2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-09 22:24:04 +08:00
linux-next/drivers/clk/bcm/clk-bcm2835.c
Eric Anholt 41691b8862 clk: bcm2835: Add support for programming the audio domain clocks
This adds support for enabling, disabling, and setting the rate of the
audio domain clocks.  It will be necessary for setting the pixel clock
for HDMI in the VC4 driver and let us write a cpufreq driver.  It will
also improve compatibility with user changes to the firmware's
config.txt, since our previous fixed clocks are unaware of it.

The firmware also has support for configuring the clocks through the
mailbox channel, but the pixel clock setup by the firmware doesn't
work, and it's Raspberry Pi specific anyway.  The only conflicts we
should have with the firmware would be if we made firmware calls that
result in clock management (like opening firmware V3D or ISP access,
which we don't support in upstream), or on hardware over-thermal or
under-voltage (when the firmware would rewrite PLLB to take the ARM
out of overclock).  If that happens, our cached .recalc_rate() results
would be incorrect, but that's no worse than our current state where
we used fixed clocks.

The existing fixed clocks in the code are left in place to provide
backwards compatibility with old device tree files.

Signed-off-by: Eric Anholt <eric@anholt.net>
Tested-by: Martin Sperl <kernel@martin.sperl.org>
Acked-by: Stephen Warren <swarren@wwwdotorg.org>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
2015-10-12 11:32:02 -07:00

1576 lines
42 KiB
C

/*
* Copyright (C) 2010,2015 Broadcom
* Copyright (C) 2012 Stephen Warren
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
*
* The clock tree on the 2835 has several levels. There's a root
* oscillator running at 19.2Mhz. After the oscillator there are 5
* PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
* and "HDMI displays". Those 5 PLLs each can divide their output to
* produce up to 4 channels. Finally, there is the level of clocks to
* be consumed by other hardware components (like "H264" or "HDMI
* state machine"), which divide off of some subset of the PLL
* channels.
*
* All of the clocks in the tree are exposed in the DT, because the DT
* may want to make assignments of the final layer of clocks to the
* PLL channels, and some components of the hardware will actually
* skip layers of the tree (for example, the pixel clock comes
* directly from the PLLH PIX channel without using a CM_*CTL clock
* generator).
*/
#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/clk/bcm2835.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <dt-bindings/clock/bcm2835.h>
#define CM_PASSWORD 0x5a000000
#define CM_GNRICCTL 0x000
#define CM_GNRICDIV 0x004
# define CM_DIV_FRAC_BITS 12
#define CM_VPUCTL 0x008
#define CM_VPUDIV 0x00c
#define CM_SYSCTL 0x010
#define CM_SYSDIV 0x014
#define CM_PERIACTL 0x018
#define CM_PERIADIV 0x01c
#define CM_PERIICTL 0x020
#define CM_PERIIDIV 0x024
#define CM_H264CTL 0x028
#define CM_H264DIV 0x02c
#define CM_ISPCTL 0x030
#define CM_ISPDIV 0x034
#define CM_V3DCTL 0x038
#define CM_V3DDIV 0x03c
#define CM_CAM0CTL 0x040
#define CM_CAM0DIV 0x044
#define CM_CAM1CTL 0x048
#define CM_CAM1DIV 0x04c
#define CM_CCP2CTL 0x050
#define CM_CCP2DIV 0x054
#define CM_DSI0ECTL 0x058
#define CM_DSI0EDIV 0x05c
#define CM_DSI0PCTL 0x060
#define CM_DSI0PDIV 0x064
#define CM_DPICTL 0x068
#define CM_DPIDIV 0x06c
#define CM_GP0CTL 0x070
#define CM_GP0DIV 0x074
#define CM_GP1CTL 0x078
#define CM_GP1DIV 0x07c
#define CM_GP2CTL 0x080
#define CM_GP2DIV 0x084
#define CM_HSMCTL 0x088
#define CM_HSMDIV 0x08c
#define CM_OTPCTL 0x090
#define CM_OTPDIV 0x094
#define CM_PWMCTL 0x0a0
#define CM_PWMDIV 0x0a4
#define CM_SMICTL 0x0b0
#define CM_SMIDIV 0x0b4
#define CM_TSENSCTL 0x0e0
#define CM_TSENSDIV 0x0e4
#define CM_TIMERCTL 0x0e8
#define CM_TIMERDIV 0x0ec
#define CM_UARTCTL 0x0f0
#define CM_UARTDIV 0x0f4
#define CM_VECCTL 0x0f8
#define CM_VECDIV 0x0fc
#define CM_PULSECTL 0x190
#define CM_PULSEDIV 0x194
#define CM_SDCCTL 0x1a8
#define CM_SDCDIV 0x1ac
#define CM_ARMCTL 0x1b0
#define CM_EMMCCTL 0x1c0
#define CM_EMMCDIV 0x1c4
/* General bits for the CM_*CTL regs */
# define CM_ENABLE BIT(4)
# define CM_KILL BIT(5)
# define CM_GATE_BIT 6
# define CM_GATE BIT(CM_GATE_BIT)
# define CM_BUSY BIT(7)
# define CM_BUSYD BIT(8)
# define CM_SRC_SHIFT 0
# define CM_SRC_BITS 4
# define CM_SRC_MASK 0xf
# define CM_SRC_GND 0
# define CM_SRC_OSC 1
# define CM_SRC_TESTDEBUG0 2
# define CM_SRC_TESTDEBUG1 3
# define CM_SRC_PLLA_CORE 4
# define CM_SRC_PLLA_PER 4
# define CM_SRC_PLLC_CORE0 5
# define CM_SRC_PLLC_PER 5
# define CM_SRC_PLLC_CORE1 8
# define CM_SRC_PLLD_CORE 6
# define CM_SRC_PLLD_PER 6
# define CM_SRC_PLLH_AUX 7
# define CM_SRC_PLLC_CORE1 8
# define CM_SRC_PLLC_CORE2 9
#define CM_OSCCOUNT 0x100
