2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 03:33:58 +08:00
linux-next/arch/sparc/kernel/irq_64.c
Thomas Gleixner db1cc7aede softirq: Move do_softirq_own_stack() to generic asm header
To avoid include recursion hell move the do_softirq_own_stack() related
content into a generic asm header and include it from all places in arch/
which need the prototype.

This allows architectures to provide an inline implementation of
do_softirq_own_stack() without introducing a lot of #ifdeffery all over the
place.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20210210002513.289960691@linutronix.de
2021-02-10 23:34:16 +01:00

1158 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* irq.c: UltraSparc IRQ handling/init/registry.
*
* Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
* Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
*/
#include <linux/sched.h>
#include <linux/linkage.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/kernel_stat.h>
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/ftrace.h>
#include <linux/irq.h>
#include <asm/ptrace.h>
#include <asm/processor.h>
#include <linux/atomic.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/iommu.h>
#include <asm/upa.h>
#include <asm/oplib.h>
#include <asm/prom.h>
#include <asm/timer.h>
#include <asm/smp.h>
#include <asm/starfire.h>
#include <linux/uaccess.h>
#include <asm/cache.h>
#include <asm/cpudata.h>
#include <asm/auxio.h>
#include <asm/head.h>
#include <asm/hypervisor.h>
#include <asm/cacheflush.h>
#include <asm/softirq_stack.h>
#include "entry.h"
#include "cpumap.h"
#include "kstack.h"
struct ino_bucket *ivector_table;
unsigned long ivector_table_pa;
/* On several sun4u processors, it is illegal to mix bypass and
* non-bypass accesses. Therefore we access all INO buckets
* using bypass accesses only.
*/
static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
{
unsigned long ret;
__asm__ __volatile__("ldxa [%1] %2, %0"
: "=&r" (ret)
: "r" (bucket_pa +
offsetof(struct ino_bucket,
__irq_chain_pa)),
"i" (ASI_PHYS_USE_EC));
return ret;
}
static void bucket_clear_chain_pa(unsigned long bucket_pa)
{
__asm__ __volatile__("stxa %%g0, [%0] %1"
: /* no outputs */
: "r" (bucket_pa +
offsetof(struct ino_bucket,
__irq_chain_pa)),
"i" (ASI_PHYS_USE_EC));
}
static unsigned int bucket_get_irq(unsigned long bucket_pa)
{
unsigned int ret;
__asm__ __volatile__("lduwa [%1] %2, %0"
: "=&r" (ret)
: "r" (bucket_pa +
offsetof(struct ino_bucket,
__irq)),
"i" (ASI_PHYS_USE_EC));
return ret;
}
static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
{
__asm__ __volatile__("stwa %0, [%1] %2"
: /* no outputs */
: "r" (irq),
"r" (bucket_pa +
offsetof(struct ino_bucket,
__irq)),
"i" (ASI_PHYS_USE_EC));
}
#define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
static unsigned long hvirq_major __initdata;
static int __init early_hvirq_major(char *p)
{
int rc = kstrtoul(p, 10, &hvirq_major);
return rc;
}
early_param("hvirq", early_hvirq_major);
static int hv_irq_version;
/* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie
* based interfaces, but:
*
* 1) Several OSs, Solaris and Linux included, use them even when only
* negotiating version 1.0 (or failing to negotiate at all). So the
* hypervisor has a workaround that provides the VIRQ interfaces even
* when only verion 1.0 of the API is in use.
*
* 2) Second, and more importantly, with major version 2.0 these VIRQ
* interfaces only were actually hooked up for LDC interrupts, even
* though the Hypervisor specification clearly stated:
*
* The new interrupt API functions will be available to a guest
* when it negotiates version 2.0 in the interrupt API group 0x2. When
* a guest negotiates version 2.0, all interrupt sources will only
* support using the cookie interface, and any attempt to use the
* version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the
* ENOTSUPPORTED error being returned.
*
* with an emphasis on "all interrupt sources".
*
* To correct this, major version 3.0 was created which does actually
* support VIRQs for all interrupt sources (not just LDC devices). So
* if we want to move completely over the cookie based VIRQs we must
* negotiate major version 3.0 or later of HV_GRP_INTR.
