2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-22 20:43:56 +08:00
linux-next/drivers/gpu/drm/radeon/radeon_display.c
Laurent Pinchart e6ecefaadf drm: Constify drm_mode_config_funcs pointer
The DRM mode config functions structure declared by drivers and pointed
to by the drm_mode_config funcs field is never modified. Make it a const
pointer.

Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: Inki Dae <inki.dae@samsung.com>
Cc: Alan Cox <alan@linux.intel.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Rob Clark <rob.clark@linaro.org>
Reviwed-by: Alex Deucher <alexdeucher@gmail.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
2012-05-22 10:35:07 +01:00

1663 lines
51 KiB
C

/*
* Copyright 2007-8 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
*/
#include "drmP.h"
#include "radeon_drm.h"
#include "radeon.h"
#include "atom.h"
#include <asm/div64.h>
#include "drm_crtc_helper.h"
#include "drm_edid.h"
static void avivo_crtc_load_lut(struct drm_crtc *crtc)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
int i;
DRM_DEBUG_KMS("%d\n", radeon_crtc->crtc_id);
WREG32(AVIVO_DC_LUTA_CONTROL + radeon_crtc->crtc_offset, 0);
WREG32(AVIVO_DC_LUTA_BLACK_OFFSET_BLUE + radeon_crtc->crtc_offset, 0);
WREG32(AVIVO_DC_LUTA_BLACK_OFFSET_GREEN + radeon_crtc->crtc_offset, 0);
WREG32(AVIVO_DC_LUTA_BLACK_OFFSET_RED + radeon_crtc->crtc_offset, 0);
WREG32(AVIVO_DC_LUTA_WHITE_OFFSET_BLUE + radeon_crtc->crtc_offset, 0xffff);
WREG32(AVIVO_DC_LUTA_WHITE_OFFSET_GREEN + radeon_crtc->crtc_offset, 0xffff);
WREG32(AVIVO_DC_LUTA_WHITE_OFFSET_RED + radeon_crtc->crtc_offset, 0xffff);
WREG32(AVIVO_DC_LUT_RW_SELECT, radeon_crtc->crtc_id);
WREG32(AVIVO_DC_LUT_RW_MODE, 0);
WREG32(AVIVO_DC_LUT_WRITE_EN_MASK, 0x0000003f);
WREG8(AVIVO_DC_LUT_RW_INDEX, 0);
for (i = 0; i < 256; i++) {
WREG32(AVIVO_DC_LUT_30_COLOR,
(radeon_crtc->lut_r[i] << 20) |
(radeon_crtc->lut_g[i] << 10) |
(radeon_crtc->lut_b[i] << 0));
}
WREG32(AVIVO_D1GRPH_LUT_SEL + radeon_crtc->crtc_offset, radeon_crtc->crtc_id);
}
static void dce4_crtc_load_lut(struct drm_crtc *crtc)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
int i;
DRM_DEBUG_KMS("%d\n", radeon_crtc->crtc_id);
WREG32(EVERGREEN_DC_LUT_CONTROL + radeon_crtc->crtc_offset, 0);
WREG32(EVERGREEN_DC_LUT_BLACK_OFFSET_BLUE + radeon_crtc->crtc_offset, 0);
WREG32(EVERGREEN_DC_LUT_BLACK_OFFSET_GREEN + radeon_crtc->crtc_offset, 0);
WREG32(EVERGREEN_DC_LUT_BLACK_OFFSET_RED + radeon_crtc->crtc_offset, 0);
WREG32(EVERGREEN_DC_LUT_WHITE_OFFSET_BLUE + radeon_crtc->crtc_offset, 0xffff);
WREG32(EVERGREEN_DC_LUT_WHITE_OFFSET_GREEN + radeon_crtc->crtc_offset, 0xffff);
WREG32(EVERGREEN_DC_LUT_WHITE_OFFSET_RED + radeon_crtc->crtc_offset, 0xffff);
WREG32(EVERGREEN_DC_LUT_RW_MODE + radeon_crtc->crtc_offset, 0);
WREG32(EVERGREEN_DC_LUT_WRITE_EN_MASK + radeon_crtc->crtc_offset, 0x00000007);
WREG32(EVERGREEN_DC_LUT_RW_INDEX + radeon_crtc->crtc_offset, 0);
for (i = 0; i < 256; i++) {
WREG32(EVERGREEN_DC_LUT_30_COLOR + radeon_crtc->crtc_offset,
(radeon_crtc->lut_r[i] << 20) |
(radeon_crtc->lut_g[i] << 10) |
(radeon_crtc->lut_b[i] << 0));
}
}
static void dce5_crtc_load_lut(struct drm_crtc *crtc)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
int i;
DRM_DEBUG_KMS("%d\n", radeon_crtc->crtc_id);
WREG32(NI_INPUT_CSC_CONTROL + radeon_crtc->crtc_offset,
(NI_INPUT_CSC_GRPH_MODE(NI_INPUT_CSC_BYPASS) |
NI_INPUT_CSC_OVL_MODE(NI_INPUT_CSC_BYPASS)));
WREG32(NI_PRESCALE_GRPH_CONTROL + radeon_crtc->crtc_offset,
NI_GRPH_PRESCALE_BYPASS);
WREG32(NI_PRESCALE_OVL_CONTROL + radeon_crtc->crtc_offset,
NI_OVL_PRESCALE_BYPASS);
WREG32(NI_INPUT_GAMMA_CONTROL + radeon_crtc->crtc_offset,
(NI_GRPH_INPUT_GAMMA_MODE(NI_INPUT_GAMMA_USE_LUT) |
NI_OVL_INPUT_GAMMA_MODE(NI_INPUT_GAMMA_USE_LUT)));
WREG32(EVERGREEN_DC_LUT_CONTROL + radeon_crtc->crtc_offset, 0);
WREG32(EVERGREEN_DC_LUT_BLACK_OFFSET_BLUE + radeon_crtc->crtc_offset, 0);
WREG32(EVERGREEN_DC_LUT_BLACK_OFFSET_GREEN + radeon_crtc->crtc_offset, 0);
WREG32(EVERGREEN_DC_LUT_BLACK_OFFSET_RED + radeon_crtc->crtc_offset, 0);
WREG32(EVERGREEN_DC_LUT_WHITE_OFFSET_BLUE + radeon_crtc->crtc_offset, 0xffff);
WREG32(EVERGREEN_DC_LUT_WHITE_OFFSET_GREEN + radeon_crtc->crtc_offset, 0xffff);
WREG32(EVERGREEN_DC_LUT_WHITE_OFFSET_RED + radeon_crtc->crtc_offset, 0xffff);
WREG32(EVERGREEN_DC_LUT_RW_MODE + radeon_crtc->crtc_offset, 0);
WREG32(EVERGREEN_DC_LUT_WRITE_EN_MASK + radeon_crtc->crtc_offset, 0x00000007);
WREG32(EVERGREEN_DC_LUT_RW_INDEX + radeon_crtc->crtc_offset, 0);
for (i = 0; i < 256; i++) {
WREG32(EVERGREEN_DC_LUT_30_COLOR + radeon_crtc->crtc_offset,
(radeon_crtc->lut_r[i] << 20) |
(radeon_crtc->lut_g[i] << 10) |
(radeon_crtc->lut_b[i] << 0));
}
WREG32(NI_DEGAMMA_CONTROL + radeon_crtc->crtc_offset,
(NI_GRPH_DEGAMMA_MODE(NI_DEGAMMA_BYPASS) |
NI_OVL_DEGAMMA_MODE(NI_DEGAMMA_BYPASS) |
NI_ICON_DEGAMMA_MODE(NI_DEGAMMA_BYPASS) |
NI_CURSOR_DEGAMMA_MODE(NI_DEGAMMA_BYPASS)));
WREG32(NI_GAMUT_REMAP_CONTROL + radeon_crtc->crtc_offset,
