2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-17 10:04:14 +08:00
linux-next/fs/crypto/keysetup.c
Eric Biggers 23c688b540 fscrypt: allow unprivileged users to add/remove keys for v2 policies
Allow the FS_IOC_ADD_ENCRYPTION_KEY and FS_IOC_REMOVE_ENCRYPTION_KEY
ioctls to be used by non-root users to add and remove encryption keys
from the filesystem-level crypto keyrings, subject to limitations.

Motivation: while privileged fscrypt key management is sufficient for
some users (e.g. Android and Chromium OS, where a privileged process
manages all keys), the old API by design also allows non-root users to
set up and use encrypted directories, and we don't want to regress on
that.  Especially, we don't want to force users to continue using the
old API, running into the visibility mismatch between files and keyrings
and being unable to "lock" encrypted directories.

Intuitively, the ioctls have to be privileged since they manipulate
filesystem-level state.  However, it's actually safe to make them
unprivileged if we very carefully enforce some specific limitations.

First, each key must be identified by a cryptographic hash so that a
user can't add the wrong key for another user's files.  For v2
encryption policies, we use the key_identifier for this.  v1 policies
don't have this, so managing keys for them remains privileged.

Second, each key a user adds is charged to their quota for the keyrings
service.  Thus, a user can't exhaust memory by adding a huge number of
keys.  By default each non-root user is allowed up to 200 keys; this can
be changed using the existing sysctl 'kernel.keys.maxkeys'.

Third, if multiple users add the same key, we keep track of those users
of the key (of which there remains a single copy), and won't really
remove the key, i.e. "lock" the encrypted files, until all those users
have removed it.  This prevents denial of service attacks that would be
possible under simpler schemes, such allowing the first user who added a
key to remove it -- since that could be a malicious user who has
compromised the key.  Of course, encryption keys should be kept secret,
but the idea is that using encryption should never be *less* secure than
not using encryption, even if your key was compromised.

We tolerate that a user will be unable to really remove a key, i.e.
unable to "lock" their encrypted files, if another user has added the
same key.  But in a sense, this is actually a good thing because it will
avoid providing a false notion of security where a key appears to have
been removed when actually it's still in memory, available to any
attacker who compromises the operating system kernel.

Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:18:50 -07:00

592 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Key setup facility for FS encryption support.
*
* Copyright (C) 2015, Google, Inc.
*
* Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
* Heavily modified since then.
*/
#include <crypto/aes.h>
#include <crypto/sha.h>
#include <crypto/skcipher.h>
#include <linux/key.h>
#include "fscrypt_private.h"
static struct crypto_shash *essiv_hash_tfm;
static struct fscrypt_mode available_modes[] = {
[FSCRYPT_MODE_AES_256_XTS] = {
.friendly_name = "AES-256-XTS",
.cipher_str = "xts(aes)",
.keysize = 64,
.ivsize = 16,
},
[FSCRYPT_MODE_AES_256_CTS] = {
.friendly_name = "AES-256-CTS-CBC",
.cipher_str = "cts(cbc(aes))",
.keysize = 32,
.ivsize = 16,
},
[FSCRYPT_MODE_AES_128_CBC] = {
.friendly_name = "AES-128-CBC",
.cipher_str = "cbc(aes)",
.keysize = 16,
.ivsize = 16,
.needs_essiv = true,
},
[FSCRYPT_MODE_AES_128_CTS] = {
.friendly_name = "AES-128-CTS-CBC",
.cipher_str = "cts(cbc(aes))",
.keysize = 16,
.ivsize = 16,
},
[FSCRYPT_MODE_ADIANTUM] = {
.friendly_name = "Adiantum",
.cipher_str = "adiantum(xchacha12,aes)",
.keysize = 32,
.ivsize = 32,
},
};
static struct fscrypt_mode *
select_encryption_mode(const union fscrypt_policy *policy,
const struct inode *inode)
{
if (S_ISREG(inode->i_mode))
return &available_modes[fscrypt_policy_contents_mode(policy)];
if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
return &available_modes[fscrypt_policy_fnames_mode(policy)];
WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
inode->i_ino, (inode->i_mode & S_IFMT));
return ERR_PTR(-EINVAL);
}
/* Create a symmetric cipher object for the given encryption mode and key */
struct crypto_skcipher *fscrypt_allocate_skcipher(struct fscrypt_mode *mode,
const u8 *raw_key,
const struct inode *inode)
{
struct crypto_skcipher *tfm;
int err;
tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0);
if (IS_ERR(tfm)) {
if (PTR_ERR(tfm) == -ENOENT) {
fscrypt_warn(inode,
"Missing crypto API support for %s (API name: \"%s\")",
mode->friendly_name, mode->cipher_str);
return ERR_PTR(-ENOPKG);
}
fscrypt_err(inode, "Error allocating '%s' transform: %ld",
mode->cipher_str, PTR_ERR(tfm));
return tfm;
}
if (unlikely(!mode->logged_impl_name)) {
/*
* fscrypt performance can vary greatly depending on which
* crypto algorithm implementation is used. Help people debug
* performance problems by logging the ->cra_driver_name the
* first time a mode is used. Note that multiple threads can
* race here, but it doesn't really matter.