#define CM_PLLA 0x104
# define CM_PLL_ANARST BIT(8)
# define CM_PLLA_HOLDPER BIT(7)
# define CM_PLLA_LOADPER BIT(6)
# define CM_PLLA_HOLDCORE BIT(5)
# define CM_PLLA_LOADCORE BIT(4)
# define CM_PLLA_HOLDCCP2 BIT(3)
# define CM_PLLA_LOADCCP2 BIT(2)
# define CM_PLLA_HOLDDSI0 BIT(1)
# define CM_PLLA_LOADDSI0 BIT(0)
#define CM_PLLC 0x108
# define CM_PLLC_HOLDPER BIT(7)
# define CM_PLLC_LOADPER BIT(6)
# define CM_PLLC_HOLDCORE2 BIT(5)
# define CM_PLLC_LOADCORE2 BIT(4)
# define CM_PLLC_HOLDCORE1 BIT(3)
# define CM_PLLC_LOADCORE1 BIT(2)
# define CM_PLLC_HOLDCORE0 BIT(1)
# define CM_PLLC_LOADCORE0 BIT(0)
#define CM_PLLD 0x10c
# define CM_PLLD_HOLDPER BIT(7)
# define CM_PLLD_LOADPER BIT(6)
# define CM_PLLD_HOLDCORE BIT(5)
# define CM_PLLD_LOADCORE BIT(4)
# define CM_PLLD_HOLDDSI1 BIT(3)
# define CM_PLLD_LOADDSI1 BIT(2)
# define CM_PLLD_HOLDDSI0 BIT(1)
# define CM_PLLD_LOADDSI0 BIT(0)
#define CM_PLLH 0x110
# define CM_PLLH_LOADRCAL BIT(2)
# define CM_PLLH_LOADAUX BIT(1)
# define CM_PLLH_LOADPIX BIT(0)
#define CM_LOCK 0x114
# define CM_LOCK_FLOCKH BIT(12)
# define CM_LOCK_FLOCKD BIT(11)
# define CM_LOCK_FLOCKC BIT(10)
# define CM_LOCK_FLOCKB BIT(9)
# define CM_LOCK_FLOCKA BIT(8)
#define CM_EVENT 0x118
#define CM_DSI1ECTL 0x158
#define CM_DSI1EDIV 0x15c
#define CM_DSI1PCTL 0x160
#define CM_DSI1PDIV 0x164
#define CM_DFTCTL 0x168
#define CM_DFTDIV 0x16c
#define CM_PLLB 0x170
# define CM_PLLB_HOLDARM BIT(1)
# define CM_PLLB_LOADARM BIT(0)
#define A2W_PLLA_CTRL 0x1100
#define A2W_PLLC_CTRL 0x1120
#define A2W_PLLD_CTRL 0x1140
#define A2W_PLLH_CTRL 0x1160
#define A2W_PLLB_CTRL 0x11e0
# define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
# define A2W_PLL_CTRL_PWRDN BIT(16)
# define A2W_PLL_CTRL_PDIV_MASK 0x000007000
# define A2W_PLL_CTRL_PDIV_SHIFT 12
# define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
# define A2W_PLL_CTRL_NDIV_SHIFT 0
#define A2W_PLLA_ANA0 0x1010
#define A2W_PLLC_ANA0 0x1030
#define A2W_PLLD_ANA0 0x1050
#define A2W_PLLH_ANA0 0x1070
#define A2W_PLLB_ANA0 0x10f0
#define A2W_PLL_KA_SHIFT 7
#define A2W_PLL_KA_MASK GENMASK(9, 7)
#define A2W_PLL_KI_SHIFT 19
#define A2W_PLL_KI_MASK GENMASK(21, 19)
#define A2W_PLL_KP_SHIFT 15
#define A2W_PLL_KP_MASK GENMASK(18, 15)
#define A2W_PLLH_KA_SHIFT 19
#define A2W_PLLH_KA_MASK GENMASK(21, 19)
#define A2W_PLLH_KI_LOW_SHIFT 22
#define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
#define A2W_PLLH_KI_HIGH_SHIFT 0
#define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
#define A2W_PLLH_KP_SHIFT 1
#define A2W_PLLH_KP_MASK GENMASK(4, 1)
#define A2W_XOSC_CTRL 0x1190
# define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
# define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
# define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
# define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
# define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
# define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
# define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
# define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
#define A2W_PLLA_FRAC 0x1200
#define A2W_PLLC_FRAC 0x1220
#define A2W_PLLD_FRAC 0x1240
#define A2W_PLLH_FRAC 0x1260
#define A2W_PLLB_FRAC 0x12e0
# define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
# define A2W_PLL_FRAC_BITS 20
#define A2W_PLL_CHANNEL_DISABLE BIT(8)
#define A2W_PLL_DIV_BITS 8
#define A2W_PLL_DIV_SHIFT 0
#define A2W_PLLA_DSI0 0x1300
#define A2W_PLLA_CORE 0x1400
#define A2W_PLLA_PER 0x1500
#define A2W_PLLA_CCP2 0x1600
#define A2W_PLLC_CORE2 0x1320
#define A2W_PLLC_CORE1 0x1420
#define A2W_PLLC_PER 0x1520
#define A2W_PLLC_CORE0 0x1620
#define A2W_PLLD_DSI0 0x1340
#define A2W_PLLD_CORE 0x1440
#define A2W_PLLD_PER 0x1540
#define A2W_PLLD_DSI1 0x1640
#define A2W_PLLH_AUX 0x1360
#define A2W_PLLH_RCAL 0x1460
#define A2W_PLLH_PIX 0x1560
#define A2W_PLLH_STS 0x1660
#define A2W_PLLH_CTRLR 0x1960
#define A2W_PLLH_FRACR 0x1a60
#define A2W_PLLH_AUXR 0x1b60
#define A2W_PLLH_RCALR 0x1c60
#define A2W_PLLH_PIXR 0x1d60
#define A2W_PLLH_STSR 0x1e60
#define A2W_PLLB_ARM 0x13e0
#define A2W_PLLB_SP0 0x14e0
#define A2W_PLLB_SP1 0x15e0
#define A2W_PLLB_SP2 0x16e0
#define LOCK_TIMEOUT_NS 100000000
#define BCM2835_MAX_FB_RATE 1750000000u
struct bcm2835_cprman {
struct device *dev;
void __iomem *regs;
spinlock_t regs_lock;
const char *osc_name;
struct clk_onecell_data onecell;
struct clk *clks[BCM2835_CLOCK_COUNT];
};
static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
{
writel(CM_PASSWORD | val, cprman->regs + reg);
}
static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
{
return readl(cprman->regs + reg);
}
/*
* These are fixed clocks. They're probably not all root clocks and it may
* be possible to turn them on and off but until this is mapped out better
* it's the only way they can be used.