(NI_GRPH_GAMUT_REMAP_MODE(NI_GAMUT_REMAP_BYPASS) |
NI_OVL_GAMUT_REMAP_MODE(NI_GAMUT_REMAP_BYPASS)));
WREG32(NI_REGAMMA_CONTROL + radeon_crtc->crtc_offset,
(NI_GRPH_REGAMMA_MODE(NI_REGAMMA_BYPASS) |
NI_OVL_REGAMMA_MODE(NI_REGAMMA_BYPASS)));
WREG32(NI_OUTPUT_CSC_CONTROL + radeon_crtc->crtc_offset,
(NI_OUTPUT_CSC_GRPH_MODE(NI_OUTPUT_CSC_BYPASS) |
NI_OUTPUT_CSC_OVL_MODE(NI_OUTPUT_CSC_BYPASS)));
/* XXX match this to the depth of the crtc fmt block, move to modeset? */
WREG32(0x6940 + radeon_crtc->crtc_offset, 0);
}
static void legacy_crtc_load_lut(struct drm_crtc *crtc)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
int i;
uint32_t dac2_cntl;
dac2_cntl = RREG32(RADEON_DAC_CNTL2);
if (radeon_crtc->crtc_id == 0)
dac2_cntl &= (uint32_t)~RADEON_DAC2_PALETTE_ACC_CTL;
else
dac2_cntl |= RADEON_DAC2_PALETTE_ACC_CTL;
WREG32(RADEON_DAC_CNTL2, dac2_cntl);
WREG8(RADEON_PALETTE_INDEX, 0);
for (i = 0; i < 256; i++) {
WREG32(RADEON_PALETTE_30_DATA,
(radeon_crtc->lut_r[i] << 20) |
(radeon_crtc->lut_g[i] << 10) |
(radeon_crtc->lut_b[i] << 0));
}
}
void radeon_crtc_load_lut(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
if (!crtc->enabled)
return;
if (ASIC_IS_DCE5(rdev))
dce5_crtc_load_lut(crtc);
else if (ASIC_IS_DCE4(rdev))
dce4_crtc_load_lut(crtc);
else if (ASIC_IS_AVIVO(rdev))
avivo_crtc_load_lut(crtc);
else
legacy_crtc_load_lut(crtc);
}
/** Sets the color ramps on behalf of fbcon */
void radeon_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
u16 blue, int regno)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
radeon_crtc->lut_r[regno] = red >> 6;
radeon_crtc->lut_g[regno] = green >> 6;
radeon_crtc->lut_b[regno] = blue >> 6;
}
/** Gets the color ramps on behalf of fbcon */
void radeon_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, int regno)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
*red = radeon_crtc->lut_r[regno] << 6;
*green = radeon_crtc->lut_g[regno] << 6;
*blue = radeon_crtc->lut_b[regno] << 6;
}
static void radeon_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, uint32_t start, uint32_t size)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
int end = (start + size > 256) ? 256 : start + size, i;
/* userspace palettes are always correct as is */
for (i = start; i < end; i++) {
radeon_crtc->lut_r[i] = red[i] >> 6;
radeon_crtc->lut_g[i] = green[i] >> 6;
radeon_crtc->lut_b[i] = blue[i] >> 6;
}
radeon_crtc_load_lut(crtc);
}
static void radeon_crtc_destroy(struct drm_crtc *crtc)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
drm_crtc_cleanup(crtc);
kfree(radeon_crtc);
}
/*
* Handle unpin events outside the interrupt handler proper.
*/
static void radeon_unpin_work_func(struct work_struct *__work)
{
struct radeon_unpin_work *work =
container_of(__work, struct radeon_unpin_work, work);
int r;
/* unpin of the old buffer */
r = radeon_bo_reserve(work->old_rbo, false);
if (likely(r == 0)) {
r = radeon_bo_unpin(work->old_rbo);
if (unlikely(r != 0)) {
DRM_ERROR("failed to unpin buffer after flip\n");
}
radeon_bo_unreserve(work->old_rbo);
} else
DRM_ERROR("failed to reserve buffer after flip\n");
drm_gem_object_unreference_unlocked(&work->old_rbo->gem_base);
kfree(work);
}
void radeon_crtc_handle_flip(struct radeon_device *rdev, int crtc_id)
{
struct radeon_crtc *radeon_crtc = rdev->mode_info.crtcs[crtc_id];
struct radeon_unpin_work *work;
struct drm_pending_vblank_event *e;
struct timeval now;
unsigned long flags;
u32 update_pending;
int vpos, hpos;
spin_lock_irqsave(&rdev->ddev->event_lock, flags);
work = radeon_crtc->unpin_work;
if (work == NULL ||
(work->fence && !radeon_fence_signaled(work->fence))) {
spin_unlock_irqrestore(&rdev->ddev->event_lock, flags);
return;
}
/* New pageflip, or just completion of a previous one? */
if (!radeon_crtc->deferred_flip_completion) {
/* do the flip (mmio) */
update_pending = radeon_page_flip(rdev, crtc_id, work->new_crtc_base);
} else {
/* This is just a completion of a flip queued in crtc
* at last invocation. Make sure we go directly to
* completion routine.
*/
update_pending = 0;
radeon_crtc->deferred_flip_completion = 0;
}
/* Has the pageflip already completed in crtc, or is it certain
* to complete in this vblank?
*/
if (update_pending &&
(DRM_SCANOUTPOS_VALID & radeon_get_crtc_scanoutpos(rdev->ddev, crtc_id,
&vpos, &hpos)) &&
((vpos >= (99 * rdev->mode_info.crtcs[crtc_id]->base.hwmode.crtc_vdisplay)/100) ||
(vpos < 0 && !ASIC_IS_AVIVO(rdev)))) {
/* crtc didn't flip in this target vblank interval,
* but flip is pending in crtc. Based on the current
* scanout position we know that the current frame is
* (nearly) complete and the flip will (likely)
* complete before the start of the next frame.
*/
update_pending = 0;
}
if (update_pending) {
/* crtc didn't flip in this target vblank interval,
* but flip is pending in crtc. It will complete it
* in next vblank interval, so complete the flip at
* next vblank irq.
