
|
|
module_param(avoid_D3, bool, 0);
|
|
MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
|
|
MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
|
|
MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
|
|
|
|
#define MCAM_SIZE 32
|
|
#define VCAM_SIZE 32
|
|
|
|
/*
|
|
Theory of Operation
|
|
|
|
I. Board Compatibility
|
|
|
|
This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
|
|
controller.
|
|
|
|
II. Board-specific settings
|
|
|
|
Boards with this chip are functional only in a bus-master PCI slot.
|
|
|
|
Many operational settings are loaded from the EEPROM to the Config word at
|
|
offset 0x78. For most of these settings, this driver assumes that they are
|
|
correct.
|
|
If this driver is compiled to use PCI memory space operations the EEPROM
|
|
must be configured to enable memory ops.
|
|
|
|
III. Driver operation
|
|
|
|
IIIa. Ring buffers
|
|
|
|
This driver uses two statically allocated fixed-size descriptor lists
|
|
formed into rings by a branch from the final descriptor to the beginning of
|
|
the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
|
|
|
|
IIIb/c. Transmit/Receive Structure
|
|
|
|
This driver attempts to use a zero-copy receive and transmit scheme.
|
|
|
|
Alas, all data buffers are required to start on a 32 bit boundary, so
|
|
the driver must often copy transmit packets into bounce buffers.
|
|
|
|
The driver allocates full frame size skbuffs for the Rx ring buffers at
|
|
open() time and passes the skb->data field to the chip as receive data
|
|
buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
|
|
a fresh skbuff is allocated and the frame is copied to the new skbuff.
|
|
When the incoming frame is larger, the skbuff is passed directly up the
|
|
protocol stack. Buffers consumed this way are replaced by newly allocated
|
|
skbuffs in the last phase of rhine_rx().
|
|
|
|
The RX_COPYBREAK value is chosen to trade-off the memory wasted by
|
|
using a full-sized skbuff for small frames vs. the copying costs of larger
|
|
frames. New boards are typically used in generously configured machines
|
|
and the underfilled buffers have negligible impact compared to the benefit of
|
|
a single allocation size, so the default value of zero results in never
|
|
copying packets. When copying is done, the cost is usually mitigated by using
|
|
a combined copy/checksum routine. Copying also preloads the cache, which is
|
|
most useful with small frames.
|
|
|
|
Since the VIA chips are only able to transfer data to buffers on 32 bit
|
|
boundaries, the IP header at offset 14 in an ethernet frame isn't
|
|
longword aligned for further processing. Copying these unaligned buffers
|
|
has the beneficial effect of 16-byte aligning the IP header.
|
|
|
|
IIId. Synchronization
|
|
|
|
The driver runs as two independent, single-threaded flows of control. One
|
|
is the send-packet routine, which enforces single-threaded use by the
|
|
netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
|
|
which is single threaded by the hardware and interrupt handling software.
|
|
|
|
The send packet thread has partial control over the Tx ring. It locks the
|
|
netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
|
|
the ring is not available it stops the transmit queue by
|
|
calling netif_stop_queue.
|
|
|
|
The interrupt handler has exclusive control over the Rx ring and records stats
|
|
from the Tx ring. After reaping the stats, it marks the Tx queue entry as
|
|
empty by incrementing the dirty_tx mark. If at least half of the entries in
|
|
the Rx ring are available the transmit queue is woken up if it was stopped.
|
|
|
|
IV. Notes
|
|
|
|
IVb. References
|
|
|
|
Preliminary VT86C100A manual from http://www.via.com.tw/
|
|
http://www.scyld.com/expert/100mbps.html
|
|
http://www.scyld.com/expert/NWay.html
|
|
ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
|
|
ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
|
|
|
|
|
|
IVc. Errata
|
|
|
|
The VT86C100A manual is not reliable information.
|
|
The 3043 chip does not handle unaligned transmit or receive buffers, resulting
|
|
in significant performance degradation for bounce buffer copies on transmit
|
|
and unaligned IP headers on receive.
|
|
The chip does not pad to minimum transmit length.
|
|
|
|
*/
|
|
|
|
|
|
/* This table drives the PCI probe routines. It's mostly boilerplate in all
|
|
of the drivers, and will likely be provided by some future kernel.
|
|
Note the matching code -- the first table entry matchs all 56** cards but
|
|
second only the 1234 card.
|
|
*/
|
|
|
|
enum rhine_revs {
|
|
VT86C100A = 0x00,
|
|
VTunknown0 = 0x20,
|
|
VT6102 = 0x40,
|
|
VT8231 = 0x50, /* Integrated MAC */
|
|
VT8233 = 0x60, /* Integrated MAC */
|
|
VT8235 = 0x74, /* Integrated MAC */
|
|
VT8237 = 0x78, /* Integrated MAC */
|
|
VTunknown1 = 0x7C,
|
|
VT6105 = 0x80,
|
|
VT6105_B0 = 0x83,
|
|
VT6105L = 0x8A,
|
|
VT6107 = 0x8C,
|
|
VTunknown2 = 0x8E,
|
|
VT6105M = 0x90, /* Management adapter */
|
|
};
|
|
|
|
enum rhine_quirks {
|
|
rqWOL = 0x0001, /* Wake-On-LAN support */
|
|
rqForceReset = 0x0002,
|
|
rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
|
|
rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
|
|
rqRhineI = 0x0100, /* See comment below */
|
|
};
|
|
/*
|
|
* rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
|
|
* MMIO as well as for the collision counter and the Tx FIFO underflow
|
|
* indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
|
|
*/
|
|
|
|
/* Beware of PCI posted writes */
|
|
#define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
|
|
|
|
static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = {
|
|
{ 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
|
|
{ 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
|
|
{ 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
|
|
{ 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
|
|
{ } /* terminate list */
|
|
};
|
|
MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
|
|
|
|
|
|
/* Offsets to the device registers. */
|
|
enum register_offsets {
|
|
StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
|
|
ChipCmd1=0x09, TQWake=0x0A,
|
|
IntrStatus=0x0C, IntrEnable=0x0E,
|
|
MulticastFilter0=0x10, MulticastFilter1=0x14,
|
|
RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
|
|
MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
|
|
MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
|
|
ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
|
|
RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
|
|
StickyHW=0x83, IntrStatus2=0x84,
|
|
CamMask=0x88, CamCon=0x92, CamAddr=0x93,
|
|
WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
|
|
WOLcrClr1=0xA6, WOLcgClr=0xA7,
|
|
PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
|
|
};
|
|
|
|
/* Bits in ConfigD */
|
|
enum backoff_bits {
|
|
BackOptional=0x01, BackModify=0x02,
|
|
BackCaptureEffect=0x04, BackRandom=0x08
|
|
};
|
|
|
|
/* Bits in the TxConfig (TCR) register */
|
|
enum tcr_bits {
|
|
TCR_PQEN=0x01,
|
|
TCR_LB0=0x02, /* loopback[0] */
|
|
TCR_LB1=0x04, /* loopback[1] */
|
|
TCR_OFSET=0x08,
|
|
TCR_RTGOPT=0x10,
|
|
TCR_RTFT0=0x20,
|
|
TCR_RTFT1=0x40,
|
|
TCR_RTSF=0x80,
|
|
};
|
|
|
|
/* Bits in the CamCon (CAMC) register */
|
|
enum camcon_bits {
|
|
CAMC_CAMEN=0x01,
|
|
CAMC_VCAMSL=0x02,
|
|
CAMC_CAMWR=0x04,
|
|
CAMC_CAMRD=0x08,
|
|
};
|
|
|
|
/* Bits in the PCIBusConfig1 (BCR1) register */
|
|
enum bcr1_bits {
|
|
BCR1_POT0=0x01,
|
|
BCR1_POT1=0x02,
|
|
BCR1_POT2=0x04,
|
|
BCR1_CTFT0=0x08,
|
|
BCR1_CTFT1=0x10,
|
|
BCR1_CTSF=0x20,
|
|
BCR1_TXQNOBK=0x40, /* for VT6105 */
|
|
BCR1_VIDFR=0x80, /* for VT6105 */
|
|
BCR1_MED0=0x40, /* for VT6102 */
|
|
BCR1_MED1=0x80, /* for VT6102 */
|
|
};
|
|
|
|
#ifdef USE_MMIO
|
|
/* Registers we check that mmio and reg are the same. */
|
|
static const int mmio_verify_registers[] = {
|
|
RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
|
|
0
|
|
};
|
|
#endif
|
|
|
|
/* Bits in the interrupt status/mask registers. */
|
|
enum intr_status_bits {
|
|
IntrRxDone = 0x0001,
|
|
IntrTxDone = 0x0002,
|
|
IntrRxErr = 0x0004,
|
|
IntrTxError = 0x0008,
|
|
IntrRxEmpty = 0x0020,
|
|
IntrPCIErr = 0x0040,
|
|
IntrStatsMax = 0x0080,
|
|
IntrRxEarly = 0x0100,
|
|
IntrTxUnderrun = 0x0210,
|
|
IntrRxOverflow = 0x0400,
|
|
IntrRxDropped = 0x0800,
|
|
IntrRxNoBuf = 0x1000,
|
|
IntrTxAborted = 0x2000,
|
|
IntrLinkChange = 0x4000,
|
|
IntrRxWakeUp = 0x8000,
|
|
IntrTxDescRace = 0x080000, /* mapped from IntrStatus2 */
|
|
IntrNormalSummary = IntrRxDone | IntrTxDone,
|
|
IntrTxErrSummary = IntrTxDescRace | IntrTxAborted | IntrTxError |
|
|
IntrTxUnderrun,
|
|
};
|
|
|
|
/* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
|
|
enum wol_bits {
|
|
WOLucast = 0x10,
|
|
WOLmagic = 0x20,
|
|
WOLbmcast = 0x30,
|
|
WOLlnkon = 0x40,
|
|
WOLlnkoff = 0x80,
|
|
};
|
|
|
|
/* The Rx and Tx buffer descriptors. */
|
|
struct rx_desc {
|
|
__le32 rx_status;
|
|
__le32 desc_length; /* Chain flag, Buffer/frame length */
|
|
__le32 addr;
|
|
__le32 next_desc;
|
|
};
|
|
struct tx_desc {
|
|
__le32 tx_status;
|
|
__le32 desc_length; /* Chain flag, Tx Config, Frame length */
|
|
__le32 addr;
|
|
__le32 next_desc;
|
|
};
|
|
|
|
/* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
|
|
#define TXDESC 0x00e08000
|
|
|
|
enum rx_status_bits {
|
|
RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
|
|
};
|
|
|
|
/* Bits in *_desc.*_status */
|
|
enum desc_status_bits {
|
|
DescOwn=0x80000000
|
|
};
|
|
|
|
/* Bits in *_desc.*_length */
|
|
enum desc_length_bits {
|
|
DescTag=0x00010000
|
|
};
|
|
|
|
/* Bits in ChipCmd. */
|
|
enum chip_cmd_bits {
|
|
CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
|
|
CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
|
|
Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
|
|
Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
|
|
};
|
|
|
|
struct rhine_stats {
|
|
u64 packets;
|
|
u64 bytes;
|
|
struct u64_stats_sync syncp;
|
|
};
|
|
|
|
struct rhine_private {
|
|
/* Bit mask for configured VLAN ids */
|
|
unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
|
|
|
|
/* Descriptor rings */
|
|
struct rx_desc *rx_ring;
|
|
struct tx_desc *tx_ring;
|
|
dma_addr_t rx_ring_dma;
|
|
dma_addr_t tx_ring_dma;
|
|
|
|
/* The addresses of receive-in-place skbuffs. */
|
|
struct sk_buff *rx_skbuff[RX_RING_SIZE];
|
|
dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
|
|
|
|
/* The saved address of a sent-in-place packet/buffer, for later free(). */
|
|
struct sk_buff *tx_skbuff[TX_RING_SIZE];
|
|
dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
|
|
|
|
/* Tx bounce buffers (Rhine-I only) */
|
|
unsigned char *tx_buf[TX_RING_SIZE];
|
|
unsigned char *tx_bufs;
|
|
dma_addr_t tx_bufs_dma;
|
|
|
|
struct pci_dev *pdev;
|
|
long pioaddr;
|
|
struct net_device *dev;
|
|
struct napi_struct napi;
|
|
spinlock_t lock;
|
|
struct mutex task_lock;
|
|
bool task_enable;
|
|
struct work_struct slow_event_task;
|
|
struct work_struct reset_task;
|
|
|
|
u32 msg_enable;
|
|
|
|
/* Frequently used values: keep some adjacent for cache effect. */
|
|
u32 quirks;
|
|
struct rx_desc *rx_head_desc;
|
|
unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
|
|
unsigned int cur_tx, dirty_tx;
|
|
unsigned int rx_buf_sz; /* Based on MTU+slack. */
|
|
struct rhine_stats rx_stats;
|
|
struct rhine_stats tx_stats;
|
|
u8 wolopts;
|
|
|
|
u8 tx_thresh, rx_thresh;
|
|
|
|
struct mii_if_info mii_if;
|
|
void __iomem *base;
|
|
};
|
|
|
|
#define BYTE_REG_BITS_ON(x, p) do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
|
|
#define WORD_REG_BITS_ON(x, p) do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
|
|
#define DWORD_REG_BITS_ON(x, p) do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
|
|
|
|
#define BYTE_REG_BITS_IS_ON(x, p) (ioread8((p)) & (x))
|
|
#define WORD_REG_BITS_IS_ON(x, p) (ioread16((p)) & (x))
|
|
#define DWORD_REG_BITS_IS_ON(x, p) (ioread32((p)) & (x))
|
|
|
|
#define BYTE_REG_BITS_OFF(x, p) do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
|
|
#define WORD_REG_BITS_OFF(x, p) do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
|
|
#define DWORD_REG_BITS_OFF(x, p) do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
|
|
|
|
#define BYTE_REG_BITS_SET(x, m, p) do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
|
|
#define WORD_REG_BITS_SET(x, m, p) do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
|
|
#define DWORD_REG_BITS_SET(x, m, p) do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
|
|
|
|
|
|
static int mdio_read(struct net_device *dev, int phy_id, int location);
|
|
static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
|
|
static int rhine_open(struct net_device *dev);
|
|
static void rhine_reset_task(struct work_struct *work);
|
|
static void rhine_slow_event_task(struct work_struct *work);
|
|
static void rhine_tx_timeout(struct net_device *dev);
|
|
static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
|
|
struct net_device *dev);
|
|
static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
|
|
static void rhine_tx(struct net_device *dev);
|
|
static int rhine_rx(struct net_device *dev, int limit);
|
|
static void rhine_set_rx_mode(struct net_device *dev);
|
|
static struct rtnl_link_stats64 *rhine_get_stats64(struct net_device *dev,
|
|
struct rtnl_link_stats64 *stats);
|
|
static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
|
|
static const struct ethtool_ops netdev_ethtool_ops;
|
|
static int rhine_close(struct net_device *dev);
|
|
static int rhine_vlan_rx_add_vid(struct net_device *dev,
|
|
__be16 proto, u16 vid);
|
|
static int rhine_vlan_rx_kill_vid(struct net_device *dev,
|
|
__be16 proto, u16 vid);
|
|
static void rhine_restart_tx(struct net_device *dev);
|
|
|
|
static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low)
|
|
{
|
|
void __iomem *ioaddr = rp->base;
|
|
int i;
|
|
|
|
for (i = 0; i < 1024; i++) {
|
|
bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask);
|
|
|
|
if (low ^ has_mask_bits)
|
|
break;
|
|
udelay(10);
|
|
}
|
|
if (i > 64) {
|
|
netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
|
|
"count: %04d\n", low ? "low" : "high", reg, mask, i);
|
|
}
|
|
}
|
|
|
|
static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
|
|
{
|
|
rhine_wait_bit(rp, reg, mask, false);
|
|
}
|
|
|
|
static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
|
|
{
|
|
rhine_wait_bit(rp, reg, mask, true);
|
|
}
|
|
|
|
static u32 rhine_get_events(struct rhine_private *rp)
|
|
{
|
|
void __iomem *ioaddr = rp->base;
|
|
u32 intr_status;
|
|
|
|
intr_status = ioread16(ioaddr + IntrStatus);
|
|
/* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
|
|
if (rp->quirks & rqStatusWBRace)
|
|
intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
|
|
return intr_status;
|
|
}
|
|
|
|
static void rhine_ack_events(struct rhine_private *rp, u32 mask)
|
|
{
|
|
void __iomem *ioaddr = rp->base;
|
|
|
|
if (rp->quirks & rqStatusWBRace)
|
|
iowrite8(mask >> 16, ioaddr + IntrStatus2);
|
|
iowrite16(mask, ioaddr + IntrStatus);
|
|
mmiowb();
|
|
}
|
|
|
|
/*
|
|
* Get power related registers into sane state.
|
|
* Notify user about past WOL event.
|
|
*/
|
|
static void rhine_power_init(struct net_device *dev)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
void __iomem *ioaddr = rp->base;
|
|
u16 wolstat;
|
|
|
|
if (rp->quirks & rqWOL) {
|
|
/* Make sure chip is in power state D0 */
|
|
iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
|
|
|
|
/* Disable "force PME-enable" */
|
|
iowrite8(0x80, ioaddr + WOLcgClr);
|
|
|
|
/* Clear power-event config bits (WOL) */
|
|
iowrite8(0xFF, ioaddr + WOLcrClr);
|
|
/* More recent cards can manage two additional patterns */
|
|
if (rp->quirks & rq6patterns)
|
|
iowrite8(0x03, ioaddr + WOLcrClr1);
|
|
|
|
/* Save power-event status bits */
|
|
wolstat = ioread8(ioaddr + PwrcsrSet);
|
|
if (rp->quirks & rq6patterns)
|
|
wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
|
|
|
|
/* Clear power-event status bits */
|
|
iowrite8(0xFF, ioaddr + PwrcsrClr);
|
|
if (rp->quirks & rq6patterns)
|
|
iowrite8(0x03, ioaddr + PwrcsrClr1);
|
|
|
|
if (wolstat) {
|
|
char *reason;
|
|
switch (wolstat) {
|
|
case WOLmagic:
|
|
reason = "Magic packet";
|
|
break;
|
|
case WOLlnkon:
|
|
reason = "Link went up";
|
|
break;
|
|
case WOLlnkoff:
|
|
reason = "Link went down";
|
|
break;
|
|
case WOLucast:
|
|
reason = "Unicast packet";
|
|
break;
|
|
case WOLbmcast:
|
|
reason = "Multicast/broadcast packet";
|
|
break;
|
|
default:
|
|
reason = "Unknown";
|
|
}
|
|
netdev_info(dev, "Woke system up. Reason: %s\n",
|
|
reason);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void rhine_chip_reset(struct net_device *dev)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
void __iomem *ioaddr = rp->base;
|
|
u8 cmd1;
|
|
|
|
iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
|
|
IOSYNC;
|
|
|
|
if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
|
|
netdev_info(dev, "Reset not complete yet. Trying harder.\n");
|
|
|
|
/* Force reset */
|
|
if (rp->quirks & rqForceReset)
|
|
iowrite8(0x40, ioaddr + MiscCmd);
|
|
|
|
/* Reset can take somewhat longer (rare) */
|
|
rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
|
|
}
|
|
|
|
cmd1 = ioread8(ioaddr + ChipCmd1);
|
|
netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
|
|
"failed" : "succeeded");
|
|
}
|
|
|
|
#ifdef USE_MMIO
|
|
static void enable_mmio(long pioaddr, u32 quirks)
|
|
{
|
|
int n;
|
|
if (quirks & rqRhineI) {
|
|
/* More recent docs say that this bit is reserved ... */
|
|
n = inb(pioaddr + ConfigA) | 0x20;
|
|
outb(n, pioaddr + ConfigA);
|
|
} else {
|
|
n = inb(pioaddr + ConfigD) | 0x80;
|
|
outb(n, pioaddr + ConfigD);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
|
|
* (plus 0x6C for Rhine-I/II)
|
|
*/
|
|
static void rhine_reload_eeprom(long pioaddr, struct net_device *dev)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
void __iomem *ioaddr = rp->base;
|
|
int i;
|
|
|
|
outb(0x20, pioaddr + MACRegEEcsr);
|
|
for (i = 0; i < 1024; i++) {
|
|
if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
|
|
break;
|
|
}
|
|
if (i > 512)
|
|
pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
|
|
|
|
#ifdef USE_MMIO
|
|
/*
|
|
* Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
|
|
* MMIO. If reloading EEPROM was done first this could be avoided, but
|
|
* it is not known if that still works with the "win98-reboot" problem.