*/
void __init bcm2835_init_clocks(void)
{
struct clk *clk;
int ret;
clk = clk_register_fixed_rate(NULL, "apb_pclk", NULL, CLK_IS_ROOT,
126000000);
if (IS_ERR(clk))
pr_err("apb_pclk not registered\n");
clk = clk_register_fixed_rate(NULL, "uart0_pclk", NULL, CLK_IS_ROOT,
3000000);
if (IS_ERR(clk))
pr_err("uart0_pclk not registered\n");
ret = clk_register_clkdev(clk, NULL, "20201000.uart");
if (ret)
pr_err("uart0_pclk alias not registered\n");
clk = clk_register_fixed_rate(NULL, "uart1_pclk", NULL, CLK_IS_ROOT,
125000000);
if (IS_ERR(clk))
pr_err("uart1_pclk not registered\n");
ret = clk_register_clkdev(clk, NULL, "20215000.uart");
if (ret)
pr_err("uart1_pclk alias not registered\n");
}
struct bcm2835_pll_data {
const char *name;
u32 cm_ctrl_reg;
u32 a2w_ctrl_reg;
u32 frac_reg;
u32 ana_reg_base;
u32 reference_enable_mask;
/* Bit in CM_LOCK to indicate when the PLL has locked. */
u32 lock_mask;
const struct bcm2835_pll_ana_bits *ana;
unsigned long min_rate;
unsigned long max_rate;
/*
* Highest rate for the VCO before we have to use the
* pre-divide-by-2.
*/
unsigned long max_fb_rate;
};
struct bcm2835_pll_ana_bits {
u32 mask0;
u32 set0;
u32 mask1;
u32 set1;
u32 mask3;
u32 set3;
u32 fb_prediv_mask;
};
static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
.mask0 = 0,
.set0 = 0,
.mask1 = ~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
.mask3 = ~A2W_PLL_KA_MASK,
.set3 = (2 << A2W_PLL_KA_SHIFT),
.fb_prediv_mask = BIT(14),
};
static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
.mask0 = ~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
.mask1 = ~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
.set1 = (6 << A2W_PLLH_KP_SHIFT),
.mask3 = 0,
.set3 = 0,
.fb_prediv_mask = BIT(11),
};
/*
* PLLA is the auxiliary PLL, used to drive the CCP2 (Compact Camera
* Port 2) transmitter clock.
*
* It is in the PX LDO power domain, which is on when the AUDIO domain
* is on.
*/
static const struct bcm2835_pll_data bcm2835_plla_data = {
.name = "plla",
.cm_ctrl_reg = CM_PLLA,
.a2w_ctrl_reg = A2W_PLLA_CTRL,
.frac_reg = A2W_PLLA_FRAC,
.ana_reg_base = A2W_PLLA_ANA0,
.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
.lock_mask = CM_LOCK_FLOCKA,
.ana = &bcm2835_ana_default,
.min_rate = 600000000u,
.max_rate = 2400000000u,
.max_fb_rate = BCM2835_MAX_FB_RATE,
};
/* PLLB is used for the ARM's clock. */
static const struct bcm2835_pll_data bcm2835_pllb_data = {
.name = "pllb",
.cm_ctrl_reg = CM_PLLB,
.a2w_ctrl_reg = A2W_PLLB_CTRL,
.frac_reg = A2W_PLLB_FRAC,
.ana_reg_base = A2W_PLLB_ANA0,
.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
.lock_mask = CM_LOCK_FLOCKB,
.ana = &bcm2835_ana_default,
.min_rate = 600000000u,
.max_rate = 3000000000u,
.max_fb_rate = BCM2835_MAX_FB_RATE,
};
/*
* PLLC is the core PLL, used to drive the core VPU clock.
*
* It is in the PX LDO power domain, which is on when the AUDIO domain
* is on.
*/
static const struct bcm2835_pll_data bcm2835_pllc_data = {
.name = "pllc",
.cm_ctrl_reg = CM_PLLC,
.a2w_ctrl_reg = A2W_PLLC_CTRL,
.frac_reg = A2W_PLLC_FRAC,
.ana_reg_base = A2W_PLLC_ANA0,
.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
.lock_mask = CM_LOCK_FLOCKC,
.ana = &bcm2835_ana_default,
.min_rate = 600000000u,
.max_rate = 3000000000u,
.max_fb_rate = BCM2835_MAX_FB_RATE,
};
/*
* PLLD is the display PLL, used to drive DSI display panels.
*
* It is in the PX LDO power domain, which is on when the AUDIO domain
* is on.
*/
static const struct bcm2835_pll_data bcm2835_plld_data = {
.name = "plld",
.cm_ctrl_reg = CM_PLLD,
.a2w_ctrl_reg = A2W_PLLD_CTRL,
.frac_reg = A2W_PLLD_FRAC,
.ana_reg_base = A2W_PLLD_ANA0,
.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
.lock_mask = CM_LOCK_FLOCKD,
.ana = &bcm2835_ana_default,
.min_rate = 600000000u,
.max_rate = 2400000000u,
.max_fb_rate = BCM2835_MAX_FB_RATE,
};
/*
* PLLH is used to supply the pixel clock or the AUX clock for the TV
* encoder.
*
* It is in the HDMI power domain.