*/
radeon_crtc->deferred_flip_completion = 1;
spin_unlock_irqrestore(&rdev->ddev->event_lock, flags);
return;
}
/* Pageflip (will be) certainly completed in this vblank. Clean up. */
radeon_crtc->unpin_work = NULL;
/* wakeup userspace */
if (work->event) {
e = work->event;
e->event.sequence = drm_vblank_count_and_time(rdev->ddev, crtc_id, &now);
e->event.tv_sec = now.tv_sec;
e->event.tv_usec = now.tv_usec;
list_add_tail(&e->base.link, &e->base.file_priv->event_list);
wake_up_interruptible(&e->base.file_priv->event_wait);
}
spin_unlock_irqrestore(&rdev->ddev->event_lock, flags);
drm_vblank_put(rdev->ddev, radeon_crtc->crtc_id);
radeon_fence_unref(&work->fence);
radeon_post_page_flip(work->rdev, work->crtc_id);
schedule_work(&work->work);
}
static int radeon_crtc_page_flip(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_pending_vblank_event *event)
{
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct radeon_framebuffer *old_radeon_fb;
struct radeon_framebuffer *new_radeon_fb;
struct drm_gem_object *obj;
struct radeon_bo *rbo;
struct radeon_unpin_work *work;
unsigned long flags;
u32 tiling_flags, pitch_pixels;
u64 base;
int r;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (work == NULL)
return -ENOMEM;
work->event = event;
work->rdev = rdev;
work->crtc_id = radeon_crtc->crtc_id;
old_radeon_fb = to_radeon_framebuffer(crtc->fb);
new_radeon_fb = to_radeon_framebuffer(fb);
/* schedule unpin of the old buffer */
obj = old_radeon_fb->obj;
/* take a reference to the old object */
drm_gem_object_reference(obj);
rbo = gem_to_radeon_bo(obj);
work->old_rbo = rbo;
obj = new_radeon_fb->obj;
rbo = gem_to_radeon_bo(obj);
if (rbo->tbo.sync_obj)
work->fence = radeon_fence_ref(rbo->tbo.sync_obj);
INIT_WORK(&work->work, radeon_unpin_work_func);
/* We borrow the event spin lock for protecting unpin_work */
spin_lock_irqsave(&dev->event_lock, flags);
if (radeon_crtc->unpin_work) {
DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
r = -EBUSY;
goto unlock_free;
}
radeon_crtc->unpin_work = work;
radeon_crtc->deferred_flip_completion = 0;
spin_unlock_irqrestore(&dev->event_lock, flags);
/* pin the new buffer */
DRM_DEBUG_DRIVER("flip-ioctl() cur_fbo = %p, cur_bbo = %p\n",
work->old_rbo, rbo);
r = radeon_bo_reserve(rbo, false);
if (unlikely(r != 0)) {
DRM_ERROR("failed to reserve new rbo buffer before flip\n");
goto pflip_cleanup;
}
/* Only 27 bit offset for legacy CRTC */
r = radeon_bo_pin_restricted(rbo, RADEON_GEM_DOMAIN_VRAM,
ASIC_IS_AVIVO(rdev) ? 0 : 1 << 27, &base);
if (unlikely(r != 0)) {
radeon_bo_unreserve(rbo);
r = -EINVAL;
DRM_ERROR("failed to pin new rbo buffer before flip\n");
goto pflip_cleanup;
}
radeon_bo_get_tiling_flags(rbo, &tiling_flags, NULL);
radeon_bo_unreserve(rbo);
if (!ASIC_IS_AVIVO(rdev)) {
/* crtc offset is from display base addr not FB location */
base -= radeon_crtc->legacy_display_base_addr;
pitch_pixels = fb->pitches[0] / (fb->bits_per_pixel / 8);
if (tiling_flags & RADEON_TILING_MACRO) {
if (ASIC_IS_R300(rdev)) {
base &= ~0x7ff;
} else {
int byteshift = fb->bits_per_pixel >> 4;
int tile_addr = (((crtc->y >> 3) * pitch_pixels + crtc->x) >> (8 - byteshift)) << 11;
base += tile_addr + ((crtc->x << byteshift) % 256) + ((crtc->y % 8) << 8);
}
} else {
int offset = crtc->y * pitch_pixels + crtc->x;
switch (fb->bits_per_pixel) {
case 8:
default:
offset *= 1;
break;
case 15:
case 16:
offset *= 2;
break;
case 24:
offset *= 3;
break;
case 32:
offset *= 4;
break;
}
base += offset;
}
base &= ~7;
}
spin_lock_irqsave(&dev->event_lock, flags);
work->new_crtc_base = base;
spin_unlock_irqrestore(&dev->event_lock, flags);
/* update crtc fb */
crtc->fb = fb;
r = drm_vblank_get(dev, radeon_crtc->crtc_id);
if (r) {
DRM_ERROR("failed to get vblank before flip\n");
goto pflip_cleanup1;
}
/* set the proper interrupt */
radeon_pre_page_flip(rdev, radeon_crtc->crtc_id);
return 0;
pflip_cleanup1:
if (unlikely(radeon_bo_reserve(rbo, false) != 0)) {
DRM_ERROR("failed to reserve new rbo in error path\n");
goto pflip_cleanup;
}
if (unlikely(radeon_bo_unpin(rbo) != 0)) {
DRM_ERROR("failed to unpin new rbo in error path\n");
}
radeon_bo_unreserve(rbo);
pflip_cleanup:
spin_lock_irqsave(&dev->event_lock, flags);
radeon_crtc->unpin_work = NULL;
unlock_free:
spin_unlock_irqrestore(&dev->event_lock, flags);
drm_gem_object_unreference_unlocked(old_radeon_fb->obj);
radeon_fence_unref(&work->fence);
kfree(work);
return r;
}
static const struct drm_crtc_funcs radeon_crtc_funcs = {
.cursor_set = radeon_crtc_cursor_set,
.cursor_move = radeon_crtc_cursor_move,
.gamma_set = radeon_crtc_gamma_set,
.set_config = drm_crtc_helper_set_config,
.destroy = radeon_crtc_destroy,
.page_flip = radeon_crtc_page_flip,
};
static void radeon_crtc_init(struct drm_device *dev, int index)
{
struct radeon_device *rdev = dev->dev_private;
struct radeon_crtc *radeon_crtc;
int i;
radeon_crtc = kzalloc(sizeof(struct radeon_crtc) + (RADEONFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
if (radeon_crtc == NULL)
return;
drm_crtc_init(dev, &radeon_crtc->base, &radeon_crtc_funcs);
drm_mode_crtc_set_gamma_size(&radeon_crtc->base, 256);
radeon_crtc->crtc_id = index;
rdev->mode_info.crtcs[index] = radeon_crtc;
#if 0
radeon_crtc->mode_set.crtc = &radeon_crtc->base;
radeon_crtc->mode_set.connectors = (struct drm_connector **)(radeon_crtc + 1);
radeon_crtc->mode_set.num_connectors = 0;
#endif
for (i = 0; i < 256; i++) {
radeon_crtc->lut_r[i] = i << 2;
radeon_crtc->lut_g[i] = i << 2;
radeon_crtc->lut_b[i] = i << 2;
}
if (rdev->is_atom_bios && (ASIC_IS_AVIVO(rdev) || radeon_r4xx_atom))
radeon_atombios_init_crtc(dev, radeon_crtc);
else
radeon_legacy_init_crtc(dev, radeon_crtc);
}
static const char *encoder_names[37] = {
"NONE",
"INTERNAL_LVDS",
"INTERNAL_TMDS1",
"INTERNAL_TMDS2",
"INTERNAL_DAC1",
"INTERNAL_DAC2",
"INTERNAL_SDVOA",
"INTERNAL_SDVOB",
"SI170B",
"CH7303",
"CH7301",
"INTERNAL_DVO1",
"EXTERNAL_SDVOA",
"EXTERNAL_SDVOB",
"TITFP513",
"INTERNAL_LVTM1",
"VT1623",
"HDMI_SI1930",
"HDMI_INTERNAL",
"INTERNAL_KLDSCP_TMDS1",
"INTERNAL_KLDSCP_DVO1",
"INTERNAL_KLDSCP_DAC1",
"INTERNAL_KLDSCP_DAC2",
"SI178",
"MVPU_FPGA",
"INTERNAL_DDI",