*/
mode->logged_impl_name = true;
pr_info("fscrypt: %s using implementation \"%s\"\n",
mode->friendly_name,
crypto_skcipher_alg(tfm)->base.cra_driver_name);
}
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
if (err)
goto err_free_tfm;
return tfm;
err_free_tfm:
crypto_free_skcipher(tfm);
return ERR_PTR(err);
}
static int derive_essiv_salt(const u8 *key, int keysize, u8 *salt)
{
struct crypto_shash *tfm = READ_ONCE(essiv_hash_tfm);
/* init hash transform on demand */
if (unlikely(!tfm)) {
struct crypto_shash *prev_tfm;
tfm = crypto_alloc_shash("sha256", 0, 0);
if (IS_ERR(tfm)) {
if (PTR_ERR(tfm) == -ENOENT) {
fscrypt_warn(NULL,
"Missing crypto API support for SHA-256");
return -ENOPKG;
}
fscrypt_err(NULL,
"Error allocating SHA-256 transform: %ld",
PTR_ERR(tfm));
return PTR_ERR(tfm);
}
prev_tfm = cmpxchg(&essiv_hash_tfm, NULL, tfm);
if (prev_tfm) {
crypto_free_shash(tfm);
tfm = prev_tfm;
}
}
{
SHASH_DESC_ON_STACK(desc, tfm);
desc->tfm = tfm;
return crypto_shash_digest(desc, key, keysize, salt);
}
}
static int init_essiv_generator(struct fscrypt_info *ci, const u8 *raw_key,
int keysize)
{
int err;
struct crypto_cipher *essiv_tfm;
u8 salt[SHA256_DIGEST_SIZE];
if (WARN_ON(ci->ci_mode->ivsize != AES_BLOCK_SIZE))
return -EINVAL;
essiv_tfm = crypto_alloc_cipher("aes", 0, 0);
if (IS_ERR(essiv_tfm))
return PTR_ERR(essiv_tfm);
ci->ci_essiv_tfm = essiv_tfm;
err = derive_essiv_salt(raw_key, keysize, salt);
if (err)
goto out;
/*
* Using SHA256 to derive the salt/key will result in AES-256 being
* used for IV generation. File contents encryption will still use the
* configured keysize (AES-128) nevertheless.