*/
static bool sun4v_cookie_only_virqs(void)
{
if (hv_irq_version >= 3)
return true;
return false;
}
static void __init irq_init_hv(void)
{
unsigned long hv_error, major, minor = 0;
if (tlb_type != hypervisor)
return;
if (hvirq_major)
major = hvirq_major;
else
major = 3;
hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor);
if (!hv_error)
hv_irq_version = major;
else
hv_irq_version = 1;
pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n",
hv_irq_version,
sun4v_cookie_only_virqs() ? "enabled" : "disabled");
}
/* This function is for the timer interrupt.*/
int __init arch_probe_nr_irqs(void)
{
return 1;
}
#define DEFAULT_NUM_IVECS (0xfffU)
static unsigned int nr_ivec = DEFAULT_NUM_IVECS;
#define NUM_IVECS (nr_ivec)
static unsigned int __init size_nr_ivec(void)
{
if (tlb_type == hypervisor) {
switch (sun4v_chip_type) {
/* Athena's devhandle|devino is large.*/
case SUN4V_CHIP_SPARC64X:
nr_ivec = 0xffff;
break;
}
}
return nr_ivec;
}
struct irq_handler_data {
union {
struct {
unsigned int dev_handle;
unsigned int dev_ino;
};
unsigned long sysino;
};
struct ino_bucket bucket;
unsigned long iclr;
unsigned long imap;
};
static inline unsigned int irq_data_to_handle(struct irq_data *data)
{
struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
return ihd->dev_handle;
}
static inline unsigned int irq_data_to_ino(struct irq_data *data)
{
struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
return ihd->dev_ino;
}
static inline unsigned long irq_data_to_sysino(struct irq_data *data)
{
struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
return ihd->sysino;
}
void irq_free(unsigned int irq)
{
void *data = irq_get_handler_data(irq);
kfree(data);
irq_set_handler_data(irq, NULL);
irq_free_descs(irq, 1);
}
unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
{
int irq;
irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL, NULL);
if (irq <= 0)
goto out;
return irq;
out:
return 0;
}
static unsigned int cookie_exists(u32 devhandle, unsigned int devino)
{
unsigned long hv_err, cookie;
struct ino_bucket *bucket;
unsigned int irq = 0U;
hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie);
if (hv_err) {
pr_err("HV get cookie failed hv_err = %ld\n", hv_err);
goto out;
}
if (cookie & ((1UL << 63UL))) {
cookie = ~cookie;
bucket = (struct ino_bucket *) __va(cookie);
irq = bucket->__irq;
}
out:
return irq;
}
static unsigned int sysino_exists(u32 devhandle, unsigned int devino)
{
unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
struct ino_bucket *bucket;
unsigned int irq;
bucket = &ivector_table[sysino];
irq = bucket_get_irq(__pa(bucket));
return irq;
}
void ack_bad_irq(unsigned int irq)
{
pr_crit("BAD IRQ ack %d\n", irq);
}
void irq_install_pre_handler(int irq,
void (*func)(unsigned int, void *, void *),
void *arg1, void *arg2)
{
pr_warn("IRQ pre handler NOT supported.\n");
}
/*
* /proc/interrupts printing:
*/
int arch_show_interrupts(struct seq_file *p, int prec)
{
int j;
seq_printf(p, "NMI: ");
for_each_online_cpu(j)
seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
seq_printf(p, " Non-maskable interrupts\n");
return 0;
}
static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