"VT1625",
"HDMI_SI1932",
"DP_AN9801",
"DP_DP501",
"INTERNAL_UNIPHY",
"INTERNAL_KLDSCP_LVTMA",
"INTERNAL_UNIPHY1",
"INTERNAL_UNIPHY2",
"NUTMEG",
"TRAVIS",
"INTERNAL_VCE"
};
static const char *hpd_names[6] = {
"HPD1",
"HPD2",
"HPD3",
"HPD4",
"HPD5",
"HPD6",
};
static void radeon_print_display_setup(struct drm_device *dev)
{
struct drm_connector *connector;
struct radeon_connector *radeon_connector;
struct drm_encoder *encoder;
struct radeon_encoder *radeon_encoder;
uint32_t devices;
int i = 0;
DRM_INFO("Radeon Display Connectors\n");
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
radeon_connector = to_radeon_connector(connector);
DRM_INFO("Connector %d:\n", i);
DRM_INFO(" %s\n", drm_get_connector_name(connector));
if (radeon_connector->hpd.hpd != RADEON_HPD_NONE)
DRM_INFO(" %s\n", hpd_names[radeon_connector->hpd.hpd]);
if (radeon_connector->ddc_bus) {
DRM_INFO(" DDC: 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
radeon_connector->ddc_bus->rec.mask_clk_reg,
radeon_connector->ddc_bus->rec.mask_data_reg,
radeon_connector->ddc_bus->rec.a_clk_reg,
radeon_connector->ddc_bus->rec.a_data_reg,
radeon_connector->ddc_bus->rec.en_clk_reg,
radeon_connector->ddc_bus->rec.en_data_reg,
radeon_connector->ddc_bus->rec.y_clk_reg,
radeon_connector->ddc_bus->rec.y_data_reg);
if (radeon_connector->router.ddc_valid)
DRM_INFO(" DDC Router 0x%x/0x%x\n",
radeon_connector->router.ddc_mux_control_pin,
radeon_connector->router.ddc_mux_state);
if (radeon_connector->router.cd_valid)
DRM_INFO(" Clock/Data Router 0x%x/0x%x\n",
radeon_connector->router.cd_mux_control_pin,
radeon_connector->router.cd_mux_state);
} else {
if (connector->connector_type == DRM_MODE_CONNECTOR_VGA ||
connector->connector_type == DRM_MODE_CONNECTOR_DVII ||
connector->connector_type == DRM_MODE_CONNECTOR_DVID ||
connector->connector_type == DRM_MODE_CONNECTOR_DVIA ||
connector->connector_type == DRM_MODE_CONNECTOR_HDMIA ||
connector->connector_type == DRM_MODE_CONNECTOR_HDMIB)
DRM_INFO(" DDC: no ddc bus - possible BIOS bug - please report to xorg-driver-ati@lists.x.org\n");
}
DRM_INFO(" Encoders:\n");
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
radeon_encoder = to_radeon_encoder(encoder);
devices = radeon_encoder->devices & radeon_connector->devices;
if (devices) {
if (devices & ATOM_DEVICE_CRT1_SUPPORT)
DRM_INFO(" CRT1: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_CRT2_SUPPORT)
DRM_INFO(" CRT2: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_LCD1_SUPPORT)
DRM_INFO(" LCD1: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_DFP1_SUPPORT)
DRM_INFO(" DFP1: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_DFP2_SUPPORT)
DRM_INFO(" DFP2: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_DFP3_SUPPORT)
DRM_INFO(" DFP3: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_DFP4_SUPPORT)
DRM_INFO(" DFP4: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_DFP5_SUPPORT)
DRM_INFO(" DFP5: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_DFP6_SUPPORT)
DRM_INFO(" DFP6: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_TV1_SUPPORT)
DRM_INFO(" TV1: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_CV_SUPPORT)
DRM_INFO(" CV: %s\n", encoder_names[radeon_encoder->encoder_id]);
}
}
i++;
}
}
static bool radeon_setup_enc_conn(struct drm_device *dev)
{
struct radeon_device *rdev = dev->dev_private;
bool ret = false;
if (rdev->bios) {
if (rdev->is_atom_bios) {
ret = radeon_get_atom_connector_info_from_supported_devices_table(dev);
if (ret == false)
ret = radeon_get_atom_connector_info_from_object_table(dev);
} else {
ret = radeon_get_legacy_connector_info_from_bios(dev);
if (ret == false)
ret = radeon_get_legacy_connector_info_from_table(dev);
}
} else {
if (!ASIC_IS_AVIVO(rdev))
ret = radeon_get_legacy_connector_info_from_table(dev);
}
if (ret) {
radeon_setup_encoder_clones(dev);
radeon_print_display_setup(dev);
}
return ret;
}
int radeon_ddc_get_modes(struct radeon_connector *radeon_connector)
{
struct drm_device *dev = radeon_connector->base.dev;
struct radeon_device *rdev = dev->dev_private;
int ret = 0;
/* on hw with routers, select right port */
if (radeon_connector->router.ddc_valid)
radeon_router_select_ddc_port(radeon_connector);
if ((radeon_connector->base.connector_type == DRM_MODE_CONNECTOR_DisplayPort) ||
(radeon_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP) ||
(radeon_connector_encoder_get_dp_bridge_encoder_id(&radeon_connector->base) !=
ENCODER_OBJECT_ID_NONE)) {
struct radeon_connector_atom_dig *dig = radeon_connector->con_priv;
if ((dig->dp_sink_type == CONNECTOR_OBJECT_ID_DISPLAYPORT ||
dig->dp_sink_type == CONNECTOR_OBJECT_ID_eDP) && dig->dp_i2c_bus)
radeon_connector->edid = drm_get_edid(&radeon_connector->base,
&dig->dp_i2c_bus->adapter);
else if (radeon_connector->ddc_bus && !radeon_connector->edid)
radeon_connector->edid = drm_get_edid(&radeon_connector->base,
&radeon_connector->ddc_bus->adapter);
} else {
if (radeon_connector->ddc_bus && !radeon_connector->edid)
radeon_connector->edid = drm_get_edid(&radeon_connector->base,
&radeon_connector->ddc_bus->adapter);
}
if (!radeon_connector->edid) {
if (rdev->is_atom_bios) {
/* some laptops provide a hardcoded edid in rom for LCDs */
if (((radeon_connector->base.connector_type == DRM_MODE_CONNECTOR_LVDS) ||
(radeon_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)))
radeon_connector->edid = radeon_bios_get_hardcoded_edid(rdev);
} else
/* some servers provide a hardcoded edid in rom for KVMs */
radeon_connector->edid = radeon_bios_get_hardcoded_edid(rdev);
}
if (radeon_connector->edid) {
drm_mode_connector_update_edid_property(&radeon_connector->base, radeon_connector->edid);
ret = drm_add_edid_modes(&radeon_connector->base, radeon_connector->edid);
return ret;
}
drm_mode_connector_update_edid_property(&radeon_connector->base, NULL);
return 0;
}
/* avivo */
static void avivo_get_fb_div(struct radeon_pll *pll,
u32 target_clock,
u32 post_div,
u32 ref_div,
u32 *fb_div,
u32 *frac_fb_div)
{
u32 tmp = post_div * ref_div;
tmp *= target_clock;
*fb_div = tmp / pll->reference_freq;
*frac_fb_div = tmp % pll->reference_freq;