*/
err = crypto_cipher_setkey(essiv_tfm, salt, sizeof(salt));
if (err)
goto out;
out:
memzero_explicit(salt, sizeof(salt));
return err;
}
/* Given the per-file key, set up the file's crypto transform object(s) */
int fscrypt_set_derived_key(struct fscrypt_info *ci, const u8 *derived_key)
{
struct fscrypt_mode *mode = ci->ci_mode;
struct crypto_skcipher *ctfm;
int err;
ctfm = fscrypt_allocate_skcipher(mode, derived_key, ci->ci_inode);
if (IS_ERR(ctfm))
return PTR_ERR(ctfm);
ci->ci_ctfm = ctfm;
if (mode->needs_essiv) {
err = init_essiv_generator(ci, derived_key, mode->keysize);
if (err) {
fscrypt_warn(ci->ci_inode,
"Error initializing ESSIV generator: %d",
err);
return err;
}
}
return 0;
}
static int setup_per_mode_key(struct fscrypt_info *ci,
struct fscrypt_master_key *mk)
{
struct fscrypt_mode *mode = ci->ci_mode;
u8 mode_num = mode - available_modes;
struct crypto_skcipher *tfm, *prev_tfm;
u8 mode_key[FSCRYPT_MAX_KEY_SIZE];
int err;
if (WARN_ON(mode_num >= ARRAY_SIZE(mk->mk_mode_keys)))
return -EINVAL;
/* pairs with cmpxchg() below */
tfm = READ_ONCE(mk->mk_mode_keys[mode_num]);
if (likely(tfm != NULL))
goto done;
BUILD_BUG_ON(sizeof(mode_num) != 1);
err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
HKDF_CONTEXT_PER_MODE_KEY,
&mode_num, sizeof(mode_num),
mode_key, mode->keysize);
if (err)
return err;
tfm = fscrypt_allocate_skcipher(mode, mode_key, ci->ci_inode);
memzero_explicit(mode_key, mode->keysize);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
/* pairs with READ_ONCE() above */
prev_tfm = cmpxchg(&mk->mk_mode_keys[mode_num], NULL, tfm);
if (prev_tfm != NULL) {
crypto_free_skcipher(tfm);
tfm = prev_tfm;
}
done:
ci->ci_ctfm = tfm;
return 0;
}
static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
struct fscrypt_master_key *mk)
{
u8 derived_key[FSCRYPT_MAX_KEY_SIZE];
int err;
if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
/*
* DIRECT_KEY: instead of deriving per-file keys, the per-file
* nonce will be included in all the IVs. But unlike v1
* policies, for v2 policies in this case we don't encrypt with
* the master key directly but rather derive a per-mode key.
* This ensures that the master key is consistently used only
* for HKDF, avoiding key reuse issues.
*/
if (!fscrypt_mode_supports_direct_key(ci->ci_mode)) {
fscrypt_warn(ci->ci_inode,
"Direct key flag not allowed with %s",
ci->ci_mode->friendly_name);
return -EINVAL;
}
return setup_per_mode_key(ci, mk);
}
err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
HKDF_CONTEXT_PER_FILE_KEY,
ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE,
derived_key, ci->ci_mode->keysize);
if (err)
return err;
err = fscrypt_set_derived_key(ci, derived_key);
memzero_explicit(derived_key, ci->ci_mode->keysize);
return err;
}
/*
* Find the master key, then set up the inode's actual encryption key.
*
* If the master key is found in the filesystem-level keyring, then the
* corresponding 'struct key' is returned in *master_key_ret with
* ->mk_secret_sem read-locked. This is needed to ensure that only one task
* links the fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race
* to create an fscrypt_info for the same inode), and to synchronize the master
* key being removed with a new inode starting to use it.
*/
static int setup_file_encryption_key(struct fscrypt_info *ci,
struct key **master_key_ret)
{
struct key *key;
struct fscrypt_master_key *mk = NULL;
struct fscrypt_key_specifier mk_spec;
int err;
switch (ci->ci_policy.version) {
case FSCRYPT_POLICY_V1:
mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR;
memcpy(mk_spec.u.descriptor,
ci->ci_policy.v1.master_key_descriptor,
FSCRYPT_KEY_DESCRIPTOR_SIZE);
break;
case FSCRYPT_POLICY_V2:
mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
memcpy(mk_spec.u.identifier,
ci->ci_policy.v2.master_key_identifier,
FSCRYPT_KEY_IDENTIFIER_SIZE);
break;
default:
WARN_ON(1);
return -EINVAL;
}
key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec);
if (IS_ERR(key)) {
if (key != ERR_PTR(-ENOKEY) ||
ci->ci_policy.version != FSCRYPT_POLICY_V1)
return PTR_ERR(key);
/*
* As a legacy fallback for v1 policies, search for the key in
* the current task's subscribed keyrings too. Don't move this
* to before the search of ->s_master_keys, since users
* shouldn't be able to override filesystem-level keys.