{
unsigned int tid;
if (this_is_starfire) {
tid = starfire_translate(imap, cpuid);
tid <<= IMAP_TID_SHIFT;
tid &= IMAP_TID_UPA;
} else {
if (tlb_type == cheetah || tlb_type == cheetah_plus) {
unsigned long ver;
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
if ((ver >> 32UL) == __JALAPENO_ID ||
(ver >> 32UL) == __SERRANO_ID) {
tid = cpuid << IMAP_TID_SHIFT;
tid &= IMAP_TID_JBUS;
} else {
unsigned int a = cpuid & 0x1f;
unsigned int n = (cpuid >> 5) & 0x1f;
tid = ((a << IMAP_AID_SHIFT) |
(n << IMAP_NID_SHIFT));
tid &= (IMAP_AID_SAFARI |
IMAP_NID_SAFARI);
}
} else {
tid = cpuid << IMAP_TID_SHIFT;
tid &= IMAP_TID_UPA;
}
}
return tid;
}
#ifdef CONFIG_SMP
static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
{
cpumask_t mask;
int cpuid;
cpumask_copy(&mask, affinity);
if (cpumask_equal(&mask, cpu_online_mask)) {
cpuid = map_to_cpu(irq);
} else {
cpumask_t tmp;
cpumask_and(&tmp, cpu_online_mask, &mask);
cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp);
}
return cpuid;
}
#else
#define irq_choose_cpu(irq, affinity) \
real_hard_smp_processor_id()
#endif
static void sun4u_irq_enable(struct irq_data *data)
{
struct irq_handler_data *handler_data;
handler_data = irq_data_get_irq_handler_data(data);
if (likely(handler_data)) {
unsigned long cpuid, imap, val;
unsigned int tid;
cpuid = irq_choose_cpu(data->irq,
irq_data_get_affinity_mask(data));
imap = handler_data->imap;
tid = sun4u_compute_tid(imap, cpuid);
val = upa_readq(imap);
val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
IMAP_AID_SAFARI | IMAP_NID_SAFARI);
val |= tid | IMAP_VALID;
upa_writeq(val, imap);
upa_writeq(ICLR_IDLE, handler_data->iclr);
}
}
static int sun4u_set_affinity(struct irq_data *data,
const struct cpumask *mask, bool force)
{
struct irq_handler_data *handler_data;
handler_data = irq_data_get_irq_handler_data(data);
if (likely(handler_data)) {
unsigned long cpuid, imap, val;
unsigned int tid;
cpuid = irq_choose_cpu(data->irq, mask);
imap = handler_data->imap;
tid = sun4u_compute_tid(imap, cpuid);
val = upa_readq(imap);
val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
IMAP_AID_SAFARI | IMAP_NID_SAFARI);
val |= tid | IMAP_VALID;
upa_writeq(val, imap);
upa_writeq(ICLR_IDLE, handler_data->iclr);
}
return 0;
}
/* Don't do anything. The desc->status check for IRQ_DISABLED in
* handler_irq() will skip the handler call and that will leave the
* interrupt in the sent state. The next ->enable() call will hit the
* ICLR register to reset the state machine.
*
* This scheme is necessary, instead of clearing the Valid bit in the
* IMAP register, to handle the case of IMAP registers being shared by
* multiple INOs (and thus ICLR registers). Since we use a different
* virtual IRQ for each shared IMAP instance, the generic code thinks
* there is only one user so it prematurely calls ->disable() on
* free_irq().
*
* We have to provide an explicit ->disable() method instead of using
* NULL to get the default. The reason is that if the generic code
* sees that, it also hooks up a default ->shutdown method which
* invokes ->mask() which we do not want. See irq_chip_set_defaults().