*/
static const struct bcm2835_pll_data bcm2835_pllh_data = {
"pllh",
.cm_ctrl_reg = CM_PLLH,
.a2w_ctrl_reg = A2W_PLLH_CTRL,
.frac_reg = A2W_PLLH_FRAC,
.ana_reg_base = A2W_PLLH_ANA0,
.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
.lock_mask = CM_LOCK_FLOCKH,
.ana = &bcm2835_ana_pllh,
.min_rate = 600000000u,
.max_rate = 3000000000u,
.max_fb_rate = BCM2835_MAX_FB_RATE,
};
struct bcm2835_pll_divider_data {
const char *name;
const struct bcm2835_pll_data *source_pll;
u32 cm_reg;
u32 a2w_reg;
u32 load_mask;
u32 hold_mask;
u32 fixed_divider;
};
static const struct bcm2835_pll_divider_data bcm2835_plla_core_data = {
.name = "plla_core",
.source_pll = &bcm2835_plla_data,
.cm_reg = CM_PLLA,
.a2w_reg = A2W_PLLA_CORE,
.load_mask = CM_PLLA_LOADCORE,
.hold_mask = CM_PLLA_HOLDCORE,
.fixed_divider = 1,
};
static const struct bcm2835_pll_divider_data bcm2835_plla_per_data = {
.name = "plla_per",
.source_pll = &bcm2835_plla_data,
.cm_reg = CM_PLLA,
.a2w_reg = A2W_PLLA_PER,
.load_mask = CM_PLLA_LOADPER,
.hold_mask = CM_PLLA_HOLDPER,
.fixed_divider = 1,
};
static const struct bcm2835_pll_divider_data bcm2835_pllb_arm_data = {
.name = "pllb_arm",
.source_pll = &bcm2835_pllb_data,
.cm_reg = CM_PLLB,
.a2w_reg = A2W_PLLB_ARM,
.load_mask = CM_PLLB_LOADARM,
.hold_mask = CM_PLLB_HOLDARM,
.fixed_divider = 1,
};
static const struct bcm2835_pll_divider_data bcm2835_pllc_core0_data = {
.name = "pllc_core0",
.source_pll = &bcm2835_pllc_data,
.cm_reg = CM_PLLC,
.a2w_reg = A2W_PLLC_CORE0,
.load_mask = CM_PLLC_LOADCORE0,
.hold_mask = CM_PLLC_HOLDCORE0,
.fixed_divider = 1,
};
static const struct bcm2835_pll_divider_data bcm2835_pllc_core1_data = {
.name = "pllc_core1", .source_pll = &bcm2835_pllc_data,
.cm_reg = CM_PLLC, A2W_PLLC_CORE1,
.load_mask = CM_PLLC_LOADCORE1,
.hold_mask = CM_PLLC_HOLDCORE1,
.fixed_divider = 1,
};
static const struct bcm2835_pll_divider_data bcm2835_pllc_core2_data = {
.name = "pllc_core2",
.source_pll = &bcm2835_pllc_data,
.cm_reg = CM_PLLC,
.a2w_reg = A2W_PLLC_CORE2,
.load_mask = CM_PLLC_LOADCORE2,
.hold_mask = CM_PLLC_HOLDCORE2,
.fixed_divider = 1,
};
static const struct bcm2835_pll_divider_data bcm2835_pllc_per_data = {
.name = "pllc_per",
.source_pll = &bcm2835_pllc_data,
.cm_reg = CM_PLLC,
.a2w_reg = A2W_PLLC_PER,
.load_mask = CM_PLLC_LOADPER,
.hold_mask = CM_PLLC_HOLDPER,
.fixed_divider = 1,
};
static const struct bcm2835_pll_divider_data bcm2835_plld_core_data = {
.name = "plld_core",
.source_pll = &bcm2835_plld_data,
.cm_reg = CM_PLLD,
.a2w_reg = A2W_PLLD_CORE,
.load_mask = CM_PLLD_LOADCORE,
.hold_mask = CM_PLLD_HOLDCORE,
.fixed_divider = 1,
};
static const struct bcm2835_pll_divider_data bcm2835_plld_per_data = {
.name = "plld_per",
.source_pll = &bcm2835_plld_data,
.cm_reg = CM_PLLD,
.a2w_reg = A2W_PLLD_PER,
.load_mask = CM_PLLD_LOADPER,
.hold_mask = CM_PLLD_HOLDPER,
.fixed_divider = 1,
};
static const struct bcm2835_pll_divider_data bcm2835_pllh_rcal_data = {
.name = "pllh_rcal",
.source_pll = &bcm2835_pllh_data,
.cm_reg = CM_PLLH,
.a2w_reg = A2W_PLLH_RCAL,
.load_mask = CM_PLLH_LOADRCAL,
.hold_mask = 0,
.fixed_divider = 10,
};
static const struct bcm2835_pll_divider_data bcm2835_pllh_aux_data = {
.name = "pllh_aux",
.source_pll = &bcm2835_pllh_data,
.cm_reg = CM_PLLH,
.a2w_reg = A2W_PLLH_AUX,
.load_mask = CM_PLLH_LOADAUX,
.hold_mask = 0,
.fixed_divider = 10,
};
static const struct bcm2835_pll_divider_data bcm2835_pllh_pix_data = {
.name = "pllh_pix",
.source_pll = &bcm2835_pllh_data,
.cm_reg = CM_PLLH,
.a2w_reg = A2W_PLLH_PIX,
.load_mask = CM_PLLH_LOADPIX,
.hold_mask = 0,
.fixed_divider = 10,
};
struct bcm2835_clock_data {
const char *name;
const char *const *parents;
int num_mux_parents;
u32 ctl_reg;
u32 div_reg;
/* Number of integer bits in the divider */
u32 int_bits;
/* Number of fractional bits in the divider */
u32 frac_bits;
bool is_vpu_clock;
};
static const char *const bcm2835_clock_per_parents[] = {
"gnd",
"xosc",
"testdebug0",
"testdebug1",
"plla_per",
"pllc_per",
"plld_per",
"pllh_aux",
};
static const char *const bcm2835_clock_vpu_parents[] = {
"gnd",
"xosc",
"testdebug0",
"testdebug1",
"plla_core",
"pllc_core0",
"plld_core",
"pllh_aux",
"pllc_core1",
"pllc_core2",
};
static const char *const bcm2835_clock_osc_parents[] = {
"gnd",
"xosc",
"testdebug0",
"testdebug1"
};
/*
* Used for a 1Mhz clock for the system clocksource, and also used by
* the watchdog timer and the camera pulse generator.