if (*fb_div > pll->max_feedback_div)
*fb_div = pll->max_feedback_div;
else if (*fb_div < pll->min_feedback_div)
*fb_div = pll->min_feedback_div;
}
static u32 avivo_get_post_div(struct radeon_pll *pll,
u32 target_clock)
{
u32 vco, post_div, tmp;
if (pll->flags & RADEON_PLL_USE_POST_DIV)
return pll->post_div;
if (pll->flags & RADEON_PLL_PREFER_MINM_OVER_MAXP) {
if (pll->flags & RADEON_PLL_IS_LCD)
vco = pll->lcd_pll_out_min;
else
vco = pll->pll_out_min;
} else {
if (pll->flags & RADEON_PLL_IS_LCD)
vco = pll->lcd_pll_out_max;
else
vco = pll->pll_out_max;
}
post_div = vco / target_clock;
tmp = vco % target_clock;
if (pll->flags & RADEON_PLL_PREFER_MINM_OVER_MAXP) {
if (tmp)
post_div++;
} else {
if (!tmp)
post_div--;
}
if (post_div > pll->max_post_div)
post_div = pll->max_post_div;
else if (post_div < pll->min_post_div)
post_div = pll->min_post_div;
return post_div;
}
#define MAX_TOLERANCE 10
void radeon_compute_pll_avivo(struct radeon_pll *pll,
u32 freq,
u32 *dot_clock_p,
u32 *fb_div_p,
u32 *frac_fb_div_p,
u32 *ref_div_p,
u32 *post_div_p)
{
u32 target_clock = freq / 10;
u32 post_div = avivo_get_post_div(pll, target_clock);
u32 ref_div = pll->min_ref_div;
u32 fb_div = 0, frac_fb_div = 0, tmp;
if (pll->flags & RADEON_PLL_USE_REF_DIV)
ref_div = pll->reference_div;
if (pll->flags & RADEON_PLL_USE_FRAC_FB_DIV) {
avivo_get_fb_div(pll, target_clock, post_div, ref_div, &fb_div, &frac_fb_div);
frac_fb_div = (100 * frac_fb_div) / pll->reference_freq;
if (frac_fb_div >= 5) {
frac_fb_div -= 5;
frac_fb_div = frac_fb_div / 10;
frac_fb_div++;
}
if (frac_fb_div >= 10) {
fb_div++;
frac_fb_div = 0;
}
} else {
while (ref_div <= pll->max_ref_div) {
avivo_get_fb_div(pll, target_clock, post_div, ref_div,
&fb_div, &frac_fb_div);
if (frac_fb_div >= (pll->reference_freq / 2))
fb_div++;
frac_fb_div = 0;
tmp = (pll->reference_freq * fb_div) / (post_div * ref_div);
tmp = (tmp * 10000) / target_clock;
if (tmp > (10000 + MAX_TOLERANCE))
ref_div++;
else if (tmp >= (10000 - MAX_TOLERANCE))
break;
else
ref_div++;
}
}
*dot_clock_p = ((pll->reference_freq * fb_div * 10) + (pll->reference_freq * frac_fb_div)) /
(ref_div * post_div * 10);
*fb_div_p = fb_div;
*frac_fb_div_p = frac_fb_div;
*ref_div_p = ref_div;
*post_div_p = post_div;
DRM_DEBUG_KMS("%d, pll dividers - fb: %d.%d ref: %d, post %d\n",
*dot_clock_p, fb_div, frac_fb_div, ref_div, post_div);
}
/* pre-avivo */
static inline uint32_t radeon_div(uint64_t n, uint32_t d)
{
uint64_t mod;
n += d / 2;
mod = do_div(n, d);
return n;
}
void radeon_compute_pll_legacy(struct radeon_pll *pll,
uint64_t freq,
uint32_t *dot_clock_p,
uint32_t *fb_div_p,
uint32_t *frac_fb_div_p,
uint32_t *ref_div_p,
uint32_t *post_div_p)
{
uint32_t min_ref_div = pll->min_ref_div;
uint32_t max_ref_div = pll->max_ref_div;
uint32_t min_post_div = pll->min_post_div;
uint32_t max_post_div = pll->max_post_div;
uint32_t min_fractional_feed_div = 0;
uint32_t max_fractional_feed_div = 0;
uint32_t best_vco = pll->best_vco;
uint32_t best_post_div = 1;
uint32_t best_ref_div = 1;
uint32_t best_feedback_div = 1;
uint32_t best_frac_feedback_div = 0;
uint32_t best_freq = -1;
uint32_t best_error = 0xffffffff;
uint32_t best_vco_diff = 1;
uint32_t post_div;
u32 pll_out_min, pll_out_max;
DRM_DEBUG_KMS("PLL freq %llu %u %u\n", freq, pll->min_ref_div, pll->max_ref_div);
freq = freq * 1000;
if (pll->flags & RADEON_PLL_IS_LCD) {
pll_out_min = pll->lcd_pll_out_min;
pll_out_max = pll->lcd_pll_out_max;
} else {
pll_out_min = pll->pll_out_min;
pll_out_max = pll->pll_out_max;
}
if (pll_out_min > 64800)
pll_out_min = 64800;
if (pll->flags & RADEON_PLL_USE_REF_DIV)
min_ref_div = max_ref_div = pll->reference_div;
else {
while (min_ref_div < max_ref_div-1) {
uint32_t mid = (min_ref_div + max_ref_div) / 2;
uint32_t pll_in = pll->reference_freq / mid;
if (pll_in < pll->pll_in_min)
max_ref_div = mid;
else if (pll_in > pll->pll_in_max)
min_ref_div = mid;
else
break;
}
}
if (pll->flags & RADEON_PLL_USE_POST_DIV)
min_post_div = max_post_div = pll->post_div;
if (pll->flags & RADEON_PLL_USE_FRAC_FB_DIV) {
min_fractional_feed_div = pll->min_frac_feedback_div;
max_fractional_feed_div = pll->max_frac_feedback_div;
}
for (post_div = max_post_div; post_div >= min_post_div; --post_div) {
uint32_t ref_div;
if ((pll->flags & RADEON_PLL_NO_ODD_POST_DIV) && (post_div & 1))
continue;
/* legacy radeons only have a few post_divs */
if (pll->flags & RADEON_PLL_LEGACY) {
if ((post_div == 5) ||
(post_div == 7) ||
(post_div == 9) ||
(post_div == 10) ||
(post_div == 11) ||
(post_div == 13) ||
(post_div == 14) ||
(post_div == 15))
continue;
}
for (ref_div = min_ref_div; ref_div <= max_ref_div; ++ref_div) {
uint32_t feedback_div, current_freq = 0, error, vco_diff;
uint32_t pll_in = pll->reference_freq / ref_div;
uint32_t min_feed_div = pll->min_feedback_div;
uint32_t max_feed_div = pll->max_feedback_div + 1;
if (pll_in < pll->pll_in_min || pll_in > pll->pll_in_max)
continue;
while (min_feed_div < max_feed_div) {
uint32_t vco;
uint32_t min_frac_feed_div = min_fractional_feed_div;
uint32_t max_frac_feed_div = max_fractional_feed_div + 1;
uint32_t frac_feedback_div;
uint64_t tmp;
feedback_div = (min_feed_div + max_feed_div) / 2;
tmp = (uint64_t)pll->reference_freq * feedback_div;
vco = radeon_div(tmp, ref_div);
if (vco < pll_out_min) {
min_feed_div = feedback_div + 1;
continue;
} else if (vco > pll_out_max) {
max_feed_div = feedback_div;
continue;
}
while (min_frac_feed_div < max_frac_feed_div) {
frac_feedback_div = (min_frac_feed_div + max_frac_feed_div) / 2;
tmp = (uint64_t)pll->reference_freq * 10000 * feedback_div;
tmp += (uint64_t)pll->reference_freq * 1000 * frac_feedback_div;
current_freq = radeon_div(tmp, ref_div * post_div);
if (pll->flags & RADEON_PLL_PREFER_CLOSEST_LOWER) {
if (freq < current_freq)
error = 0xffffffff;
else
error = freq - current_freq;
} else
error = abs(current_freq - freq);
vco_diff = abs(vco - best_vco);
if ((best_vco == 0 && error < best_error) ||
(best_vco != 0 &&
((best_error > 100 && error < best_error - 100) ||
(abs(error - best_error) < 100 && vco_diff < best_vco_diff)))) {
best_post_div = post_div;
best_ref_div = ref_div;
best_feedback_div = feedback_div;