*/
static void sun4u_irq_disable(struct irq_data *data)
{
}
static void sun4u_irq_eoi(struct irq_data *data)
{
struct irq_handler_data *handler_data;
handler_data = irq_data_get_irq_handler_data(data);
if (likely(handler_data))
upa_writeq(ICLR_IDLE, handler_data->iclr);
}
static void sun4v_irq_enable(struct irq_data *data)
{
unsigned long cpuid = irq_choose_cpu(data->irq,
irq_data_get_affinity_mask(data));
unsigned int ino = irq_data_to_sysino(data);
int err;
err = sun4v_intr_settarget(ino, cpuid);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
"err(%d)\n", ino, cpuid, err);
err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_setstate(%x): "
"err(%d)\n", ino, err);
err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
ino, err);
}
static int sun4v_set_affinity(struct irq_data *data,
const struct cpumask *mask, bool force)
{
unsigned long cpuid = irq_choose_cpu(data->irq, mask);
unsigned int ino = irq_data_to_sysino(data);
int err;
err = sun4v_intr_settarget(ino, cpuid);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
"err(%d)\n", ino, cpuid, err);
return 0;
}
static void sun4v_irq_disable(struct irq_data *data)
{
unsigned int ino = irq_data_to_sysino(data);
int err;
err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_setenabled(%x): "
"err(%d)\n", ino, err);
}
static void sun4v_irq_eoi(struct irq_data *data)
{
unsigned int ino = irq_data_to_sysino(data);
int err;
err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_intr_setstate(%x): "
"err(%d)\n", ino, err);
}
static void sun4v_virq_enable(struct irq_data *data)
{
unsigned long dev_handle = irq_data_to_handle(data);
unsigned long dev_ino = irq_data_to_ino(data);
unsigned long cpuid;
int err;
cpuid = irq_choose_cpu(data->irq, irq_data_get_affinity_mask(data));
err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
"err(%d)\n",
dev_handle, dev_ino, cpuid, err);
err = sun4v_vintr_set_state(dev_handle, dev_ino,
HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_STATE_IDLE): err(%d)\n",
dev_handle, dev_ino, err);
err = sun4v_vintr_set_valid(dev_handle, dev_ino,
HV_INTR_ENABLED);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_ENABLED): err(%d)\n",
dev_handle, dev_ino, err);
}
static int sun4v_virt_set_affinity(struct irq_data *data,
const struct cpumask *mask, bool force)
{
unsigned long dev_handle = irq_data_to_handle(data);
unsigned long dev_ino = irq_data_to_ino(data);
unsigned long cpuid;
int err;
cpuid = irq_choose_cpu(data->irq, mask);
err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
"err(%d)\n",
dev_handle, dev_ino, cpuid, err);
return 0;
}
static void sun4v_virq_disable(struct irq_data *data)
{
unsigned long dev_handle = irq_data_to_handle(data);
unsigned long dev_ino = irq_data_to_ino(data);
int err;
err = sun4v_vintr_set_valid(dev_handle, dev_ino,
HV_INTR_DISABLED);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_DISABLED): err(%d)\n",
dev_handle, dev_ino, err);
}
static void sun4v_virq_eoi(struct irq_data *data)
{
unsigned long dev_handle = irq_data_to_handle(data);
unsigned long dev_ino = irq_data_to_ino(data);
int err;
err = sun4v_vintr_set_state(dev_handle, dev_ino,
HV_INTR_STATE_IDLE);
if (err != HV_EOK)
printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
"HV_INTR_STATE_IDLE): err(%d)\n",
dev_handle, dev_ino, err);
}
static struct irq_chip sun4u_irq = {
.name = "sun4u",
.irq_enable = sun4u_irq_enable,
.irq_disable = sun4u_irq_disable,
.irq_eoi = sun4u_irq_eoi,
.irq_set_affinity = sun4u_set_affinity,
.flags = IRQCHIP_EOI_IF_HANDLED,
};
static struct irq_chip sun4v_irq = {
.name = "sun4v",
.irq_enable = sun4v_irq_enable,
.irq_disable = sun4v_irq_disable,
.irq_eoi = sun4v_irq_eoi,
.irq_set_affinity = sun4v_set_affinity,
.flags = IRQCHIP_EOI_IF_HANDLED,
};
static struct irq_chip sun4v_virq = {
.name = "vsun4v",
.irq_enable = sun4v_virq_enable,
.irq_disable = sun4v_virq_disable,
.irq_eoi = sun4v_virq_eoi,
.irq_set_affinity = sun4v_virt_set_affinity,
.flags = IRQCHIP_EOI_IF_HANDLED,
};
unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
{
struct irq_handler_data *handler_data;
struct ino_bucket *bucket;
unsigned int irq;
int ino;
BUG_ON(tlb_type == hypervisor);
ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
bucket = &ivector_table[ino];
irq = bucket_get_irq(__pa(bucket));
if (!irq) {
irq = irq_alloc(0, ino);
bucket_set_irq(__pa(bucket), irq);
irq_set_chip_and_handler_name(irq, &sun4u_irq,
handle_fasteoi_irq, "IVEC");
}
handler_data = irq_get_handler_data(irq);
if (unlikely(handler_data))
goto out;
handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
if (unlikely(!handler_data)) {
prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
prom_halt();
}
irq_set_handler_data(irq, handler_data);
handler_data->imap = imap;
handler_data->iclr = iclr;
out:
return irq;
}
static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino,
void (*handler_data_init)(struct irq_handler_data *data,
u32 devhandle, unsigned int devino),
struct irq_chip *chip)
{
struct irq_handler_data *data;
unsigned int irq;
irq = irq_alloc(devhandle, devino);
if (!irq)
goto out;
data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
if (unlikely(!data)) {
pr_err("IRQ handler data allocation failed.\n");
irq_free(irq);
irq = 0;
goto out;
}
irq_set_handler_data(irq, data);
handler_data_init(data, devhandle, devino);
irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC");
data->imap = ~0UL;
data->iclr = ~0UL;
out:
return irq;
}
static unsigned long cookie_assign(unsigned int irq, u32 devhandle,
unsigned int devino)
{
struct irq_handler_data *ihd = irq_get_handler_data(irq);
unsigned long hv_error, cookie;
/* handler_irq needs to find the irq. cookie is seen signed in
* sun4v_dev_mondo and treated as a non ivector_table delivery.