*/
static const struct bcm2835_clock_data bcm2835_clock_timer_data = {
.name = "timer",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
.parents = bcm2835_clock_osc_parents,
.ctl_reg = CM_TIMERCTL,
.div_reg = CM_TIMERDIV,
.int_bits = 6,
.frac_bits = 12,
};
/* One Time Programmable Memory clock. Maximum 10Mhz. */
static const struct bcm2835_clock_data bcm2835_clock_otp_data = {
.name = "otp",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
.parents = bcm2835_clock_osc_parents,
.ctl_reg = CM_OTPCTL,
.div_reg = CM_OTPDIV,
.int_bits = 4,
.frac_bits = 0,
};
/*
* VPU clock. This doesn't have an enable bit, since it drives the
* bus for everything else, and is special so it doesn't need to be
* gated for rate changes. It is also known as "clk_audio" in various
* hardware documentation.
*/
static const struct bcm2835_clock_data bcm2835_clock_vpu_data = {
.name = "vpu",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
.parents = bcm2835_clock_vpu_parents,
.ctl_reg = CM_VPUCTL,
.div_reg = CM_VPUDIV,
.int_bits = 12,
.frac_bits = 8,
.is_vpu_clock = true,
};
static const struct bcm2835_clock_data bcm2835_clock_v3d_data = {
.name = "v3d",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
.parents = bcm2835_clock_vpu_parents,
.ctl_reg = CM_V3DCTL,
.div_reg = CM_V3DDIV,
.int_bits = 4,
.frac_bits = 8,
};
static const struct bcm2835_clock_data bcm2835_clock_isp_data = {
.name = "isp",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
.parents = bcm2835_clock_vpu_parents,
.ctl_reg = CM_ISPCTL,
.div_reg = CM_ISPDIV,
.int_bits = 4,
.frac_bits = 8,
};
static const struct bcm2835_clock_data bcm2835_clock_h264_data = {
.name = "h264",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
.parents = bcm2835_clock_vpu_parents,
.ctl_reg = CM_H264CTL,
.div_reg = CM_H264DIV,
.int_bits = 4,
.frac_bits = 8,
};
/* TV encoder clock. Only operating frequency is 108Mhz. */
static const struct bcm2835_clock_data bcm2835_clock_vec_data = {
.name = "vec",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
.parents = bcm2835_clock_per_parents,
.ctl_reg = CM_VECCTL,
.div_reg = CM_VECDIV,
.int_bits = 4,
.frac_bits = 0,
};
static const struct bcm2835_clock_data bcm2835_clock_uart_data = {
.name = "uart",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
.parents = bcm2835_clock_per_parents,
.ctl_reg = CM_UARTCTL,
.div_reg = CM_UARTDIV,
.int_bits = 10,
.frac_bits = 12,
};
/* HDMI state machine */
static const struct bcm2835_clock_data bcm2835_clock_hsm_data = {
.name = "hsm",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
.parents = bcm2835_clock_per_parents,
.ctl_reg = CM_HSMCTL,
.div_reg = CM_HSMDIV,
.int_bits = 4,
.frac_bits = 8,
};
/*
* Secondary SDRAM clock. Used for low-voltage modes when the PLL in
* the SDRAM controller can't be used.
*/
static const struct bcm2835_clock_data bcm2835_clock_sdram_data = {
.name = "sdram",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
.parents = bcm2835_clock_vpu_parents,
.ctl_reg = CM_SDCCTL,
.div_reg = CM_SDCDIV,
.int_bits = 6,
.frac_bits = 0,
};
/* Clock for the temperature sensor. Generally run at 2Mhz, max 5Mhz. */
static const struct bcm2835_clock_data bcm2835_clock_tsens_data = {
.name = "tsens",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
.parents = bcm2835_clock_osc_parents,
.ctl_reg = CM_TSENSCTL,
.div_reg = CM_TSENSDIV,
.int_bits = 5,
.frac_bits = 0,
};
/* Arasan EMMC clock */
static const struct bcm2835_clock_data bcm2835_clock_emmc_data = {
.name = "emmc",
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
.parents = bcm2835_clock_per_parents,
.ctl_reg = CM_EMMCCTL,
.div_reg = CM_EMMCDIV,
.int_bits = 4,
.frac_bits = 8,
};
struct bcm2835_pll {
struct clk_hw hw;
struct bcm2835_cprman *cprman;
const struct bcm2835_pll_data *data;
};
static int bcm2835_pll_is_on(struct clk_hw *hw)
{
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
struct bcm2835_cprman *cprman = pll->cprman;
const struct bcm2835_pll_data *data = pll->data;
return cprman_read(cprman, data->a2w_ctrl_reg) &
A2W_PLL_CTRL_PRST_DISABLE;
}
static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
unsigned long parent_rate,
u32 *ndiv, u32 *fdiv)
{
u64 div;
div = (u64)rate << A2W_PLL_FRAC_BITS;
do_div(div, parent_rate);
*ndiv = div >> A2W_PLL_FRAC_BITS;
*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
}
static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
u32 ndiv, u32 fdiv, u32 pdiv)
{
u64 rate;
if (pdiv == 0)
return 0;
rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
do_div(rate, pdiv);
return rate >> A2W_PLL_FRAC_BITS;
}
static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
u32 ndiv, fdiv;
bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
}
static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
struct bcm2835_cprman *cprman = pll->cprman;
const struct bcm2835_pll_data *data = pll->data;
u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
u32 ndiv, pdiv, fdiv;
bool using_prediv;
if (parent_rate == 0)
return 0;
fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
data->ana->fb_prediv_mask;
if (using_prediv)
ndiv *= 2;
return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
}
static void bcm2835_pll_off(struct clk_hw *hw)
{
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
struct bcm2835_cprman *cprman = pll->cprman;
const struct bcm2835_pll_data *data = pll->data;
cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
cprman_write(cprman, data->a2w_ctrl_reg, A2W_PLL_CTRL_PWRDN);
}
static int bcm2835_pll_on(struct clk_hw *hw)
{
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
struct bcm2835_cprman *cprman = pll->cprman;
const struct bcm2835_pll_data *data = pll->data;
ktime_t timeout;
/* Take the PLL out of reset. */
cprman_write(cprman, data->cm_ctrl_reg,
cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
/* Wait for the PLL to lock. */
timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
if (ktime_after(ktime_get(), timeout)) {
dev_err(cprman->dev, "%s: couldn't lock PLL\n",
clk_hw_get_name(hw));
return -ETIMEDOUT;
}
cpu_relax();
}
return 0;
}
static void
bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
{
int i;
/*
* ANA register setup is done as a series of writes to
* ANA3-ANA0, in that order. This lets us write all 4
* registers as a single cycle of the serdes interface (taking
* 100 xosc clocks), whereas if we were to update ana0, 1, and
* 3 individually through their partial-write registers, each
* would be their own serdes cycle.