|
|
*/
|
|
enable_mmio(pioaddr, rp->quirks);
|
|
#endif
|
|
|
|
/* Turn off EEPROM-controlled wake-up (magic packet) */
|
|
if (rp->quirks & rqWOL)
|
|
iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
|
|
|
|
}
|
|
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
static void rhine_poll(struct net_device *dev)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
const int irq = rp->pdev->irq;
|
|
|
|
disable_irq(irq);
|
|
rhine_interrupt(irq, dev);
|
|
enable_irq(irq);
|
|
}
|
|
#endif
|
|
|
|
static void rhine_kick_tx_threshold(struct rhine_private *rp)
|
|
{
|
|
if (rp->tx_thresh < 0xe0) {
|
|
void __iomem *ioaddr = rp->base;
|
|
|
|
rp->tx_thresh += 0x20;
|
|
BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
|
|
}
|
|
}
|
|
|
|
static void rhine_tx_err(struct rhine_private *rp, u32 status)
|
|
{
|
|
struct net_device *dev = rp->dev;
|
|
|
|
if (status & IntrTxAborted) {
|
|
netif_info(rp, tx_err, dev,
|
|
"Abort %08x, frame dropped\n", status);
|
|
}
|
|
|
|
if (status & IntrTxUnderrun) {
|
|
rhine_kick_tx_threshold(rp);
|
|
netif_info(rp, tx_err ,dev, "Transmitter underrun, "
|
|
"Tx threshold now %02x\n", rp->tx_thresh);
|
|
}
|
|
|
|
if (status & IntrTxDescRace)
|
|
netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
|
|
|
|
if ((status & IntrTxError) &&
|
|
(status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
|
|
rhine_kick_tx_threshold(rp);
|
|
netif_info(rp, tx_err, dev, "Unspecified error. "
|
|
"Tx threshold now %02x\n", rp->tx_thresh);
|
|
}
|
|
|
|
rhine_restart_tx(dev);
|
|
}
|
|
|
|
static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
|
|
{
|
|
void __iomem *ioaddr = rp->base;
|
|
struct net_device_stats *stats = &rp->dev->stats;
|
|
|
|
stats->rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
|
|
stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
|
|
|
|
/*
|
|
* Clears the "tally counters" for CRC errors and missed frames(?).
|
|
* It has been reported that some chips need a write of 0 to clear
|
|
* these, for others the counters are set to 1 when written to and
|
|
* instead cleared when read. So we clear them both ways ...
|
|
*/
|
|
iowrite32(0, ioaddr + RxMissed);
|
|
ioread16(ioaddr + RxCRCErrs);
|
|
ioread16(ioaddr + RxMissed);
|
|
}
|
|
|
|
#define RHINE_EVENT_NAPI_RX (IntrRxDone | \
|
|
IntrRxErr | \
|
|
IntrRxEmpty | \
|
|
IntrRxOverflow | \
|
|
IntrRxDropped | \
|
|
IntrRxNoBuf | \
|
|
IntrRxWakeUp)
|
|
|
|
#define RHINE_EVENT_NAPI_TX_ERR (IntrTxError | \
|
|
IntrTxAborted | \
|
|
IntrTxUnderrun | \
|
|
IntrTxDescRace)
|
|
#define RHINE_EVENT_NAPI_TX (IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
|
|
|
|
#define RHINE_EVENT_NAPI (RHINE_EVENT_NAPI_RX | \
|
|
RHINE_EVENT_NAPI_TX | \
|
|
IntrStatsMax)
|
|
#define RHINE_EVENT_SLOW (IntrPCIErr | IntrLinkChange)
|
|
#define RHINE_EVENT (RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
|
|
|
|
static int rhine_napipoll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
|
|
struct net_device *dev = rp->dev;
|
|
void __iomem *ioaddr = rp->base;
|
|
u16 enable_mask = RHINE_EVENT & 0xffff;
|
|
int work_done = 0;
|
|
u32 status;
|
|
|
|
status = rhine_get_events(rp);
|
|
rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
|
|
|
|
if (status & RHINE_EVENT_NAPI_RX)
|
|
work_done += rhine_rx(dev, budget);
|
|
|
|
if (status & RHINE_EVENT_NAPI_TX) {
|
|
if (status & RHINE_EVENT_NAPI_TX_ERR) {
|
|
/* Avoid scavenging before Tx engine turned off */
|
|
rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
|
|
if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
|
|
netif_warn(rp, tx_err, dev, "Tx still on\n");
|
|
}
|
|
|
|
rhine_tx(dev);
|
|
|
|
if (status & RHINE_EVENT_NAPI_TX_ERR)
|
|
rhine_tx_err(rp, status);
|
|
}
|
|
|
|
if (status & IntrStatsMax) {
|
|
spin_lock(&rp->lock);
|
|
rhine_update_rx_crc_and_missed_errord(rp);
|
|
spin_unlock(&rp->lock);
|
|
}
|
|
|
|
if (status & RHINE_EVENT_SLOW) {
|
|
enable_mask &= ~RHINE_EVENT_SLOW;
|
|
schedule_work(&rp->slow_event_task);
|
|
}
|
|
|
|
if (work_done < budget) {
|
|
napi_complete(napi);
|
|
iowrite16(enable_mask, ioaddr + IntrEnable);
|
|
mmiowb();
|
|
}
|
|
return work_done;
|
|
}
|
|
|
|
static void rhine_hw_init(struct net_device *dev, long pioaddr)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
|
|
/* Reset the chip to erase previous misconfiguration. */
|
|
rhine_chip_reset(dev);
|
|
|
|
/* Rhine-I needs extra time to recuperate before EEPROM reload */
|
|
if (rp->quirks & rqRhineI)
|
|
msleep(5);
|
|
|
|
/* Reload EEPROM controlled bytes cleared by soft reset */
|
|
rhine_reload_eeprom(pioaddr, dev);
|
|
}
|
|
|
|
static const struct net_device_ops rhine_netdev_ops = {
|
|
.ndo_open = rhine_open,
|
|
.ndo_stop = rhine_close,
|
|
.ndo_start_xmit = rhine_start_tx,
|
|
.ndo_get_stats64 = rhine_get_stats64,
|
|
.ndo_set_rx_mode = rhine_set_rx_mode,
|
|
.ndo_change_mtu = eth_change_mtu,
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
.ndo_set_mac_address = eth_mac_addr,
|
|
.ndo_do_ioctl = netdev_ioctl,
|
|
.ndo_tx_timeout = rhine_tx_timeout,
|
|
.ndo_vlan_rx_add_vid = rhine_vlan_rx_add_vid,
|
|
.ndo_vlan_rx_kill_vid = rhine_vlan_rx_kill_vid,
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
.ndo_poll_controller = rhine_poll,
|
|
#endif
|
|
};
|
|
|
|
static int rhine_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
|
|
{
|
|
struct net_device *dev;
|
|
struct rhine_private *rp;
|
|
int i, rc;
|
|
u32 quirks;
|
|
long pioaddr;
|
|
long memaddr;
|
|
void __iomem *ioaddr;
|
|
int io_size, phy_id;
|
|
const char *name;
|
|
#ifdef USE_MMIO
|
|
int bar = 1;
|
|
#else
|
|
int bar = 0;
|
|
#endif
|
|
|
|
/* when built into the kernel, we only print version if device is found */
|
|
#ifndef MODULE
|
|
pr_info_once("%s\n", version);
|
|
#endif
|
|
|
|
io_size = 256;
|
|
phy_id = 0;
|
|
quirks = 0;
|
|
name = "Rhine";
|
|
if (pdev->revision < VTunknown0) {
|
|
quirks = rqRhineI;
|
|
io_size = 128;
|
|
}
|
|
else if (pdev->revision >= VT6102) {
|
|
quirks = rqWOL | rqForceReset;
|
|
if (pdev->revision < VT6105) {
|
|
name = "Rhine II";
|
|
quirks |= rqStatusWBRace; /* Rhine-II exclusive */
|
|
}
|
|
else {
|
|
phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
|
|
if (pdev->revision >= VT6105_B0)
|
|
quirks |= rq6patterns;
|
|
if (pdev->revision < VT6105M)
|
|
name = "Rhine III";
|
|
else
|
|
name = "Rhine III (Management Adapter)";
|
|
}
|
|
}
|
|
|
|
rc = pci_enable_device(pdev);
|
|
if (rc)
|
|
goto err_out;
|
|
|
|
/* this should always be supported */
|
|
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
|
|
if (rc) {
|
|
dev_err(&pdev->dev,
|
|
"32-bit PCI DMA addresses not supported by the card!?\n");
|
|
goto err_out;
|
|
}
|
|
|
|
/* sanity check */
|
|
if ((pci_resource_len(pdev, 0) < io_size) ||
|
|
(pci_resource_len(pdev, 1) < io_size)) {
|
|
rc = -EIO;
|
|
dev_err(&pdev->dev, "Insufficient PCI resources, aborting\n");
|
|
goto err_out;
|
|
}
|
|
|
|
pioaddr = pci_resource_start(pdev, 0);
|
|
memaddr = pci_resource_start(pdev, 1);
|
|
|
|
pci_set_master(pdev);
|
|
|
|
dev = alloc_etherdev(sizeof(struct rhine_private));
|
|
if (!dev) {
|
|
rc = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
SET_NETDEV_DEV(dev, &pdev->dev);
|
|
|
|
rp = netdev_priv(dev);
|
|
rp->dev = dev;
|
|
rp->quirks = quirks;
|
|
rp->pioaddr = pioaddr;
|
|
rp->pdev = pdev;
|
|
rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
|
|
|
|
rc = pci_request_regions(pdev, DRV_NAME);
|
|
if (rc)
|
|
goto err_out_free_netdev;
|
|
|
|
ioaddr = pci_iomap(pdev, bar, io_size);
|
|
if (!ioaddr) {
|
|
rc = -EIO;
|
|
dev_err(&pdev->dev,
|
|
"ioremap failed for device %s, region 0x%X @ 0x%lX\n",
|
|
pci_name(pdev), io_size, memaddr);
|
|
goto err_out_free_res;
|
|
}
|
|
|
|
#ifdef USE_MMIO
|
|
enable_mmio(pioaddr, quirks);
|
|
|
|
/* Check that selected MMIO registers match the PIO ones */
|
|
i = 0;
|
|
while (mmio_verify_registers[i]) {
|
|
int reg = mmio_verify_registers[i++];
|
|
unsigned char a = inb(pioaddr+reg);
|
|
unsigned char b = readb(ioaddr+reg);
|
|
if (a != b) {
|
|
rc = -EIO;
|
|
dev_err(&pdev->dev,
|
|
"MMIO do not match PIO [%02x] (%02x != %02x)\n",
|
|
reg, a, b);
|
|
goto err_out_unmap;
|
|
}
|
|
}
|
|
#endif /* USE_MMIO */
|
|
|
|
rp->base = ioaddr;
|
|
|
|
/* Get chip registers into a sane state */
|
|
rhine_power_init(dev);
|
|
rhine_hw_init(dev, pioaddr);
|
|
|
|
for (i = 0; i < 6; i++)
|
|
dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
|
|
|
|