best_frac_feedback_div = frac_feedback_div;
best_freq = current_freq;
best_error = error;
best_vco_diff = vco_diff;
} else if (current_freq == freq) {
if (best_freq == -1) {
best_post_div = post_div;
best_ref_div = ref_div;
best_feedback_div = feedback_div;
best_frac_feedback_div = frac_feedback_div;
best_freq = current_freq;
best_error = error;
best_vco_diff = vco_diff;
} else if (((pll->flags & RADEON_PLL_PREFER_LOW_REF_DIV) && (ref_div < best_ref_div)) ||
((pll->flags & RADEON_PLL_PREFER_HIGH_REF_DIV) && (ref_div > best_ref_div)) ||
((pll->flags & RADEON_PLL_PREFER_LOW_FB_DIV) && (feedback_div < best_feedback_div)) ||
((pll->flags & RADEON_PLL_PREFER_HIGH_FB_DIV) && (feedback_div > best_feedback_div)) ||
((pll->flags & RADEON_PLL_PREFER_LOW_POST_DIV) && (post_div < best_post_div)) ||
((pll->flags & RADEON_PLL_PREFER_HIGH_POST_DIV) && (post_div > best_post_div))) {
best_post_div = post_div;
best_ref_div = ref_div;
best_feedback_div = feedback_div;
best_frac_feedback_div = frac_feedback_div;
best_freq = current_freq;
best_error = error;
best_vco_diff = vco_diff;
}
}
if (current_freq < freq)
min_frac_feed_div = frac_feedback_div + 1;
else
max_frac_feed_div = frac_feedback_div;
}
if (current_freq < freq)
min_feed_div = feedback_div + 1;
else
max_feed_div = feedback_div;
}
}
}
*dot_clock_p = best_freq / 10000;
*fb_div_p = best_feedback_div;
*frac_fb_div_p = best_frac_feedback_div;
*ref_div_p = best_ref_div;
*post_div_p = best_post_div;
DRM_DEBUG_KMS("%lld %d, pll dividers - fb: %d.%d ref: %d, post %d\n",
(long long)freq,
best_freq / 1000, best_feedback_div, best_frac_feedback_div,
best_ref_div, best_post_div);
}
static void radeon_user_framebuffer_destroy(struct drm_framebuffer *fb)
{
struct radeon_framebuffer *radeon_fb = to_radeon_framebuffer(fb);
if (radeon_fb->obj) {
drm_gem_object_unreference_unlocked(radeon_fb->obj);
}
drm_framebuffer_cleanup(fb);
kfree(radeon_fb);
}
static int radeon_user_framebuffer_create_handle(struct drm_framebuffer *fb,
struct drm_file *file_priv,
unsigned int *handle)
{
struct radeon_framebuffer *radeon_fb = to_radeon_framebuffer(fb);
return drm_gem_handle_create(file_priv, radeon_fb->obj, handle);
}
static const struct drm_framebuffer_funcs radeon_fb_funcs = {
.destroy = radeon_user_framebuffer_destroy,
.create_handle = radeon_user_framebuffer_create_handle,
};
int
radeon_framebuffer_init(struct drm_device *dev,
struct radeon_framebuffer *rfb,
struct drm_mode_fb_cmd2 *mode_cmd,
struct drm_gem_object *obj)
{
int ret;
rfb->obj = obj;
ret = drm_framebuffer_init(dev, &rfb->base, &radeon_fb_funcs);
if (ret) {
rfb->obj = NULL;
return ret;
}
drm_helper_mode_fill_fb_struct(&rfb->base, mode_cmd);
return 0;
}
static struct drm_framebuffer *
radeon_user_framebuffer_create(struct drm_device *dev,
struct drm_file *file_priv,
struct drm_mode_fb_cmd2 *mode_cmd)
{
struct drm_gem_object *obj;
struct radeon_framebuffer *radeon_fb;
int ret;
obj = drm_gem_object_lookup(dev, file_priv, mode_cmd->handles[0]);
if (obj == NULL) {
dev_err(&dev->pdev->dev, "No GEM object associated to handle 0x%08X, "
"can't create framebuffer\n", mode_cmd->handles[0]);
return ERR_PTR(-ENOENT);
}
radeon_fb = kzalloc(sizeof(*radeon_fb), GFP_KERNEL);
if (radeon_fb == NULL)
return ERR_PTR(-ENOMEM);
ret = radeon_framebuffer_init(dev, radeon_fb, mode_cmd, obj);
if (ret) {
kfree(radeon_fb);
drm_gem_object_unreference_unlocked(obj);
return NULL;
}
return &radeon_fb->base;
}
static void radeon_output_poll_changed(struct drm_device *dev)
{
struct radeon_device *rdev = dev->dev_private;
radeon_fb_output_poll_changed(rdev);
}
static const struct drm_mode_config_funcs radeon_mode_funcs = {
.fb_create = radeon_user_framebuffer_create,
.output_poll_changed = radeon_output_poll_changed
};
static struct drm_prop_enum_list radeon_tmds_pll_enum_list[] =
{ { 0, "driver" },
{ 1, "bios" },
};
static struct drm_prop_enum_list radeon_tv_std_enum_list[] =
{ { TV_STD_NTSC, "ntsc" },
{ TV_STD_PAL, "pal" },
{ TV_STD_PAL_M, "pal-m" },
{ TV_STD_PAL_60, "pal-60" },
{ TV_STD_NTSC_J, "ntsc-j" },
{ TV_STD_SCART_PAL, "scart-pal" },
{ TV_STD_PAL_CN, "pal-cn" },
{ TV_STD_SECAM, "secam" },
};
static struct drm_prop_enum_list radeon_underscan_enum_list[] =
{ { UNDERSCAN_OFF, "off" },
{ UNDERSCAN_ON, "on" },
{ UNDERSCAN_AUTO, "auto" },
};
static int radeon_modeset_create_props(struct radeon_device *rdev)
{
int sz;
if (rdev->is_atom_bios) {
rdev->mode_info.coherent_mode_property =
drm_property_create_range(rdev->ddev, 0 , "coherent", 0, 1);
if (!rdev->mode_info.coherent_mode_property)
return -ENOMEM;
}
if (!ASIC_IS_AVIVO(rdev)) {
sz = ARRAY_SIZE(radeon_tmds_pll_enum_list);
rdev->mode_info.tmds_pll_property =
drm_property_create_enum(rdev->ddev, 0,
"tmds_pll",
radeon_tmds_pll_enum_list, sz);
}
rdev->mode_info.load_detect_property =
drm_property_create_range(rdev->ddev, 0, "load detection", 0, 1);
if (!rdev->mode_info.load_detect_property)
return -ENOMEM;
drm_mode_create_scaling_mode_property(rdev->ddev);
sz = ARRAY_SIZE(radeon_tv_std_enum_list);
rdev->mode_info.tv_std_property =
drm_property_create_enum(rdev->ddev, 0,
"tv standard",
radeon_tv_std_enum_list, sz);
sz = ARRAY_SIZE(radeon_underscan_enum_list);
rdev->mode_info.underscan_property =
drm_property_create_enum(rdev->ddev, 0,
"underscan",
radeon_underscan_enum_list, sz);
rdev->mode_info.underscan_hborder_property =
drm_property_create_range(rdev->ddev, 0,
"underscan hborder", 0, 128);
if (!rdev->mode_info.underscan_hborder_property)
return -ENOMEM;
rdev->mode_info.underscan_vborder_property =
drm_property_create_range(rdev->ddev, 0,
"underscan vborder", 0, 128);
if (!rdev->mode_info.underscan_vborder_property)
return -ENOMEM;
return 0;
}
void radeon_update_display_priority(struct radeon_device *rdev)
{
/* adjustment options for the display watermarks */
if ((radeon_disp_priority == 0) || (radeon_disp_priority > 2)) {
/* set display priority to high for r3xx, rv515 chips
* this avoids flickering due to underflow to the
* display controllers during heavy acceleration.
* Don't force high on rs4xx igp chips as it seems to
* affect the sound card. See kernel bug 15982.