*/
for (i = 3; i >= 0; i--)
cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
}
static int bcm2835_pll_set_rate(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate)
{
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
struct bcm2835_cprman *cprman = pll->cprman;
const struct bcm2835_pll_data *data = pll->data;
bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
u32 ndiv, fdiv, a2w_ctl;
u32 ana[4];
int i;
if (rate < data->min_rate || rate > data->max_rate) {
dev_err(cprman->dev, "%s: rate out of spec: %lu vs (%lu, %lu)\n",
clk_hw_get_name(hw), rate,
data->min_rate, data->max_rate);
return -EINVAL;
}
if (rate > data->max_fb_rate) {
use_fb_prediv = true;
rate /= 2;
} else {
use_fb_prediv = false;
}
bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
for (i = 3; i >= 0; i--)
ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
ana[0] &= ~data->ana->mask0;
ana[0] |= data->ana->set0;
ana[1] &= ~data->ana->mask1;
ana[1] |= data->ana->set1;
ana[3] &= ~data->ana->mask3;
ana[3] |= data->ana->set3;
if (was_using_prediv && !use_fb_prediv) {
ana[1] &= ~data->ana->fb_prediv_mask;
do_ana_setup_first = true;
} else if (!was_using_prediv && use_fb_prediv) {
ana[1] |= data->ana->fb_prediv_mask;
do_ana_setup_first = false;
} else {
do_ana_setup_first = true;
}
/* Unmask the reference clock from the oscillator. */
cprman_write(cprman, A2W_XOSC_CTRL,
cprman_read(cprman, A2W_XOSC_CTRL) |
data->reference_enable_mask);
if (do_ana_setup_first)
bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
/* Set the PLL multiplier from the oscillator. */
cprman_write(cprman, data->frac_reg, fdiv);
a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
if (!do_ana_setup_first)
bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
return 0;
}
static const struct clk_ops bcm2835_pll_clk_ops = {
.is_prepared = bcm2835_pll_is_on,
.prepare = bcm2835_pll_on,
.unprepare = bcm2835_pll_off,
.recalc_rate = bcm2835_pll_get_rate,
.set_rate = bcm2835_pll_set_rate,
.round_rate = bcm2835_pll_round_rate,
};
struct bcm2835_pll_divider {
struct clk_divider div;
struct bcm2835_cprman *cprman;
const struct bcm2835_pll_divider_data *data;
};
static struct bcm2835_pll_divider *
bcm2835_pll_divider_from_hw(struct clk_hw *hw)
{
return container_of(hw, struct bcm2835_pll_divider, div.hw);
}
static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
{
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
struct bcm2835_cprman *cprman = divider->cprman;
const struct bcm2835_pll_divider_data *data = divider->data;
return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
}
static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long *parent_rate)
{
return clk_divider_ops.round_rate(hw, rate, parent_rate);
}
static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
struct bcm2835_cprman *cprman = divider->cprman;
const struct bcm2835_pll_divider_data *data = divider->data;
u32 div = cprman_read(cprman, data->a2w_reg);
div &= (1 << A2W_PLL_DIV_BITS) - 1;
if (div == 0)
div = 256;
return parent_rate / div;
}
static void bcm2835_pll_divider_off(struct clk_hw *hw)
{
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
struct bcm2835_cprman *cprman = divider->cprman;
const struct bcm2835_pll_divider_data *data = divider->data;
cprman_write(cprman, data->cm_reg,
(cprman_read(cprman, data->cm_reg) &
~data->load_mask) | data->hold_mask);
cprman_write(cprman, data->a2w_reg, A2W_PLL_CHANNEL_DISABLE);
}
static int bcm2835_pll_divider_on(struct clk_hw *hw)
{
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
struct bcm2835_cprman *cprman = divider->cprman;
const struct bcm2835_pll_divider_data *data = divider->data;
cprman_write(cprman, data->a2w_reg,
cprman_read(cprman, data->a2w_reg) &
~A2W_PLL_CHANNEL_DISABLE);
cprman_write(cprman, data->cm_reg,
cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
return 0;
}
static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long parent_rate)
{
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
struct bcm2835_cprman *cprman = divider->cprman;
const struct bcm2835_pll_divider_data *data = divider->data;
u32 cm;
int ret;
ret = clk_divider_ops.set_rate(hw, rate, parent_rate);
if (ret)
return ret;
cm = cprman_read(cprman, data->cm_reg);
cprman_write(cprman, data->cm_reg, cm | data->load_mask);
cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
return 0;
}
static const struct clk_ops bcm2835_pll_divider_clk_ops = {
.is_prepared = bcm2835_pll_divider_is_on,
.prepare = bcm2835_pll_divider_on,
.unprepare = bcm2835_pll_divider_off,
.recalc_rate = bcm2835_pll_divider_get_rate,
.set_rate = bcm2835_pll_divider_set_rate,
.round_rate = bcm2835_pll_divider_round_rate,
};
/*
* The CM dividers do fixed-point division, so we can't use the
* generic integer divider code like the PLL dividers do (and we can't
* fake it by having some fixed shifts preceding it in the clock tree,
* because we'd run out of bits in a 32-bit unsigned long).
*/
struct bcm2835_clock {
struct clk_hw hw;
struct bcm2835_cprman *cprman;
const struct bcm2835_clock_data *data;
};
static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
{
return container_of(hw, struct bcm2835_clock, hw);
}
static int bcm2835_clock_is_on(struct clk_hw *hw)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
struct bcm2835_cprman *cprman = clock->cprman;
const struct bcm2835_clock_data *data = clock->data;
return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
}
static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
unsigned long rate,
unsigned long parent_rate)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
const struct bcm2835_clock_data *data = clock->data;
u32 unused_frac_mask = GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0);
u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
u32 div;
do_div(temp, rate);
div = temp;
/* Round and mask off the unused bits */
if (unused_frac_mask != 0) {
div += unused_frac_mask >> 1;
div &= ~unused_frac_mask;
}
/* Clamp to the limits. */
div = max(div, unused_frac_mask + 1);
div = min_t(u32, div, GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
CM_DIV_FRAC_BITS - data->frac_bits));
return div;
}
static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
unsigned long parent_rate,
u32 div)
{
const struct bcm2835_clock_data *data = clock->data;
u64 temp;
/*
* The divisor is a 12.12 fixed point field, but only some of
* the bits are populated in any given clock.