*/
ihd->bucket.__irq = irq;
cookie = ~__pa(&ihd->bucket);
hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie);
if (hv_error)
pr_err("HV vintr set cookie failed = %ld\n", hv_error);
return hv_error;
}
static void cookie_handler_data(struct irq_handler_data *data,
u32 devhandle, unsigned int devino)
{
data->dev_handle = devhandle;
data->dev_ino = devino;
}
static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino,
struct irq_chip *chip)
{
unsigned long hv_error;
unsigned int irq;
irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip);
hv_error = cookie_assign(irq, devhandle, devino);
if (hv_error) {
irq_free(irq);
irq = 0;
}
return irq;
}
static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino)
{
unsigned int irq;
irq = cookie_exists(devhandle, devino);
if (irq)
goto out;
irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
out:
return irq;
}
static void sysino_set_bucket(unsigned int irq)
{
struct irq_handler_data *ihd = irq_get_handler_data(irq);
struct ino_bucket *bucket;
unsigned long sysino;
sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino);
BUG_ON(sysino >= nr_ivec);
bucket = &ivector_table[sysino];
bucket_set_irq(__pa(bucket), irq);
}
static void sysino_handler_data(struct irq_handler_data *data,
u32 devhandle, unsigned int devino)
{
unsigned long sysino;
sysino = sun4v_devino_to_sysino(devhandle, devino);
data->sysino = sysino;
}
static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino,
struct irq_chip *chip)
{
unsigned int irq;
irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip);
if (!irq)
goto out;
sysino_set_bucket(irq);
out:
return irq;
}
static int sun4v_build_sysino(u32 devhandle, unsigned int devino)
{
int irq;
irq = sysino_exists(devhandle, devino);
if (irq)
goto out;
irq = sysino_build_irq(devhandle, devino, &sun4v_irq);
out:
return irq;
}
unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
{
unsigned int irq;
if (sun4v_cookie_only_virqs())
irq = sun4v_build_cookie(devhandle, devino);
else
irq = sun4v_build_sysino(devhandle, devino);
return irq;
}
unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
{
int irq;
irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
if (!irq)
goto out;
/* This is borrowed from the original function.