*/
if ((ASIC_IS_R300(rdev) || (rdev->family == CHIP_RV515)) &&
!(rdev->flags & RADEON_IS_IGP))
rdev->disp_priority = 2;
else
rdev->disp_priority = 0;
} else
rdev->disp_priority = radeon_disp_priority;
}
/*
* Allocate hdmi structs and determine register offsets
*/
static void radeon_afmt_init(struct radeon_device *rdev)
{
int i;
for (i = 0; i < RADEON_MAX_AFMT_BLOCKS; i++)
rdev->mode_info.afmt[i] = NULL;
if (ASIC_IS_DCE6(rdev)) {
/* todo */
} else if (ASIC_IS_DCE4(rdev)) {
/* DCE4/5 has 6 audio blocks tied to DIG encoders */
/* DCE4.1 has 2 audio blocks tied to DIG encoders */
rdev->mode_info.afmt[0] = kzalloc(sizeof(struct radeon_afmt), GFP_KERNEL);
if (rdev->mode_info.afmt[0]) {
rdev->mode_info.afmt[0]->offset = EVERGREEN_CRTC0_REGISTER_OFFSET;
rdev->mode_info.afmt[0]->id = 0;
}
rdev->mode_info.afmt[1] = kzalloc(sizeof(struct radeon_afmt), GFP_KERNEL);
if (rdev->mode_info.afmt[1]) {
rdev->mode_info.afmt[1]->offset = EVERGREEN_CRTC1_REGISTER_OFFSET;
rdev->mode_info.afmt[1]->id = 1;
}
if (!ASIC_IS_DCE41(rdev)) {
rdev->mode_info.afmt[2] = kzalloc(sizeof(struct radeon_afmt), GFP_KERNEL);
if (rdev->mode_info.afmt[2]) {
rdev->mode_info.afmt[2]->offset = EVERGREEN_CRTC2_REGISTER_OFFSET;
rdev->mode_info.afmt[2]->id = 2;
}
rdev->mode_info.afmt[3] = kzalloc(sizeof(struct radeon_afmt), GFP_KERNEL);
if (rdev->mode_info.afmt[3]) {
rdev->mode_info.afmt[3]->offset = EVERGREEN_CRTC3_REGISTER_OFFSET;
rdev->mode_info.afmt[3]->id = 3;
}
rdev->mode_info.afmt[4] = kzalloc(sizeof(struct radeon_afmt), GFP_KERNEL);
if (rdev->mode_info.afmt[4]) {
rdev->mode_info.afmt[4]->offset = EVERGREEN_CRTC4_REGISTER_OFFSET;
rdev->mode_info.afmt[4]->id = 4;
}
rdev->mode_info.afmt[5] = kzalloc(sizeof(struct radeon_afmt), GFP_KERNEL);
if (rdev->mode_info.afmt[5]) {
rdev->mode_info.afmt[5]->offset = EVERGREEN_CRTC5_REGISTER_OFFSET;
rdev->mode_info.afmt[5]->id = 5;
}
}
} else if (ASIC_IS_DCE3(rdev)) {
/* DCE3.x has 2 audio blocks tied to DIG encoders */
rdev->mode_info.afmt[0] = kzalloc(sizeof(struct radeon_afmt), GFP_KERNEL);
if (rdev->mode_info.afmt[0]) {
rdev->mode_info.afmt[0]->offset = DCE3_HDMI_OFFSET0;
rdev->mode_info.afmt[0]->id = 0;
}
rdev->mode_info.afmt[1] = kzalloc(sizeof(struct radeon_afmt), GFP_KERNEL);
if (rdev->mode_info.afmt[1]) {
rdev->mode_info.afmt[1]->offset = DCE3_HDMI_OFFSET1;
rdev->mode_info.afmt[1]->id = 1;
}
} else if (ASIC_IS_DCE2(rdev)) {
/* DCE2 has at least 1 routable audio block */
rdev->mode_info.afmt[0] = kzalloc(sizeof(struct radeon_afmt), GFP_KERNEL);
if (rdev->mode_info.afmt[0]) {
rdev->mode_info.afmt[0]->offset = DCE2_HDMI_OFFSET0;
rdev->mode_info.afmt[0]->id = 0;
}
/* r6xx has 2 routable audio blocks */
if (rdev->family >= CHIP_R600) {
rdev->mode_info.afmt[1] = kzalloc(sizeof(struct radeon_afmt), GFP_KERNEL);
if (rdev->mode_info.afmt[1]) {
rdev->mode_info.afmt[1]->offset = DCE2_HDMI_OFFSET1;
rdev->mode_info.afmt[1]->id = 1;
}
}
}
}
static void radeon_afmt_fini(struct radeon_device *rdev)
{
int i;
for (i = 0; i < RADEON_MAX_AFMT_BLOCKS; i++) {
kfree(rdev->mode_info.afmt[i]);
rdev->mode_info.afmt[i] = NULL;
}
}
int radeon_modeset_init(struct radeon_device *rdev)
{
int i;
int ret;
drm_mode_config_init(rdev->ddev);
rdev->mode_info.mode_config_initialized = true;
rdev->ddev->mode_config.funcs = &radeon_mode_funcs;
if (ASIC_IS_DCE5(rdev)) {
rdev->ddev->mode_config.max_width = 16384;
rdev->ddev->mode_config.max_height = 16384;
} else if (ASIC_IS_AVIVO(rdev)) {
rdev->ddev->mode_config.max_width = 8192;
rdev->ddev->mode_config.max_height = 8192;
} else {
rdev->ddev->mode_config.max_width = 4096;
rdev->ddev->mode_config.max_height = 4096;
}
rdev->ddev->mode_config.preferred_depth = 24;
rdev->ddev->mode_config.prefer_shadow = 1;
rdev->ddev->mode_config.fb_base = rdev->mc.aper_base;
ret = radeon_modeset_create_props(rdev);
if (ret) {
return ret;
}
/* init i2c buses */
radeon_i2c_init(rdev);
/* check combios for a valid hardcoded EDID - Sun servers */
if (!rdev->is_atom_bios) {
/* check for hardcoded EDID in BIOS */
radeon_combios_check_hardcoded_edid(rdev);
}
/* allocate crtcs */
for (i = 0; i < rdev->num_crtc; i++) {
radeon_crtc_init(rdev->ddev, i);
}
/* okay we should have all the bios connectors */
ret = radeon_setup_enc_conn(rdev->ddev);
if (!ret) {
return ret;
}
/* init dig PHYs, disp eng pll */
if (rdev->is_atom_bios) {
radeon_atom_encoder_init(rdev);
radeon_atom_disp_eng_pll_init(rdev);
}
/* initialize hpd */
radeon_hpd_init(rdev);
/* setup afmt */
radeon_afmt_init(rdev);
/* Initialize power management */
radeon_pm_init(rdev);
radeon_fbdev_init(rdev);
drm_kms_helper_poll_init(rdev->ddev);
return 0;
}
void radeon_modeset_fini(struct radeon_device *rdev)
{
radeon_fbdev_fini(rdev);
kfree(rdev->mode_info.bios_hardcoded_edid);
radeon_pm_fini(rdev);
if (rdev->mode_info.mode_config_initialized) {
radeon_afmt_fini(rdev);
drm_kms_helper_poll_fini(rdev->ddev);
radeon_hpd_fini(rdev);
drm_mode_config_cleanup(rdev->ddev);
rdev->mode_info.mode_config_initialized = false;
}
/* free i2c buses */
radeon_i2c_fini(rdev);
}
static bool is_hdtv_mode(struct drm_display_mode *mode)
{
/* try and guess if this is a tv or a monitor */
if ((mode->vdisplay == 480 && mode->hdisplay == 720) || /* 480p */
(mode->vdisplay == 576) || /* 576p */
(mode->vdisplay == 720) || /* 720p */
(mode->vdisplay == 1080)) /* 1080p */
return true;
else
return false;
}
bool radeon_crtc_scaling_mode_fixup(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
struct drm_encoder *encoder;
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct radeon_encoder *radeon_encoder;
struct drm_connector *connector;
struct radeon_connector *radeon_connector;
bool first = true;
u32 src_v = 1, dst_v = 1;
u32 src_h = 1, dst_h = 1;
radeon_crtc->h_border = 0;
radeon_crtc->v_border = 0;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
if (encoder->crtc != crtc)
continue;
radeon_encoder = to_radeon_encoder(encoder);
connector = radeon_get_connector_for_encoder(encoder);
radeon_connector = to_radeon_connector(connector);
if (first) {
/* set scaling */
if (radeon_encoder->rmx_type == RMX_OFF)
radeon_crtc->rmx_type = RMX_OFF;
else if (mode->hdisplay < radeon_encoder->native_mode.hdisplay ||
mode->vdisplay < radeon_encoder->native_mode.vdisplay)
radeon_crtc->rmx_type = radeon_encoder->rmx_type;
else
radeon_crtc->rmx_type = RMX_OFF;
/* copy native mode */
memcpy(&radeon_crtc->native_mode,
&radeon_encoder->native_mode,
sizeof(struct drm_display_mode));
src_v = crtc->mode.vdisplay;
dst_v = radeon_crtc->native_mode.vdisplay;
src_h = crtc->mode.hdisplay;
dst_h = radeon_crtc->native_mode.hdisplay;
/* fix up for overscan on hdmi */
if (ASIC_IS_AVIVO(rdev) &&
(!(mode->flags & DRM_MODE_FLAG_INTERLACE)) &&
((radeon_encoder->underscan_type == UNDERSCAN_ON) ||
((radeon_encoder->underscan_type == UNDERSCAN_AUTO) &&
drm_detect_hdmi_monitor(radeon_connector->edid) &&
is_hdtv_mode(mode)))) {
if (radeon_encoder->underscan_hborder != 0)
radeon_crtc->h_border = radeon_encoder->underscan_hborder;
else
radeon_crtc->h_border = (mode->hdisplay >> 5) + 16;
if (radeon_encoder->underscan_vborder != 0)
radeon_crtc->v_border = radeon_encoder->underscan_vborder;
else
radeon_crtc->v_border = (mode->vdisplay >> 5) + 16;
radeon_crtc->rmx_type = RMX_FULL;
src_v = crtc->mode.vdisplay;
dst_v = crtc->mode.vdisplay - (radeon_crtc->v_border * 2);
src_h = crtc->mode.hdisplay;
dst_h = crtc->mode.hdisplay - (radeon_crtc->h_border * 2);
}
first = false;
} else {
if (radeon_crtc->rmx_type != radeon_encoder->rmx_type) {
/* WARNING: Right now this can't happen but
* in the future we need to check that scaling
* are consistent across different encoder
* (ie all encoder can work with the same
* scaling).