if (!is_valid_ether_addr(dev->dev_addr)) {
|
|
/* Report it and use a random ethernet address instead */
|
|
netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
|
|
eth_hw_addr_random(dev);
|
|
netdev_info(dev, "Using random MAC address: %pM\n",
|
|
dev->dev_addr);
|
|
}
|
|
|
|
/* For Rhine-I/II, phy_id is loaded from EEPROM */
|
|
if (!phy_id)
|
|
phy_id = ioread8(ioaddr + 0x6C);
|
|
|
|
spin_lock_init(&rp->lock);
|
|
mutex_init(&rp->task_lock);
|
|
INIT_WORK(&rp->reset_task, rhine_reset_task);
|
|
INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
|
|
|
|
rp->mii_if.dev = dev;
|
|
rp->mii_if.mdio_read = mdio_read;
|
|
rp->mii_if.mdio_write = mdio_write;
|
|
rp->mii_if.phy_id_mask = 0x1f;
|
|
rp->mii_if.reg_num_mask = 0x1f;
|
|
|
|
/* The chip-specific entries in the device structure. */
|
|
dev->netdev_ops = &rhine_netdev_ops;
|
|
dev->ethtool_ops = &netdev_ethtool_ops,
|
|
dev->watchdog_timeo = TX_TIMEOUT;
|
|
|
|
netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
|
|
|
|
if (rp->quirks & rqRhineI)
|
|
dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
|
|
|
|
if (pdev->revision >= VT6105M)
|
|
dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
|
|
NETIF_F_HW_VLAN_CTAG_RX |
|
|
NETIF_F_HW_VLAN_CTAG_FILTER;
|
|
|
|
/* dev->name not defined before register_netdev()! */
|
|
rc = register_netdev(dev);
|
|
if (rc)
|
|
goto err_out_unmap;
|
|
|
|
netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n",
|
|
name,
|
|
#ifdef USE_MMIO
|
|
memaddr,
|
|
#else
|
|
(long)ioaddr,
|
|
#endif
|
|
dev->dev_addr, pdev->irq);
|
|
|
|
pci_set_drvdata(pdev, dev);
|
|
|
|
{
|
|
u16 mii_cmd;
|
|
int mii_status = mdio_read(dev, phy_id, 1);
|
|
mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
|
|
mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
|
|
if (mii_status != 0xffff && mii_status != 0x0000) {
|
|
rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
|
|
netdev_info(dev,
|
|
"MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
|
|
phy_id,
|
|
mii_status, rp->mii_if.advertising,
|
|
mdio_read(dev, phy_id, 5));
|
|
|
|
/* set IFF_RUNNING */
|
|
if (mii_status & BMSR_LSTATUS)
|
|
netif_carrier_on(dev);
|
|
else
|
|
netif_carrier_off(dev);
|
|
|
|
}
|
|
}
|
|
rp->mii_if.phy_id = phy_id;
|
|
if (avoid_D3)
|
|
netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
|
|
|
|
return 0;
|
|
|
|
err_out_unmap:
|
|
pci_iounmap(pdev, ioaddr);
|
|
err_out_free_res:
|
|
pci_release_regions(pdev);
|
|
err_out_free_netdev:
|
|
free_netdev(dev);
|
|
err_out:
|
|
return rc;
|
|
}
|
|
|
|
static int alloc_ring(struct net_device* dev)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
void *ring;
|
|
dma_addr_t ring_dma;
|
|
|
|
ring = pci_alloc_consistent(rp->pdev,
|
|
RX_RING_SIZE * sizeof(struct rx_desc) +
|
|
TX_RING_SIZE * sizeof(struct tx_desc),
|
|
&ring_dma);
|
|
if (!ring) {
|
|
netdev_err(dev, "Could not allocate DMA memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
if (rp->quirks & rqRhineI) {
|
|
rp->tx_bufs = pci_alloc_consistent(rp->pdev,
|
|
PKT_BUF_SZ * TX_RING_SIZE,
|
|
&rp->tx_bufs_dma);
|
|
if (rp->tx_bufs == NULL) {
|
|
pci_free_consistent(rp->pdev,
|
|
RX_RING_SIZE * sizeof(struct rx_desc) +
|
|
TX_RING_SIZE * sizeof(struct tx_desc),
|
|
ring, ring_dma);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
rp->rx_ring = ring;
|
|
rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
|
|
rp->rx_ring_dma = ring_dma;
|
|
rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void free_ring(struct net_device* dev)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
|
|
pci_free_consistent(rp->pdev,
|
|
RX_RING_SIZE * sizeof(struct rx_desc) +
|
|
TX_RING_SIZE * sizeof(struct tx_desc),
|
|
rp->rx_ring, rp->rx_ring_dma);
|
|
rp->tx_ring = NULL;
|
|
|
|
if (rp->tx_bufs)
|
|
pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
|
|
rp->tx_bufs, rp->tx_bufs_dma);
|
|
|
|
rp->tx_bufs = NULL;
|
|
|
|
}
|
|
|
|
static void alloc_rbufs(struct net_device *dev)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
dma_addr_t next;
|
|
int i;
|
|
|
|
rp->dirty_rx = rp->cur_rx = 0;
|
|
|
|
rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
|
|
rp->rx_head_desc = &rp->rx_ring[0];
|
|
next = rp->rx_ring_dma;
|
|
|
|
/* Init the ring entries */
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
rp->rx_ring[i].rx_status = 0;
|
|
rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
|
|
next += sizeof(struct rx_desc);
|
|
rp->rx_ring[i].next_desc = cpu_to_le32(next);
|
|
rp->rx_skbuff[i] = NULL;
|
|
}
|
|
/* Mark the last entry as wrapping the ring. */
|
|
rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
|
|
|
|
/* Fill in the Rx buffers. Handle allocation failure gracefully. */
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
|
|
rp->rx_skbuff[i] = skb;
|
|
if (skb == NULL)
|
|
break;
|
|
|
|
rp->rx_skbuff_dma[i] =
|
|
pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
|
|
PCI_DMA_FROMDEVICE);
|
|
if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[i])) {
|
|
rp->rx_skbuff_dma[i] = 0;
|
|
dev_kfree_skb(skb);
|
|
break;
|
|
}
|
|
rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
|
|
rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
|
|
}
|
|
rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
|
|
}
|
|
|
|
static void free_rbufs(struct net_device* dev)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
int i;
|
|
|
|
/* Free all the skbuffs in the Rx queue. */
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
rp->rx_ring[i].rx_status = 0;
|
|
rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
|
|
if (rp->rx_skbuff[i]) {
|
|
pci_unmap_single(rp->pdev,
|
|
rp->rx_skbuff_dma[i],
|
|
rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
|
|
dev_kfree_skb(rp->rx_skbuff[i]);
|
|
}
|
|
rp->rx_skbuff[i] = NULL;
|
|
}
|
|
}
|
|
|
|
static void alloc_tbufs(struct net_device* dev)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
dma_addr_t next;
|
|
int i;
|
|
|
|
rp->dirty_tx = rp->cur_tx = 0;
|
|
next = rp->tx_ring_dma;
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
|
rp->tx_skbuff[i] = NULL;
|
|
rp->tx_ring[i].tx_status = 0;
|
|
rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
|
|
next += sizeof(struct tx_desc);
|
|
rp->tx_ring[i].next_desc = cpu_to_le32(next);
|
|
if (rp->quirks & rqRhineI)
|
|
rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
|
|
}
|
|
rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
|
|
|
|
}
|
|
|
|
static void free_tbufs(struct net_device* dev)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
int i;
|
|
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
|
rp->tx_ring[i].tx_status = 0;
|
|
rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
|
|
rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
|
|
if (rp->tx_skbuff[i]) {
|
|
if (rp->tx_skbuff_dma[i]) {
|
|
pci_unmap_single(rp->pdev,
|
|
rp->tx_skbuff_dma[i],
|
|
rp->tx_skbuff[i]->len,
|
|
PCI_DMA_TODEVICE);
|
|
}
|
|
dev_kfree_skb(rp->tx_skbuff[i]);
|
|
}
|
|
rp->tx_skbuff[i] = NULL;
|
|
rp->tx_buf[i] = NULL;
|
|
}
|
|
}
|
|
|
|
static void rhine_check_media(struct net_device *dev, unsigned int init_media)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
void __iomem *ioaddr = rp->base;
|
|
|
|
mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
|
|
|
|
if (rp->mii_if.full_duplex)
|
|
iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
|
|
ioaddr + ChipCmd1);
|
|
else
|
|
iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
|
|
ioaddr + ChipCmd1);
|
|
|
|
netif_info(rp, link, dev, "force_media %d, carrier %d\n",
|
|
rp->mii_if.force_media, netif_carrier_ok(dev));
|
|
}
|
|
|
|
/* Called after status of force_media possibly changed */
|
|
static void rhine_set_carrier(struct mii_if_info *mii)
|
|
{
|
|
struct net_device *dev = mii->dev;
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
|
|
if (mii->force_media) {
|
|
/* autoneg is off: Link is always assumed to be up */
|
|
if (!netif_carrier_ok(dev))
|
|
netif_carrier_on(dev);
|
|
} else /* Let MMI library update carrier status */
|
|
rhine_check_media(dev, 0);
|
|
|
|
netif_info(rp, link, dev, "force_media %d, carrier %d\n",
|
|
mii->force_media, netif_carrier_ok(dev));
|
|
}
|
|
|
|
/**
|
|
* rhine_set_cam - set CAM multicast filters
|
|
* @ioaddr: register block of this Rhine
|
|
* @idx: multicast CAM index [0..MCAM_SIZE-1]
|
|
* @addr: multicast address (6 bytes)
|
|
*
|
|
* Load addresses into multicast filters.