*/
return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
}
mk = key->payload.data[0];
down_read(&mk->mk_secret_sem);
/* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */
if (!is_master_key_secret_present(&mk->mk_secret)) {
err = -ENOKEY;
goto out_release_key;
}
/*
* Require that the master key be at least as long as the derived key.
* Otherwise, the derived key cannot possibly contain as much entropy as
* that required by the encryption mode it will be used for. For v1
* policies it's also required for the KDF to work at all.
*/
if (mk->mk_secret.size < ci->ci_mode->keysize) {
fscrypt_warn(NULL,
"key with %s %*phN is too short (got %u bytes, need %u+ bytes)",
master_key_spec_type(&mk_spec),
master_key_spec_len(&mk_spec), (u8 *)&mk_spec.u,
mk->mk_secret.size, ci->ci_mode->keysize);
err = -ENOKEY;
goto out_release_key;
}
switch (ci->ci_policy.version) {
case FSCRYPT_POLICY_V1:
err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw);
break;
case FSCRYPT_POLICY_V2:
err = fscrypt_setup_v2_file_key(ci, mk);
break;
default:
WARN_ON(1);
err = -EINVAL;
break;
}
if (err)
goto out_release_key;
*master_key_ret = key;
return 0;
out_release_key:
up_read(&mk->mk_secret_sem);
key_put(key);
return err;
}
static void put_crypt_info(struct fscrypt_info *ci)
{
struct key *key;
if (!ci)
return;
if (ci->ci_direct_key) {
fscrypt_put_direct_key(ci->ci_direct_key);
} else if ((ci->ci_ctfm != NULL || ci->ci_essiv_tfm != NULL) &&
!fscrypt_is_direct_key_policy(&ci->ci_policy)) {
crypto_free_skcipher(ci->ci_ctfm);
crypto_free_cipher(ci->ci_essiv_tfm);
}
key = ci->ci_master_key;
if (key) {
struct fscrypt_master_key *mk = key->payload.data[0];
/*
* Remove this inode from the list of inodes that were unlocked
* with the master key.
*
* In addition, if we're removing the last inode from a key that
* already had its secret removed, invalidate the key so that it
* gets removed from ->s_master_keys.
*/
spin_lock(&mk->mk_decrypted_inodes_lock);
list_del(&ci->ci_master_key_link);
spin_unlock(&mk->mk_decrypted_inodes_lock);
if (refcount_dec_and_test(&mk->mk_refcount))
key_invalidate(key);
key_put(key);
}
kmem_cache_free(fscrypt_info_cachep, ci);
}
int fscrypt_get_encryption_info(struct inode *inode)
{
struct fscrypt_info *crypt_info;
union fscrypt_context ctx;
struct fscrypt_mode *mode;
struct key *master_key = NULL;
int res;
if (fscrypt_has_encryption_key(inode))
return 0;
res = fscrypt_initialize(inode->i_sb->s_cop->flags);
if (res)
return res;
res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
if (res < 0) {
if (!fscrypt_dummy_context_enabled(inode) ||
IS_ENCRYPTED(inode)) {
fscrypt_warn(inode,
"Error %d getting encryption context",
res);
return res;
}
/* Fake up a context for an unencrypted directory */
memset(&ctx, 0, sizeof(ctx));
ctx.version = FSCRYPT_CONTEXT_V1;
ctx.v1.contents_encryption_mode = FSCRYPT_MODE_AES_256_XTS;
ctx.v1.filenames_encryption_mode = FSCRYPT_MODE_AES_256_CTS;
memset(ctx.v1.master_key_descriptor, 0x42,
FSCRYPT_KEY_DESCRIPTOR_SIZE);
res = sizeof(ctx.v1);
}
crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_NOFS);
if (!crypt_info)
return -ENOMEM;
crypt_info->ci_inode = inode;
res = fscrypt_policy_from_context(&crypt_info->ci_policy, &ctx, res);
if (res) {
fscrypt_warn(inode,
"Unrecognized or corrupt encryption context");
goto out;
}
switch (ctx.version) {
case FSCRYPT_CONTEXT_V1:
memcpy(crypt_info->ci_nonce, ctx.v1.nonce,