*/
irq_set_status_flags(irq, IRQ_NOAUTOEN);
out:
return irq;
}
void *hardirq_stack[NR_CPUS];
void *softirq_stack[NR_CPUS];
void __irq_entry handler_irq(int pil, struct pt_regs *regs)
{
unsigned long pstate, bucket_pa;
struct pt_regs *old_regs;
void *orig_sp;
clear_softint(1 << pil);
old_regs = set_irq_regs(regs);
irq_enter();
/* Grab an atomic snapshot of the pending IVECs. */
__asm__ __volatile__("rdpr %%pstate, %0\n\t"
"wrpr %0, %3, %%pstate\n\t"
"ldx [%2], %1\n\t"
"stx %%g0, [%2]\n\t"
"wrpr %0, 0x0, %%pstate\n\t"
: "=&r" (pstate), "=&r" (bucket_pa)
: "r" (irq_work_pa(smp_processor_id())),
"i" (PSTATE_IE)
: "memory");
orig_sp = set_hardirq_stack();
while (bucket_pa) {
unsigned long next_pa;
unsigned int irq;
next_pa = bucket_get_chain_pa(bucket_pa);
irq = bucket_get_irq(bucket_pa);
bucket_clear_chain_pa(bucket_pa);
generic_handle_irq(irq);
bucket_pa = next_pa;
}
restore_hardirq_stack(orig_sp);
irq_exit();
set_irq_regs(old_regs);
}
void do_softirq_own_stack(void)
{
void *orig_sp, *sp = softirq_stack[smp_processor_id()];
sp += THREAD_SIZE - 192 - STACK_BIAS;
__asm__ __volatile__("mov %%sp, %0\n\t"
"mov %1, %%sp"
: "=&r" (orig_sp)
: "r" (sp));
__do_softirq();
__asm__ __volatile__("mov %0, %%sp"
: : "r" (orig_sp));
}
#ifdef CONFIG_HOTPLUG_CPU
void fixup_irqs(void)
{
unsigned int irq;
for (irq = 0; irq < NR_IRQS; irq++) {
struct irq_desc *desc = irq_to_desc(irq);
struct irq_data *data;
unsigned long flags;
if (!desc)
continue;
data = irq_desc_get_irq_data(desc);
raw_spin_lock_irqsave(&desc->lock, flags);
if (desc->action && !irqd_is_per_cpu(data)) {
if (data->chip->irq_set_affinity)
data->chip->irq_set_affinity(data,
irq_data_get_affinity_mask(data),
false);
}
raw_spin_unlock_irqrestore(&desc->lock, flags);
}
tick_ops->disable_irq();
}
#endif
struct sun5_timer {
u64 count0;
u64 limit0;
u64 count1;
u64 limit1;
};
static struct sun5_timer *prom_timers;
static u64 prom_limit0, prom_limit1;
static void map_prom_timers(void)
{
struct device_node *dp;
const unsigned int *addr;
/* PROM timer node hangs out in the top level of device siblings... */
dp = of_find_node_by_path("/");
dp = dp->child;
while (dp) {
if (of_node_name_eq(dp, "counter-timer"))
break;
dp = dp->sibling;
}
/* Assume if node is not present, PROM uses different tick mechanism
* which we should not care about.
*/
if (!dp) {
prom_timers = (struct sun5_timer *) 0;
return;
}
/* If PROM is really using this, it must be mapped by him. */
addr = of_get_property(dp, "address", NULL);
if (!addr) {
prom_printf("PROM does not have timer mapped, trying to continue.\n");
prom_timers = (struct sun5_timer *) 0;
return;
}
prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
}
static void kill_prom_timer(void)
{
if (!prom_timers)
return;
/* Save them away for later. */
prom_limit0 = prom_timers->limit0;
prom_limit1 = prom_timers->limit1;
/* Just as in sun4c PROM uses timer which ticks at IRQ 14.
* We turn both off here just to be paranoid.
*/
prom_timers->limit0 = 0;
prom_timers->limit1 = 0;
/* Wheee, eat the interrupt packet too... */
__asm__ __volatile__(
" mov 0x40, %%g2\n"
" ldxa [%%g0] %0, %%g1\n"
" ldxa [%%g2] %1, %%g1\n"
" stxa %%g0, [%%g0] %0\n"
" membar #Sync\n"
: /* no outputs */
: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
: "g1", "g2");
}
void notrace init_irqwork_curcpu(void)
{
int cpu = hard_smp_processor_id();
trap_block[cpu].irq_worklist_pa = 0UL;
}
/* Please be very careful with register_one_mondo() and
* sun4v_register_mondo_queues().
*
* On SMP this gets invoked from the CPU trampoline before
* the cpu has fully taken over the trap table from OBP,
* and it's kernel stack + %g6 thread register state is
* not fully cooked yet.
*
* Therefore you cannot make any OBP calls, not even prom_printf,
* from these two routines.