*/
DRM_ERROR("Scaling not consistent across encoder.\n");
return false;
}
}
}
if (radeon_crtc->rmx_type != RMX_OFF) {
fixed20_12 a, b;
a.full = dfixed_const(src_v);
b.full = dfixed_const(dst_v);
radeon_crtc->vsc.full = dfixed_div(a, b);
a.full = dfixed_const(src_h);
b.full = dfixed_const(dst_h);
radeon_crtc->hsc.full = dfixed_div(a, b);
} else {
radeon_crtc->vsc.full = dfixed_const(1);
radeon_crtc->hsc.full = dfixed_const(1);
}
return true;
}
/*
* Retrieve current video scanout position of crtc on a given gpu.
*
* \param dev Device to query.
* \param crtc Crtc to query.
* \param *vpos Location where vertical scanout position should be stored.
* \param *hpos Location where horizontal scanout position should go.
*
* Returns vpos as a positive number while in active scanout area.
* Returns vpos as a negative number inside vblank, counting the number
* of scanlines to go until end of vblank, e.g., -1 means "one scanline
* until start of active scanout / end of vblank."
*
* \return Flags, or'ed together as follows:
*
* DRM_SCANOUTPOS_VALID = Query successful.
* DRM_SCANOUTPOS_INVBL = Inside vblank.
* DRM_SCANOUTPOS_ACCURATE = Returned position is accurate. A lack of
* this flag means that returned position may be offset by a constant but
* unknown small number of scanlines wrt. real scanout position.
*
*/
int radeon_get_crtc_scanoutpos(struct drm_device *dev, int crtc, int *vpos, int *hpos)
{
u32 stat_crtc = 0, vbl = 0, position = 0;
int vbl_start, vbl_end, vtotal, ret = 0;
bool in_vbl = true;
struct radeon_device *rdev = dev->dev_private;
if (ASIC_IS_DCE4(rdev)) {
if (crtc == 0) {
vbl = RREG32(EVERGREEN_CRTC_V_BLANK_START_END +
EVERGREEN_CRTC0_REGISTER_OFFSET);
position = RREG32(EVERGREEN_CRTC_STATUS_POSITION +
EVERGREEN_CRTC0_REGISTER_OFFSET);
ret |= DRM_SCANOUTPOS_VALID;
}
if (crtc == 1) {
vbl = RREG32(EVERGREEN_CRTC_V_BLANK_START_END +
EVERGREEN_CRTC1_REGISTER_OFFSET);
position = RREG32(EVERGREEN_CRTC_STATUS_POSITION +
EVERGREEN_CRTC1_REGISTER_OFFSET);
ret |= DRM_SCANOUTPOS_VALID;
}
if (crtc == 2) {
vbl = RREG32(EVERGREEN_CRTC_V_BLANK_START_END +
EVERGREEN_CRTC2_REGISTER_OFFSET);
position = RREG32(EVERGREEN_CRTC_STATUS_POSITION +
EVERGREEN_CRTC2_REGISTER_OFFSET);
ret |= DRM_SCANOUTPOS_VALID;
}
if (crtc == 3) {
vbl = RREG32(EVERGREEN_CRTC_V_BLANK_START_END +
EVERGREEN_CRTC3_REGISTER_OFFSET);
position = RREG32(EVERGREEN_CRTC_STATUS_POSITION +
EVERGREEN_CRTC3_REGISTER_OFFSET);
ret |= DRM_SCANOUTPOS_VALID;
}
if (crtc == 4) {
vbl = RREG32(EVERGREEN_CRTC_V_BLANK_START_END +
EVERGREEN_CRTC4_REGISTER_OFFSET);
position = RREG32(EVERGREEN_CRTC_STATUS_POSITION +
EVERGREEN_CRTC4_REGISTER_OFFSET);
ret |= DRM_SCANOUTPOS_VALID;
}
if (crtc == 5) {
vbl = RREG32(EVERGREEN_CRTC_V_BLANK_START_END +
EVERGREEN_CRTC5_REGISTER_OFFSET);
position = RREG32(EVERGREEN_CRTC_STATUS_POSITION +
EVERGREEN_CRTC5_REGISTER_OFFSET);
ret |= DRM_SCANOUTPOS_VALID;
}
} else if (ASIC_IS_AVIVO(rdev)) {
if (crtc == 0) {
vbl = RREG32(AVIVO_D1CRTC_V_BLANK_START_END);
position = RREG32(AVIVO_D1CRTC_STATUS_POSITION);
ret |= DRM_SCANOUTPOS_VALID;
}
if (crtc == 1) {
vbl = RREG32(AVIVO_D2CRTC_V_BLANK_START_END);
position = RREG32(AVIVO_D2CRTC_STATUS_POSITION);
ret |= DRM_SCANOUTPOS_VALID;
}
} else {
/* Pre-AVIVO: Different encoding of scanout pos and vblank interval. */
if (crtc == 0) {
/* Assume vbl_end == 0, get vbl_start from
* upper 16 bits.
*/
vbl = (RREG32(RADEON_CRTC_V_TOTAL_DISP) &
RADEON_CRTC_V_DISP) >> RADEON_CRTC_V_DISP_SHIFT;
/* Only retrieve vpos from upper 16 bits, set hpos == 0. */
position = (RREG32(RADEON_CRTC_VLINE_CRNT_VLINE) >> 16) & RADEON_CRTC_V_TOTAL;
stat_crtc = RREG32(RADEON_CRTC_STATUS);
if (!(stat_crtc & 1))
in_vbl = false;
ret |= DRM_SCANOUTPOS_VALID;
}
if (crtc == 1) {
vbl = (RREG32(RADEON_CRTC2_V_TOTAL_DISP) &
RADEON_CRTC_V_DISP) >> RADEON_CRTC_V_DISP_SHIFT;
position = (RREG32(RADEON_CRTC2_VLINE_CRNT_VLINE) >> 16) & RADEON_CRTC_V_TOTAL;
stat_crtc = RREG32(RADEON_CRTC2_STATUS);
if (!(stat_crtc & 1))
in_vbl = false;
ret |= DRM_SCANOUTPOS_VALID;
}
}
/* Decode into vertical and horizontal scanout position. */
*vpos = position & 0x1fff;
*hpos = (position >> 16) & 0x1fff;
/* Valid vblank area boundaries from gpu retrieved? */
if (vbl > 0) {
/* Yes: Decode. */
ret |= DRM_SCANOUTPOS_ACCURATE;
vbl_start = vbl & 0x1fff;
vbl_end = (vbl >> 16) & 0x1fff;
}
else {
/* No: Fake something reasonable which gives at least ok results. */
vbl_start = rdev->mode_info.crtcs[crtc]->base.hwmode.crtc_vdisplay;
vbl_end = 0;
}
/* Test scanout position against vblank region. */
if ((*vpos < vbl_start) && (*vpos >= vbl_end))
in_vbl = false;
/* Check if inside vblank area and apply corrective offsets:
* vpos will then be >=0 in video scanout area, but negative
* within vblank area, counting down the number of lines until
* start of scanout.
*/
/* Inside "upper part" of vblank area? Apply corrective offset if so: */
if (in_vbl && (*vpos >= vbl_start)) {
vtotal = rdev->mode_info.crtcs[crtc]->base.hwmode.crtc_vtotal;
*vpos = *vpos - vtotal;
}
/* Correct for shifted end of vbl at vbl_end. */
*vpos = *vpos - vbl_end;
/* In vblank? */
if (in_vbl)
ret |= DRM_SCANOUTPOS_INVBL;
return ret;
}