*/
div >>= CM_DIV_FRAC_BITS - data->frac_bits;
div &= (1 << (data->int_bits + data->frac_bits)) - 1;
if (div == 0)
return 0;
temp = (u64)parent_rate << data->frac_bits;
do_div(temp, div);
return temp;
}
static long bcm2835_clock_round_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long *parent_rate)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
u32 div = bcm2835_clock_choose_div(hw, rate, *parent_rate);
return bcm2835_clock_rate_from_divisor(clock, *parent_rate, div);
}
static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
struct bcm2835_cprman *cprman = clock->cprman;
const struct bcm2835_clock_data *data = clock->data;
u32 div = cprman_read(cprman, data->div_reg);
return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
}
static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
{
struct bcm2835_cprman *cprman = clock->cprman;
const struct bcm2835_clock_data *data = clock->data;
ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
if (ktime_after(ktime_get(), timeout)) {
dev_err(cprman->dev, "%s: couldn't lock PLL\n",
clk_hw_get_name(&clock->hw));
return;
}
cpu_relax();
}
}
static void bcm2835_clock_off(struct clk_hw *hw)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
struct bcm2835_cprman *cprman = clock->cprman;
const struct bcm2835_clock_data *data = clock->data;
spin_lock(&cprman->regs_lock);
cprman_write(cprman, data->ctl_reg,
cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
spin_unlock(&cprman->regs_lock);
/* BUSY will remain high until the divider completes its cycle. */
bcm2835_clock_wait_busy(clock);
}
static int bcm2835_clock_on(struct clk_hw *hw)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
struct bcm2835_cprman *cprman = clock->cprman;
const struct bcm2835_clock_data *data = clock->data;
spin_lock(&cprman->regs_lock);
cprman_write(cprman, data->ctl_reg,
cprman_read(cprman, data->ctl_reg) |
CM_ENABLE |
CM_GATE);
spin_unlock(&cprman->regs_lock);
return 0;
}
static int bcm2835_clock_set_rate(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
struct bcm2835_cprman *cprman = clock->cprman;
const struct bcm2835_clock_data *data = clock->data;
u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate);
cprman_write(cprman, data->div_reg, div);
return 0;
}
static const struct clk_ops bcm2835_clock_clk_ops = {
.is_prepared = bcm2835_clock_is_on,
.prepare = bcm2835_clock_on,
.unprepare = bcm2835_clock_off,
.recalc_rate = bcm2835_clock_get_rate,
.set_rate = bcm2835_clock_set_rate,
.round_rate = bcm2835_clock_round_rate,
};
static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
{
return true;
}
/*
* The VPU clock can never be disabled (it doesn't have an ENABLE
* bit), so it gets its own set of clock ops.
*/
static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
.is_prepared = bcm2835_vpu_clock_is_on,
.recalc_rate = bcm2835_clock_get_rate,
.set_rate = bcm2835_clock_set_rate,
.round_rate = bcm2835_clock_round_rate,
};
static struct clk *bcm2835_register_pll(struct bcm2835_cprman *cprman,
const struct bcm2835_pll_data *data)
{
struct bcm2835_pll *pll;
struct clk_init_data init;
memset(&init, 0, sizeof(init));
/* All of the PLLs derive from the external oscillator. */
init.parent_names = &cprman->osc_name;
init.num_parents = 1;
init.name = data->name;
init.ops = &bcm2835_pll_clk_ops;
init.flags = CLK_IGNORE_UNUSED;
pll = kzalloc(sizeof(*pll), GFP_KERNEL);
if (!pll)
return NULL;
pll->cprman = cprman;
pll->data = data;
pll->hw.init = &init;
return devm_clk_register(cprman->dev, &pll->hw);
}
static struct clk *
bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
const struct bcm2835_pll_divider_data *data)
{
struct bcm2835_pll_divider *divider;
struct clk_init_data init;
struct clk *clk;
const char *divider_name;
if (data->fixed_divider != 1) {
divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
"%s_prediv", data->name);
if (!divider_name)
return NULL;
} else {
divider_name = data->name;
}
memset(&init, 0, sizeof(init));
init.parent_names = &data->source_pll->name;
init.num_parents = 1;
init.name = divider_name;
init.ops = &bcm2835_pll_divider_clk_ops;
init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED;
divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
if (!divider)
return NULL;
divider->div.reg = cprman->regs + data->a2w_reg;
divider->div.shift = A2W_PLL_DIV_SHIFT;
divider->div.width = A2W_PLL_DIV_BITS;
divider->div.flags = 0;
divider->div.lock = &cprman->regs_lock;
divider->div.hw.init = &init;
divider->div.table = NULL;
divider->cprman = cprman;
divider->data = data;
clk = devm_clk_register(cprman->dev, &divider->div.hw);
if (IS_ERR(clk))
return clk;
/*
* PLLH's channels have a fixed divide by 10 afterwards, which
* is what our consumers are actually using.
*/
if (data->fixed_divider != 1) {
return clk_register_fixed_factor(cprman->dev, data->name,
divider_name,
CLK_SET_RATE_PARENT,
1,
data->fixed_divider);
}
return clk;
}
static struct clk *bcm2835_register_clock(struct bcm2835_cprman *cprman,
const struct bcm2835_clock_data *data)
{
struct bcm2835_clock *clock;
struct clk_init_data init;
const char *parent;
/*
* Most of the clock generators have a mux field, so we
* instantiate a generic mux as our parent to handle it.
*/
if (data->num_mux_parents) {
const char *parents[1 << CM_SRC_BITS];
int i;
parent = devm_kasprintf(cprman->dev, GFP_KERNEL,
"mux_%s", data->name);
if (!parent)
return NULL;
/*
* Replace our "xosc" references with the oscillator's
* actual name.