FS_KEY_DERIVATION_NONCE_SIZE);
break;
case FSCRYPT_CONTEXT_V2:
memcpy(crypt_info->ci_nonce, ctx.v2.nonce,
FS_KEY_DERIVATION_NONCE_SIZE);
break;
default:
WARN_ON(1);
res = -EINVAL;
goto out;
}
if (!fscrypt_supported_policy(&crypt_info->ci_policy, inode)) {
res = -EINVAL;
goto out;
}
mode = select_encryption_mode(&crypt_info->ci_policy, inode);
if (IS_ERR(mode)) {
res = PTR_ERR(mode);
goto out;
}
WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
crypt_info->ci_mode = mode;
res = setup_file_encryption_key(crypt_info, &master_key);
if (res)
goto out;
if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) {
if (master_key) {
struct fscrypt_master_key *mk =
master_key->payload.data[0];
refcount_inc(&mk->mk_refcount);
crypt_info->ci_master_key = key_get(master_key);
spin_lock(&mk->mk_decrypted_inodes_lock);
list_add(&crypt_info->ci_master_key_link,
&mk->mk_decrypted_inodes);
spin_unlock(&mk->mk_decrypted_inodes_lock);
}
crypt_info = NULL;
}
res = 0;
out:
if (master_key) {
struct fscrypt_master_key *mk = master_key->payload.data[0];
up_read(&mk->mk_secret_sem);
key_put(master_key);
}
if (res == -ENOKEY)
res = 0;
put_crypt_info(crypt_info);
return res;
}
EXPORT_SYMBOL(fscrypt_get_encryption_info);
/**
* fscrypt_put_encryption_info - free most of an inode's fscrypt data
*
* Free the inode's fscrypt_info. Filesystems must call this when the inode is
* being evicted. An RCU grace period need not have elapsed yet.
*/
void fscrypt_put_encryption_info(struct inode *inode)
{
put_crypt_info(inode->i_crypt_info);
inode->i_crypt_info = NULL;
}
EXPORT_SYMBOL(fscrypt_put_encryption_info);
/**
* fscrypt_free_inode - free an inode's fscrypt data requiring RCU delay
*
* Free the inode's cached decrypted symlink target, if any. Filesystems must
* call this after an RCU grace period, just before they free the inode.
*/
void fscrypt_free_inode(struct inode *inode)
{
if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) {
kfree(inode->i_link);
inode->i_link = NULL;
}
}
EXPORT_SYMBOL(fscrypt_free_inode);
/**
* fscrypt_drop_inode - check whether the inode's master key has been removed
*
* Filesystems supporting fscrypt must call this from their ->drop_inode()
* method so that encrypted inodes are evicted as soon as they're no longer in
* use and their master key has been removed.
*
* Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
*/
int fscrypt_drop_inode(struct inode *inode)
{
const struct fscrypt_info *ci = READ_ONCE(inode->i_crypt_info);
const struct fscrypt_master_key *mk;
/*
* If ci is NULL, then the inode doesn't have an encryption key set up
* so it's irrelevant. If ci_master_key is NULL, then the master key
* was provided via the legacy mechanism of the process-subscribed
* keyrings, so we don't know whether it's been removed or not.
*/
if (!ci || !ci->ci_master_key)
return 0;
mk = ci->ci_master_key->payload.data[0];
/*
* Note: since we aren't holding ->mk_secret_sem, the result here can
* immediately become outdated. But there's no correctness problem with
* unnecessarily evicting. Nor is there a correctness problem with not
* evicting while iput() is racing with the key being removed, since
* then the thread removing the key will either evict the inode itself
* or will correctly detect that it wasn't evicted due to the race.
*/
return !is_master_key_secret_present(&mk->mk_secret);
}
EXPORT_SYMBOL_GPL(fscrypt_drop_inode);