*/
static void notrace register_one_mondo(unsigned long paddr, unsigned long type,
unsigned long qmask)
{
unsigned long num_entries = (qmask + 1) / 64;
unsigned long status;
status = sun4v_cpu_qconf(type, paddr, num_entries);
if (status != HV_EOK) {
prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
"err %lu\n", type, paddr, num_entries, status);
prom_halt();
}
}
void notrace sun4v_register_mondo_queues(int this_cpu)
{
struct trap_per_cpu *tb = &trap_block[this_cpu];
register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
tb->cpu_mondo_qmask);
register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
tb->dev_mondo_qmask);
register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
tb->resum_qmask);
register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
tb->nonresum_qmask);
}
/* Each queue region must be a power of 2 multiple of 64 bytes in
* size. The base real address must be aligned to the size of the
* region. Thus, an 8KB queue must be 8KB aligned, for example.
*/
static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
{
unsigned long size = PAGE_ALIGN(qmask + 1);
unsigned long order = get_order(size);
unsigned long p;
p = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
if (!p) {
prom_printf("SUN4V: Error, cannot allocate queue.\n");
prom_halt();
}
*pa_ptr = __pa(p);
}
static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
{
#ifdef CONFIG_SMP
unsigned long page;
void *mondo, *p;
BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > PAGE_SIZE);
/* Make sure mondo block is 64byte aligned */
p = kzalloc(127, GFP_KERNEL);
if (!p) {
prom_printf("SUN4V: Error, cannot allocate mondo block.\n");
prom_halt();
}
mondo = (void *)(((unsigned long)p + 63) & ~0x3f);
tb->cpu_mondo_block_pa = __pa(mondo);
page = get_zeroed_page(GFP_KERNEL);
if (!page) {
prom_printf("SUN4V: Error, cannot allocate cpu list page.\n");
prom_halt();
}
tb->cpu_list_pa = __pa(page);
#endif
}
/* Allocate mondo and error queues for all possible cpus. */
static void __init sun4v_init_mondo_queues(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct trap_per_cpu *tb = &trap_block[cpu];
alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
alloc_one_queue(&tb->nonresum_kernel_buf_pa,
tb->nonresum_qmask);
}
}
static void __init init_send_mondo_info(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct trap_per_cpu *tb = &trap_block[cpu];
init_cpu_send_mondo_info(tb);
}
}
static struct irqaction timer_irq_action = {
.name = "timer",
};
static void __init irq_ivector_init(void)
{
unsigned long size, order;
unsigned int ivecs;
/* If we are doing cookie only VIRQs then we do not need the ivector
* table to process interrupts.
*/
if (sun4v_cookie_only_virqs())
return;
ivecs = size_nr_ivec();
size = sizeof(struct ino_bucket) * ivecs;
order = get_order(size);
ivector_table = (struct ino_bucket *)
__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
if (!ivector_table) {
prom_printf("Fatal error, cannot allocate ivector_table\n");
prom_halt();
}
__flush_dcache_range((unsigned long) ivector_table,
((unsigned long) ivector_table) + size);
ivector_table_pa = __pa(ivector_table);
}
/* Only invoked on boot processor.*/
void __init init_IRQ(void)
{
irq_init_hv();
irq_ivector_init();
map_prom_timers();
kill_prom_timer();
if (tlb_type == hypervisor)
sun4v_init_mondo_queues();
init_send_mondo_info();
if (tlb_type == hypervisor) {
/* Load up the boot cpu's entries. */
sun4v_register_mondo_queues(hard_smp_processor_id());
}
/* We need to clear any IRQ's pending in the soft interrupt
* registers, a spurious one could be left around from the
* PROM timer which we just disabled.
*/
clear_softint(get_softint());
/* Now that ivector table is initialized, it is safe
* to receive IRQ vector traps. We will normally take
* one or two right now, in case some device PROM used
* to boot us wants to speak to us. We just ignore them.
*/
__asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
"or %%g1, %0, %%g1\n\t"
"wrpr %%g1, 0x0, %%pstate"
: /* No outputs */
: "i" (PSTATE_IE)
: "g1");
irq_to_desc(0)->action = &timer_irq_action;
}