*/
for (i = 0; i < data->num_mux_parents; i++) {
if (strcmp(data->parents[i], "xosc") == 0)
parents[i] = cprman->osc_name;
else
parents[i] = data->parents[i];
}
clk_register_mux(cprman->dev, parent,
parents, data->num_mux_parents,
CLK_SET_RATE_PARENT,
cprman->regs + data->ctl_reg,
CM_SRC_SHIFT, CM_SRC_BITS,
0, &cprman->regs_lock);
} else {
parent = data->parents[0];
}
memset(&init, 0, sizeof(init));
init.parent_names = &parent;
init.num_parents = 1;
init.name = data->name;
init.flags = CLK_IGNORE_UNUSED;
if (data->is_vpu_clock) {
init.ops = &bcm2835_vpu_clock_clk_ops;
} else {
init.ops = &bcm2835_clock_clk_ops;
init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
}
clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
if (!clock)
return NULL;
clock->cprman = cprman;
clock->data = data;
clock->hw.init = &init;
return devm_clk_register(cprman->dev, &clock->hw);
}
static int bcm2835_clk_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct clk **clks;
struct bcm2835_cprman *cprman;
struct resource *res;
cprman = devm_kzalloc(dev, sizeof(*cprman), GFP_KERNEL);
if (!cprman)
return -ENOMEM;
spin_lock_init(&cprman->regs_lock);
cprman->dev = dev;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
cprman->regs = devm_ioremap_resource(dev, res);
if (IS_ERR(cprman->regs))
return PTR_ERR(cprman->regs);
cprman->osc_name = of_clk_get_parent_name(dev->of_node, 0);
if (!cprman->osc_name)
return -ENODEV;
platform_set_drvdata(pdev, cprman);
cprman->onecell.clk_num = BCM2835_CLOCK_COUNT;
cprman->onecell.clks = cprman->clks;
clks = cprman->clks;
clks[BCM2835_PLLA] = bcm2835_register_pll(cprman, &bcm2835_plla_data);
clks[BCM2835_PLLB] = bcm2835_register_pll(cprman, &bcm2835_pllb_data);
clks[BCM2835_PLLC] = bcm2835_register_pll(cprman, &bcm2835_pllc_data);
clks[BCM2835_PLLD] = bcm2835_register_pll(cprman, &bcm2835_plld_data);
clks[BCM2835_PLLH] = bcm2835_register_pll(cprman, &bcm2835_pllh_data);
clks[BCM2835_PLLA_CORE] =
bcm2835_register_pll_divider(cprman, &bcm2835_plla_core_data);
clks[BCM2835_PLLA_PER] =
bcm2835_register_pll_divider(cprman, &bcm2835_plla_per_data);
clks[BCM2835_PLLC_CORE0] =
bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core0_data);
clks[BCM2835_PLLC_CORE1] =
bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core1_data);
clks[BCM2835_PLLC_CORE2] =
bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core2_data);
clks[BCM2835_PLLC_PER] =
bcm2835_register_pll_divider(cprman, &bcm2835_pllc_per_data);
clks[BCM2835_PLLD_CORE] =
bcm2835_register_pll_divider(cprman, &bcm2835_plld_core_data);
clks[BCM2835_PLLD_PER] =
bcm2835_register_pll_divider(cprman, &bcm2835_plld_per_data);
clks[BCM2835_PLLH_RCAL] =
bcm2835_register_pll_divider(cprman, &bcm2835_pllh_rcal_data);
clks[BCM2835_PLLH_AUX] =
bcm2835_register_pll_divider(cprman, &bcm2835_pllh_aux_data);
clks[BCM2835_PLLH_PIX] =
bcm2835_register_pll_divider(cprman, &bcm2835_pllh_pix_data);
clks[BCM2835_CLOCK_TIMER] =
bcm2835_register_clock(cprman, &bcm2835_clock_timer_data);
clks[BCM2835_CLOCK_OTP] =
bcm2835_register_clock(cprman, &bcm2835_clock_otp_data);
clks[BCM2835_CLOCK_TSENS] =
bcm2835_register_clock(cprman, &bcm2835_clock_tsens_data);
clks[BCM2835_CLOCK_VPU] =
bcm2835_register_clock(cprman, &bcm2835_clock_vpu_data);
clks[BCM2835_CLOCK_V3D] =
bcm2835_register_clock(cprman, &bcm2835_clock_v3d_data);
clks[BCM2835_CLOCK_ISP] =
bcm2835_register_clock(cprman, &bcm2835_clock_isp_data);
clks[BCM2835_CLOCK_H264] =
bcm2835_register_clock(cprman, &bcm2835_clock_h264_data);
clks[BCM2835_CLOCK_V3D] =
bcm2835_register_clock(cprman, &bcm2835_clock_v3d_data);
clks[BCM2835_CLOCK_SDRAM] =
bcm2835_register_clock(cprman, &bcm2835_clock_sdram_data);
clks[BCM2835_CLOCK_UART] =
bcm2835_register_clock(cprman, &bcm2835_clock_uart_data);
clks[BCM2835_CLOCK_VEC] =
bcm2835_register_clock(cprman, &bcm2835_clock_vec_data);
clks[BCM2835_CLOCK_HSM] =
bcm2835_register_clock(cprman, &bcm2835_clock_hsm_data);
clks[BCM2835_CLOCK_EMMC] =
bcm2835_register_clock(cprman, &bcm2835_clock_emmc_data);
/*
* CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
* you have the debug bit set in the power manager, which we
* don't bother exposing) are individual gates off of the
* non-stop vpu clock.
*/
clks[BCM2835_CLOCK_PERI_IMAGE] =
clk_register_gate(dev, "peri_image", "vpu",
CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
cprman->regs + CM_PERIICTL, CM_GATE_BIT,
0, &cprman->regs_lock);
return of_clk_add_provider(dev->of_node, of_clk_src_onecell_get,
&cprman->onecell);
}
static const struct of_device_id bcm2835_clk_of_match[] = {
{ .compatible = "brcm,bcm2835-cprman", },
{}
};
MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
static struct platform_driver bcm2835_clk_driver = {
.driver = {
.name = "bcm2835-clk",
.of_match_table = bcm2835_clk_of_match,
},
.probe = bcm2835_clk_probe,
};
builtin_platform_driver(bcm2835_clk_driver);
MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
MODULE_DESCRIPTION("BCM2835 clock driver");
MODULE_LICENSE("GPL v2");