|
|
*/
|
|
static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
|
|
{
|
|
int i;
|
|
|
|
iowrite8(CAMC_CAMEN, ioaddr + CamCon);
|
|
wmb();
|
|
|
|
/* Paranoid -- idx out of range should never happen */
|
|
idx &= (MCAM_SIZE - 1);
|
|
|
|
iowrite8((u8) idx, ioaddr + CamAddr);
|
|
|
|
for (i = 0; i < 6; i++, addr++)
|
|
iowrite8(*addr, ioaddr + MulticastFilter0 + i);
|
|
udelay(10);
|
|
wmb();
|
|
|
|
iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
|
|
udelay(10);
|
|
|
|
iowrite8(0, ioaddr + CamCon);
|
|
}
|
|
|
|
/**
|
|
* rhine_set_vlan_cam - set CAM VLAN filters
|
|
* @ioaddr: register block of this Rhine
|
|
* @idx: VLAN CAM index [0..VCAM_SIZE-1]
|
|
* @addr: VLAN ID (2 bytes)
|
|
*
|
|
* Load addresses into VLAN filters.
|
|
*/
|
|
static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
|
|
{
|
|
iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
|
|
wmb();
|
|
|
|
/* Paranoid -- idx out of range should never happen */
|
|
idx &= (VCAM_SIZE - 1);
|
|
|
|
iowrite8((u8) idx, ioaddr + CamAddr);
|
|
|
|
iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
|
|
udelay(10);
|
|
wmb();
|
|
|
|
iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
|
|
udelay(10);
|
|
|
|
iowrite8(0, ioaddr + CamCon);
|
|
}
|
|
|
|
/**
|
|
* rhine_set_cam_mask - set multicast CAM mask
|
|
* @ioaddr: register block of this Rhine
|
|
* @mask: multicast CAM mask
|
|
*
|
|
* Mask sets multicast filters active/inactive.
|
|
*/
|
|
static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
|
|
{
|
|
iowrite8(CAMC_CAMEN, ioaddr + CamCon);
|
|
wmb();
|
|
|
|
/* write mask */
|
|
iowrite32(mask, ioaddr + CamMask);
|
|
|
|
/* disable CAMEN */
|
|
iowrite8(0, ioaddr + CamCon);
|
|
}
|
|
|
|
/**
|
|
* rhine_set_vlan_cam_mask - set VLAN CAM mask
|
|
* @ioaddr: register block of this Rhine
|
|
* @mask: VLAN CAM mask
|
|
*
|
|
* Mask sets VLAN filters active/inactive.
|
|
*/
|
|
static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
|
|
{
|
|
iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
|
|
wmb();
|
|
|
|
/* write mask */
|
|
iowrite32(mask, ioaddr + CamMask);
|
|
|
|
/* disable CAMEN */
|
|
iowrite8(0, ioaddr + CamCon);
|
|
}
|
|
|
|
/**
|
|
* rhine_init_cam_filter - initialize CAM filters
|
|
* @dev: network device
|
|
*
|
|
* Initialize (disable) hardware VLAN and multicast support on this
|
|
* Rhine.
|
|
*/
|
|
static void rhine_init_cam_filter(struct net_device *dev)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
void __iomem *ioaddr = rp->base;
|
|
|
|
/* Disable all CAMs */
|
|
rhine_set_vlan_cam_mask(ioaddr, 0);
|
|
rhine_set_cam_mask(ioaddr, 0);
|
|
|
|
/* disable hardware VLAN support */
|
|
BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
|
|
BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
|
|
}
|
|
|
|
/**
|
|
* rhine_update_vcam - update VLAN CAM filters
|
|
* @rp: rhine_private data of this Rhine
|
|
*
|
|
* Update VLAN CAM filters to match configuration change.
|
|
*/
|
|
static void rhine_update_vcam(struct net_device *dev)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
void __iomem *ioaddr = rp->base;
|
|
u16 vid;
|
|
u32 vCAMmask = 0; /* 32 vCAMs (6105M and better) */
|
|
unsigned int i = 0;
|
|
|
|
for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
|
|
rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
|
|
vCAMmask |= 1 << i;
|
|
if (++i >= VCAM_SIZE)
|
|
break;
|
|
}
|
|
rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
|
|
}
|
|
|
|
static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
|
|
spin_lock_bh(&rp->lock);
|
|
set_bit(vid, rp->active_vlans);
|
|
rhine_update_vcam(dev);
|
|
spin_unlock_bh(&rp->lock);
|
|
return 0;
|
|
}
|
|
|
|
static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
|
|
spin_lock_bh(&rp->lock);
|
|
clear_bit(vid, rp->active_vlans);
|
|
rhine_update_vcam(dev);
|
|
spin_unlock_bh(&rp->lock);
|
|
return 0;
|
|
}
|
|
|
|
static void init_registers(struct net_device *dev)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
void __iomem *ioaddr = rp->base;
|
|
int i;
|
|
|
|
for (i = 0; i < 6; i++)
|
|
iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
|
|
|
|
/* Initialize other registers. */
|
|
iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
|
|
/* Configure initial FIFO thresholds. */
|
|
iowrite8(0x20, ioaddr + TxConfig);
|
|
rp->tx_thresh = 0x20;
|
|
rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
|
|
|
|
iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
|
|
iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
|
|
|
|
rhine_set_rx_mode(dev);
|
|
|
|
if (rp->pdev->revision >= VT6105M)
|
|
rhine_init_cam_filter(dev);
|
|
|
|
napi_enable(&rp->napi);
|
|
|
|
iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
|
|
|
|
iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
|
|
ioaddr + ChipCmd);
|
|
rhine_check_media(dev, 1);
|
|
}
|
|
|
|
/* Enable MII link status auto-polling (required for IntrLinkChange) */
|
|
static void rhine_enable_linkmon(struct rhine_private *rp)
|
|
{
|
|
void __iomem *ioaddr = rp->base;
|
|
|
|
iowrite8(0, ioaddr + MIICmd);
|
|
iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
|
|
iowrite8(0x80, ioaddr + MIICmd);
|
|
|
|
rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
|
|
|
|
iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
|
|
}
|
|
|
|
/* Disable MII link status auto-polling (required for MDIO access) */
|
|
static void rhine_disable_linkmon(struct rhine_private *rp)
|
|
{
|
|
void __iomem *ioaddr = rp->base;
|
|
|
|
iowrite8(0, ioaddr + MIICmd);
|
|
|
|
if (rp->quirks & rqRhineI) {
|
|
iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
|
|
|
|
/* Can be called from ISR. Evil. */
|
|
mdelay(1);
|
|
|
|
/* 0x80 must be set immediately before turning it off */
|
|
iowrite8(0x80, ioaddr + MIICmd);
|
|
|
|
rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
|
|
|
|
/* Heh. Now clear 0x80 again. */
|
|
iowrite8(0, ioaddr + MIICmd);
|
|
}
|
|
else
|
|
rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
|
|
}
|
|
|
|
/* Read and write over the MII Management Data I/O (MDIO) interface. */
|
|
|
|
static int mdio_read(struct net_device *dev, int phy_id, int regnum)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
void __iomem *ioaddr = rp->base;
|
|
int result;
|
|
|
|
rhine_disable_linkmon(rp);
|
|
|
|
/* rhine_disable_linkmon already cleared MIICmd */
|
|
iowrite8(phy_id, ioaddr + MIIPhyAddr);
|
|
iowrite8(regnum, ioaddr + MIIRegAddr);
|
|
iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
|
|
rhine_wait_bit_low(rp, MIICmd, 0x40);
|
|
result = ioread16(ioaddr + MIIData);
|
|
|
|
rhine_enable_linkmon(rp);
|
|
return result;
|
|
}
|
|
|
|
static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
void __iomem *ioaddr = rp->base;
|
|
|
|
rhine_disable_linkmon(rp);
|
|
|
|
/* rhine_disable_linkmon already cleared MIICmd */
|
|
iowrite8(phy_id, ioaddr + MIIPhyAddr);
|
|
iowrite8(regnum, ioaddr + MIIRegAddr);
|
|
iowrite16(value, ioaddr + MIIData);
|
|
iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
|
|
rhine_wait_bit_low(rp, MIICmd, 0x20);
|
|
|
|
rhine_enable_linkmon(rp);
|
|
}
|
|
|
|
static void rhine_task_disable(struct rhine_private *rp)
|
|
{
|
|
mutex_lock(&rp->task_lock);
|
|
rp->task_enable = false;
|
|
mutex_unlock(&rp->task_lock);
|
|
|
|
cancel_work_sync(&rp->slow_event_task);
|
|
cancel_work_sync(&rp->reset_task);
|
|
}
|
|
|
|
static void rhine_task_enable(struct rhine_private *rp)
|
|
{
|
|
mutex_lock(&rp->task_lock);
|
|
rp->task_enable = true;
|
|
mutex_unlock(&rp->task_lock);
|
|
}
|
|
|
|
static int rhine_open(struct net_device *dev)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
void __iomem *ioaddr = rp->base;
|
|
int rc;
|
|
|
|
rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name,
|
|
dev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->pdev->irq);
|
|
|
|
rc = alloc_ring(dev);
|
|
if (rc) {
|
|
free_irq(rp->pdev->irq, dev);
|
|
return rc;
|
|
}
|
|
alloc_rbufs(dev);
|
|
alloc_tbufs(dev);
|
|
rhine_chip_reset(dev);
|
|
rhine_task_enable(rp);
|
|
init_registers(dev);
|
|
|
|
netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
|
|
__func__, ioread16(ioaddr + ChipCmd),
|
|
mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
|
|
|
|
netif_start_queue(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rhine_reset_task(struct work_struct *work)
|
|
{
|
|
struct rhine_private *rp = container_of(work, struct rhine_private,
|
|
reset_task);
|
|
struct net_device *dev = rp->dev;
|
|
|
|
mutex_lock(&rp->task_lock);
|
|
|
|
if (!rp->task_enable)
|
|
goto out_unlock;
|
|
|
|
napi_disable(&rp->napi);
|
|
spin_lock_bh(&rp->lock);
|
|
|
|
/* clear all descriptors */
|
|
free_tbufs(dev);
|
|
free_rbufs(dev);
|
|
alloc_tbufs(dev);
|
|
alloc_rbufs(dev);
|
|
|
|
/* Reinitialize the hardware. */
|
|
rhine_chip_reset(dev);
|
|
init_registers(dev);
|
|
|
|
spin_unlock_bh(&rp->lock);
|
|
|
|
dev->trans_start = jiffies; /* prevent tx timeout */
|
|
dev->stats.tx_errors++;
|
|
netif_wake_queue(dev);
|
|
|
|
out_unlock:
|
|
mutex_unlock(&rp->task_lock);
|
|
}
|
|
|
|
static void rhine_tx_timeout(struct net_device *dev)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
void __iomem *ioaddr = rp->base;
|
|
|
|
netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
|
|
ioread16(ioaddr + IntrStatus),
|
|
mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
|
|
|
|
schedule_work(&rp->reset_task);
|
|
}
|
|
|
|
static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
|
|
struct net_device *dev)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
void __iomem *ioaddr = rp->base;
|
|
unsigned entry;
|
|
|
|
/* Caution: the write order is important here, set the field
|
|
with the "ownership" bits last. */
|
|
|
|
/* Calculate the next Tx descriptor entry. */
|
|
entry = rp->cur_tx % TX_RING_SIZE;
|
|
|
|
if (skb_padto(skb, ETH_ZLEN))
|
|
return NETDEV_TX_OK;
|
|
|
|
rp->tx_skbuff[entry] = skb;
|
|
|
|
if ((rp->quirks & rqRhineI) &&
|
|
(((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
|
|
/* Must use alignment buffer. */
|
|
if (skb->len > PKT_BUF_SZ) {
|
|
/* packet too long, drop it */
|
|
dev_kfree_skb(skb);
|
|
rp->tx_skbuff[entry] = NULL;
|
|
dev->stats.tx_dropped++;
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/* Padding is not copied and so must be redone. */
|
|
skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
|
|
if (skb->len < ETH_ZLEN)
|
|
memset(rp->tx_buf[entry] + skb->len, 0,
|
|
ETH_ZLEN - skb->len);
|
|
rp->tx_skbuff_dma[entry] = 0;
|
|
rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
|
|
(rp->tx_buf[entry] -
|
|
rp->tx_bufs));
|
|
} else {
|
|
rp->tx_skbuff_dma[entry] =
|
|
pci_map_single(rp->pdev, skb->data, skb->len,
|
|
PCI_DMA_TODEVICE);
|
|
if (dma_mapping_error(&rp->pdev->dev, rp->tx_skbuff_dma[entry])) {
|
|
dev_kfree_skb(skb);
|
|
rp->tx_skbuff_dma[entry] = 0;
|
|
dev->stats.tx_dropped++;
|
|
return NETDEV_TX_OK;
|
|
}
|
|
rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
|
|
}
|
|
|
|
rp->tx_ring[entry].desc_length =
|
|
cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
|
|
|
|
if (unlikely(vlan_tx_tag_present(skb))) {
|
|
u16 vid_pcp = vlan_tx_tag_get(skb);
|
|
|
|
/* drop CFI/DEI bit, register needs VID and PCP */
|
|
vid_pcp = (vid_pcp & VLAN_VID_MASK) |
|
|
((vid_pcp & VLAN_PRIO_MASK) >> 1);
|
|
rp->tx_ring[entry].tx_status = cpu_to_le32((vid_pcp) << 16);
|
|
/* request tagging */
|
|
rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
|
|
}
|
|
else
|
|
rp->tx_ring[entry].tx_status = 0;
|
|
|
|
/* lock eth irq */
|
|
wmb();
|
|
rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
|
|
wmb();
|
|
|
|
rp->cur_tx++;
|
|
|
|
/* Non-x86 Todo: explicitly flush cache lines here. */
|
|
|
|
if (vlan_tx_tag_present(skb))
|
|
/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
|
|
BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
|
|
|
|
/* Wake the potentially-idle transmit channel */
|
|
iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
|
|
ioaddr + ChipCmd1);
|
|
IOSYNC;
|
|
|
|
if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
|
|
netif_stop_queue(dev);
|
|
|
|
netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
|
|
rp->cur_tx - 1, entry);
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
static void rhine_irq_disable(struct rhine_private *rp)
|
|
{
|
|
iowrite16(0x0000, rp->base + IntrEnable);
|
|
mmiowb();
|
|
}
|
|
|
|
/* The interrupt handler does all of the Rx thread work and cleans up
|
|
after the Tx thread. */
|
|
static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
|
|
{
|
|
struct net_device *dev = dev_instance;
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
u32 status;
|
|
int handled = 0;
|
|
|
|
status = rhine_get_events(rp);
|
|
|
|
netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
|
|
|
|
if (status & RHINE_EVENT) {
|
|
handled = 1;
|
|
|
|
rhine_irq_disable(rp);
|
|
napi_schedule(&rp->napi);
|
|
}
|
|
|
|
if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
|
|
netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
|
|
status);
|
|
}
|
|
|
|
return IRQ_RETVAL(handled);
|
|
}
|
|
|
|
/* This routine is logically part of the interrupt handler, but isolated
|
|
for clarity. */
|
|
static void rhine_tx(struct net_device *dev)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
|
|
|
|
/* find and cleanup dirty tx descriptors */
|
|
while (rp->dirty_tx != rp->cur_tx) {
|
|
txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
|
|
netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
|
|
entry, txstatus);
|
|
if (txstatus & DescOwn)
|
|
break;
|
|
if (txstatus & 0x8000) {
|
|
netif_dbg(rp, tx_done, dev,
|
|
"Transmit error, Tx status %08x\n", txstatus);
|
|
dev->stats.tx_errors++;
|
|
if (txstatus & 0x0400)
|
|
dev->stats.tx_carrier_errors++;
|
|
if (txstatus & 0x0200)
|
|
dev->stats.tx_window_errors++;
|
|
if (txstatus & 0x0100)
|
|
dev->stats.tx_aborted_errors++;
|
|
if (txstatus & 0x0080)
|
|
dev->stats.tx_heartbeat_errors++;
|
|
if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
|
|
(txstatus & 0x0800) || (txstatus & 0x1000)) {
|
|
dev->stats.tx_fifo_errors++;
|
|
rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
|
|
break; /* Keep the skb - we try again */
|
|
}
|
|
/* Transmitter restarted in 'abnormal' handler. */
|
|
} else {
|
|
if (rp->quirks & rqRhineI)
|
|
dev->stats.collisions += (txstatus >> 3) & 0x0F;
|
|
else
|
|
dev->stats.collisions += txstatus & 0x0F;
|
|
netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
|
|
(txstatus >> 3) & 0xF, txstatus & 0xF);
|
|
|
|
u64_stats_update_begin(&rp->tx_stats.syncp);
|
|
rp->tx_stats.bytes += rp->tx_skbuff[entry]->len;
|
|
rp->tx_stats.packets++;
|
|
u64_stats_update_end(&rp->tx_stats.syncp);
|
|
}
|
|
/* Free the original skb. */
|
|
if (rp->tx_skbuff_dma[entry]) {
|
|
pci_unmap_single(rp->pdev,
|
|
rp->tx_skbuff_dma[entry],
|
|
rp->tx_skbuff[entry]->len,
|
|
PCI_DMA_TODEVICE);
|
|
}
|
|
dev_kfree_skb(rp->tx_skbuff[entry]);
|
|
rp->tx_skbuff[entry] = NULL;
|
|
entry = (++rp->dirty_tx) % TX_RING_SIZE;
|
|
}
|
|
if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
|
|
netif_wake_queue(dev);
|
|
}
|
|
|
|
/**
|
|
* rhine_get_vlan_tci - extract TCI from Rx data buffer
|
|
* @skb: pointer to sk_buff
|
|
* @data_size: used data area of the buffer including CRC
|
|
*
|
|
* If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
|
|
* packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
|
|
* aligned following the CRC.
|
|
*/
|
|
static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
|
|
{
|
|
u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
|
|
return be16_to_cpup((__be16 *)trailer);
|
|
}
|
|
|
|
/* Process up to limit frames from receive ring */
|
|
static int rhine_rx(struct net_device *dev, int limit)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
int count;
|
|
int entry = rp->cur_rx % RX_RING_SIZE;
|
|
|
|
netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
|
|
entry, le32_to_cpu(rp->rx_head_desc->rx_status));
|
|
|
|
/* If EOP is set on the next entry, it's a new packet. Send it up. */
|
|
for (count = 0; count < limit; ++count) {
|
|
struct rx_desc *desc = rp->rx_head_desc;
|
|
u32 desc_status = le32_to_cpu(desc->rx_status);
|
|
u32 desc_length = le32_to_cpu(desc->desc_length);
|
|
int data_size = desc_status >> 16;
|
|
|
|
if (desc_status & DescOwn)
|
|
break;
|
|
|
|
netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
|
|
desc_status);
|
|
|
|
if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
|
|
if ((desc_status & RxWholePkt) != RxWholePkt) {
|
|
netdev_warn(dev,
|
|
"Oversized Ethernet frame spanned multiple buffers, "
|
|
"entry %#x length %d status %08x!\n",
|
|
entry, data_size,
|
|
desc_status);
|
|
netdev_warn(dev,
|
|
"Oversized Ethernet frame %p vs %p\n",
|
|
rp->rx_head_desc,
|
|
&rp->rx_ring[entry]);
|
|
dev->stats.rx_length_errors++;
|
|
} else if (desc_status & RxErr) {
|
|
/* There was a error. */
|
|
netif_dbg(rp, rx_err, dev,
|
|
"%s() Rx error %08x\n", __func__,
|
|
desc_status);
|
|
dev->stats.rx_errors++;
|
|
if (desc_status & 0x0030)
|
|
dev->stats.rx_length_errors++;
|
|
if (desc_status & 0x0048)
|
|
dev->stats.rx_fifo_errors++;
|
|
if (desc_status & 0x0004)
|
|
dev->stats.rx_frame_errors++;
|
|
if (desc_status & 0x0002) {
|
|
/* this can also be updated outside the interrupt handler */
|
|
spin_lock(&rp->lock);
|
|
dev->stats.rx_crc_errors++;
|
|
spin_unlock(&rp->lock);
|
|
}
|
|
}
|
|
} else {
|
|
struct sk_buff *skb = NULL;
|
|
/* Length should omit the CRC */
|
|
int pkt_len = data_size - 4;
|
|
u16 vlan_tci = 0;
|
|
|
|
/* Check if the packet is long enough to accept without
|
|
copying to a minimally-sized skbuff. */
|
|
if (pkt_len < rx_copybreak)
|
|
skb = netdev_alloc_skb_ip_align(dev, pkt_len);
|
|
if (skb) {
|
|
pci_dma_sync_single_for_cpu(rp->pdev,
|
|
rp->rx_skbuff_dma[entry],
|
|
rp->rx_buf_sz,
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
skb_copy_to_linear_data(skb,
|
|
rp->rx_skbuff[entry]->data,
|
|
pkt_len);
|
|
skb_put(skb, pkt_len);
|
|
pci_dma_sync_single_for_device(rp->pdev,
|
|
rp->rx_skbuff_dma[entry],
|
|
rp->rx_buf_sz,
|
|
PCI_DMA_FROMDEVICE);
|
|
} else {
|
|
skb = rp->rx_skbuff[entry];
|
|
if (skb == NULL) {
|
|
netdev_err(dev, "Inconsistent Rx descriptor chain\n");
|
|
break;
|
|
}
|
|
rp->rx_skbuff[entry] = NULL;
|
|
skb_put(skb, pkt_len);
|
|
pci_unmap_single(rp->pdev,
|
|
rp->rx_skbuff_dma[entry],
|
|
rp->rx_buf_sz,
|
|
PCI_DMA_FROMDEVICE);
|
|
}
|
|
|
|
if (unlikely(desc_length & DescTag))
|
|
vlan_tci = rhine_get_vlan_tci(skb, data_size);
|
|
|
|
skb->protocol = eth_type_trans(skb, dev);
|
|
|
|
if (unlikely(desc_length & DescTag))
|
|
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
|
|
netif_receive_skb(skb);
|
|
|
|
u64_stats_update_begin(&rp->rx_stats.syncp);
|
|
rp->rx_stats.bytes += pkt_len;
|
|
rp->rx_stats.packets++;
|
|
u64_stats_update_end(&rp->rx_stats.syncp);
|
|
}
|
|
entry = (++rp->cur_rx) % RX_RING_SIZE;
|
|
rp->rx_head_desc = &rp->rx_ring[entry];
|
|
}
|
|
|
|
/* Refill the Rx ring buffers. */
|
|
for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
|
|
struct sk_buff *skb;
|
|
entry = rp->dirty_rx % RX_RING_SIZE;
|
|
if (rp->rx_skbuff[entry] == NULL) {
|
|
skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
|
|
rp->rx_skbuff[entry] = skb;
|
|
if (skb == NULL)
|
|
break; /* Better luck next round. */
|
|
rp->rx_skbuff_dma[entry] =
|
|
pci_map_single(rp->pdev, skb->data,
|
|
rp->rx_buf_sz,
|
|
PCI_DMA_FROMDEVICE);
|
|
if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[entry])) {
|
|
dev_kfree_skb(skb);
|
|
rp->rx_skbuff_dma[entry] = 0;
|
|
break;
|
|
}
|
|
rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
|
|
}
|
|
rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static void rhine_restart_tx(struct net_device *dev) {
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
void __iomem *ioaddr = rp->base;
|
|
int entry = rp->dirty_tx % TX_RING_SIZE;
|
|
u32 intr_status;
|
|
|
|
/*
|
|
* If new errors occurred, we need to sort them out before doing Tx.
|
|
* In that case the ISR will be back here RSN anyway.
|
|
*/
|
|
intr_status = rhine_get_events(rp);
|
|
|
|
if ((intr_status & IntrTxErrSummary) == 0) {
|
|
|
|
/* We know better than the chip where it should continue. */
|
|
iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
|
|
ioaddr + TxRingPtr);
|
|
|
|
iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
|
|
ioaddr + ChipCmd);
|
|
|
|
if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
|
|
/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
|
|
BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
|
|
|
|
iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
|
|
ioaddr + ChipCmd1);
|
|
IOSYNC;
|
|
}
|
|
else {
|
|
/* This should never happen */
|
|
netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
|
|
intr_status);
|
|
}
|
|
|
|
}
|
|
|
|
static void rhine_slow_event_task(struct work_struct *work)
|
|
{
|
|
struct rhine_private *rp =
|
|
container_of(work, struct rhine_private, slow_event_task);
|
|
struct net_device *dev = rp->dev;
|
|
u32 intr_status;
|
|
|
|
mutex_lock(&rp->task_lock);
|
|
|
|
if (!rp->task_enable)
|
|
goto out_unlock;
|
|
|
|
intr_status = rhine_get_events(rp);
|
|
rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
|
|
|
|
if (intr_status & IntrLinkChange)
|
|
rhine_check_media(dev, 0);
|
|
|
|
if (intr_status & IntrPCIErr)
|
|
netif_warn(rp, hw, dev, "PCI error\n");
|
|
|
|
iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable);
|
|
|
|
out_unlock:
|
|
mutex_unlock(&rp->task_lock);
|
|
}
|
|
|
|
static struct rtnl_link_stats64 *
|
|
rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
unsigned int start;
|
|
|
|
spin_lock_bh(&rp->lock);
|
|
rhine_update_rx_crc_and_missed_errord(rp);
|
|
spin_unlock_bh(&rp->lock);
|
|
|
|
netdev_stats_to_stats64(stats, &dev->stats);
|
|
|
|
do {
|
|
start = u64_stats_fetch_begin_bh(&rp->rx_stats.syncp);
|
|
stats->rx_packets = rp->rx_stats.packets;
|
|
stats->rx_bytes = rp->rx_stats.bytes;
|
|
} while (u64_stats_fetch_retry_bh(&rp->rx_stats.syncp, start));
|
|
|
|
do {
|
|
start = u64_stats_fetch_begin_bh(&rp->tx_stats.syncp);
|
|
stats->tx_packets = rp->tx_stats.packets;
|
|
stats->tx_bytes = rp->tx_stats.bytes;
|
|
} while (u64_stats_fetch_retry_bh(&rp->tx_stats.syncp, start));
|
|
|
|
return stats;
|
|
}
|
|
|
|
static void rhine_set_rx_mode(struct net_device *dev)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
void __iomem *ioaddr = rp->base;
|
|
u32 mc_filter[2]; /* Multicast hash filter */
|
|
u8 rx_mode = 0x0C; /* Note: 0x02=accept runt, 0x01=accept errs */
|
|
struct netdev_hw_addr *ha;
|
|
|
|
if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
|
|
rx_mode = 0x1C;
|
|
iowrite32(0xffffffff, ioaddr + MulticastFilter0);
|
|
iowrite32(0xffffffff, ioaddr + MulticastFilter1);
|
|
} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
|
|
(dev->flags & IFF_ALLMULTI)) {
|
|
/* Too many to match, or accept all multicasts. */
|
|
iowrite32(0xffffffff, ioaddr + MulticastFilter0);
|
|
iowrite32(0xffffffff, ioaddr + MulticastFilter1);
|
|
} else if (rp->pdev->revision >= VT6105M) {
|
|
int i = 0;
|
|
u32 mCAMmask = 0; /* 32 mCAMs (6105M and better) */
|
|
netdev_for_each_mc_addr(ha, dev) {
|
|
if (i == MCAM_SIZE)
|
|
break;
|
|
rhine_set_cam(ioaddr, i, ha->addr);
|
|
mCAMmask |= 1 << i;
|
|
i++;
|
|
}
|
|
rhine_set_cam_mask(ioaddr, mCAMmask);
|
|
} else {
|
|
memset(mc_filter, 0, sizeof(mc_filter));
|
|
netdev_for_each_mc_addr(ha, dev) {
|
|
int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
|
|
|
|
mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
|
|
}
|
|
iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
|
|
iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
|
|
}
|
|
/* enable/disable VLAN receive filtering */
|
|
if (rp->pdev->revision >= VT6105M) {
|
|
if (dev->flags & IFF_PROMISC)
|
|
BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
|
|
else
|
|
BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
|
|
}
|
|
BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
|
|
}
|
|
|
|
static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
|
|
strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
|
|
strlcpy(info->version, DRV_VERSION, sizeof(info->version));
|
|
strlcpy(info->bus_info, pci_name(rp->pdev), sizeof(info->bus_info));
|
|
}
|
|
|
|
static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
int rc;
|
|
|
|
mutex_lock(&rp->task_lock);
|
|
rc = mii_ethtool_gset(&rp->mii_if, cmd);
|
|
mutex_unlock(&rp->task_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
int rc;
|
|
|
|
mutex_lock(&rp->task_lock);
|
|
rc = mii_ethtool_sset(&rp->mii_if, cmd);
|
|
rhine_set_carrier(&rp->mii_if);
|
|
mutex_unlock(&rp->task_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int netdev_nway_reset(struct net_device *dev)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
|
|
return mii_nway_restart(&rp->mii_if);
|
|
}
|
|
|
|
static u32 netdev_get_link(struct net_device *dev)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
|
|
return mii_link_ok(&rp->mii_if);
|
|
}
|
|
|
|
static u32 netdev_get_msglevel(struct net_device *dev)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
|
|
return rp->msg_enable;
|
|
}
|
|
|
|
static void netdev_set_msglevel(struct net_device *dev, u32 value)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
|
|
rp->msg_enable = value;
|
|
}
|
|
|
|
static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
|
|
if (!(rp->quirks & rqWOL))
|
|
return;
|
|
|
|
spin_lock_irq(&rp->lock);
|
|
wol->supported = WAKE_PHY | WAKE_MAGIC |
|
|
WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
|
|
wol->wolopts = rp->wolopts;
|
|
spin_unlock_irq(&rp->lock);
|
|
}
|
|
|
|
static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
u32 support = WAKE_PHY | WAKE_MAGIC |
|
|
WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
|
|
|
|
if (!(rp->quirks & rqWOL))
|
|
return -EINVAL;
|
|
|
|
if (wol->wolopts & ~support)
|
|
return -EINVAL;
|
|
|
|
spin_lock_irq(&rp->lock);
|
|
rp->wolopts = wol->wolopts;
|
|
spin_unlock_irq(&rp->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct ethtool_ops netdev_ethtool_ops = {
|
|
.get_drvinfo = netdev_get_drvinfo,
|
|
.get_settings = netdev_get_settings,
|
|
.set_settings = netdev_set_settings,
|
|
.nway_reset = netdev_nway_reset,
|
|
.get_link = netdev_get_link,
|
|
.get_msglevel = netdev_get_msglevel,
|
|
.set_msglevel = netdev_set_msglevel,
|
|
.get_wol = rhine_get_wol,
|
|
.set_wol = rhine_set_wol,
|
|
};
|
|
|
|
static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
int rc;
|
|
|
|
if (!netif_running(dev))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&rp->task_lock);
|
|
rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
|
|
rhine_set_carrier(&rp->mii_if);
|
|
mutex_unlock(&rp->task_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int rhine_close(struct net_device *dev)
|
|
{
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
void __iomem *ioaddr = rp->base;
|
|
|
|
rhine_task_disable(rp);
|
|
napi_disable(&rp->napi);
|
|
netif_stop_queue(dev);
|
|
|
|
netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
|
|
ioread16(ioaddr + ChipCmd));
|
|
|
|
/* Switch to loopback mode to avoid hardware races. */
|
|
iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
|
|
|
|
rhine_irq_disable(rp);
|
|
|
|
/* Stop the chip's Tx and Rx processes. */
|
|
iowrite16(CmdStop, ioaddr + ChipCmd);
|
|
|
|
free_irq(rp->pdev->irq, dev);
|
|
free_rbufs(dev);
|
|
free_tbufs(dev);
|
|
free_ring(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void rhine_remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
|
|
unregister_netdev(dev);
|
|
|
|
pci_iounmap(pdev, rp->base);
|
|
pci_release_regions(pdev);
|
|
|
|
free_netdev(dev);
|
|
pci_disable_device(pdev);
|
|
pci_set_drvdata(pdev, NULL);
|
|
}
|
|
|
|
static void rhine_shutdown (struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
void __iomem *ioaddr = rp->base;
|
|
|
|
if (!(rp->quirks & rqWOL))
|
|
return; /* Nothing to do for non-WOL adapters */
|
|
|
|
rhine_power_init(dev);
|
|
|
|
/* Make sure we use pattern 0, 1 and not 4, 5 */
|
|
if (rp->quirks & rq6patterns)
|
|
iowrite8(0x04, ioaddr + WOLcgClr);
|
|
|
|
spin_lock(&rp->lock);
|
|
|
|
if (rp->wolopts & WAKE_MAGIC) {
|
|
iowrite8(WOLmagic, ioaddr + WOLcrSet);
|
|
/*
|
|
* Turn EEPROM-controlled wake-up back on -- some hardware may
|
|
* not cooperate otherwise.
|
|
*/
|
|
iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
|
|
}
|
|
|
|
if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
|
|
iowrite8(WOLbmcast, ioaddr + WOLcgSet);
|
|
|
|
if (rp->wolopts & WAKE_PHY)
|
|
iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
|
|
|
|
if (rp->wolopts & WAKE_UCAST)
|
|
iowrite8(WOLucast, ioaddr + WOLcrSet);
|
|
|
|
if (rp->wolopts) {
|
|
/* Enable legacy WOL (for old motherboards) */
|
|
iowrite8(0x01, ioaddr + PwcfgSet);
|
|
iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
|
|
}
|
|
|
|
spin_unlock(&rp->lock);
|
|
|
|
if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
|
|
iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
|
|
|
|
pci_wake_from_d3(pdev, true);
|
|
pci_set_power_state(pdev, PCI_D3hot);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int rhine_suspend(struct device *device)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(device);
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
|
|
if (!netif_running(dev))
|
|
return 0;
|
|
|
|
rhine_task_disable(rp);
|
|
rhine_irq_disable(rp);
|
|
napi_disable(&rp->napi);
|
|
|
|
netif_device_detach(dev);
|
|
|
|
rhine_shutdown(pdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rhine_resume(struct device *device)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(device);
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct rhine_private *rp = netdev_priv(dev);
|
|
|
|
if (!netif_running(dev))
|
|
return 0;
|
|
|
|
#ifdef USE_MMIO
|
|
enable_mmio(rp->pioaddr, rp->quirks);
|
|
#endif
|
|
rhine_power_init(dev);
|
|
free_tbufs(dev);
|
|
free_rbufs(dev);
|
|
alloc_tbufs(dev);
|
|
alloc_rbufs(dev);
|
|
rhine_task_enable(rp);
|
|
spin_lock_bh(&rp->lock);
|
|
init_registers(dev);
|
|
spin_unlock_bh(&rp->lock);
|
|
|
|
netif_device_attach(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
|
|
#define RHINE_PM_OPS (&rhine_pm_ops)
|
|
|
|
#else
|
|
|
|
#define RHINE_PM_OPS NULL
|
|
|
|
#endif /* !CONFIG_PM_SLEEP */
|
|
|
|
static struct pci_driver rhine_driver = {
|
|
.name = DRV_NAME,
|
|
.id_table = rhine_pci_tbl,
|
|
.probe = rhine_init_one,
|
|
.remove = rhine_remove_one,
|
|
.shutdown = rhine_shutdown,
|
|
.driver.pm = RHINE_PM_OPS,
|
|
};
|
|
|
|
static struct dmi_system_id rhine_dmi_table[] __initdata = {
|
|
{
|
|
.ident = "EPIA-M",
|
|
.matches = {
|
|
DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
|
|
DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
|
|
},
|
|
},
|
|
{
|
|
.ident = "KV7",
|
|
.matches = {
|
|
DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
|
|
DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
|
|
},
|
|
},
|
|
{ NULL }
|
|
};
|
|
|
|
static int __init rhine_init(void)
|
|
{
|
|
/* when a module, this is printed whether or not devices are found in probe */
|
|
#ifdef MODULE
|
|
pr_info("%s\n", version);
|
|
#endif
|
|
if (dmi_check_system(rhine_dmi_table)) {
|
|
/* these BIOSes fail at PXE boot if chip is in D3 */
|
|
avoid_D3 = true;
|
|
pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
|
|
}
|
|
else if (avoid_D3)
|
|
pr_info("avoid_D3 set\n");
|
|
|
|
return pci_register_driver(&rhine_driver);
|
|
}
|
|
|
|
|
|
static void __exit rhine_cleanup(void)
|
|
{
|
|
pci_unregister_driver(&rhine_driver);
|
|
}
|
|
|
|
|
|
module_init(rhine_init);
|
|
module_exit(rhine_cleanup);
|